Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Sparse Boltzmann Machines
with Structure Learning as Applied to Text Analysis

Zhourong Chen,* Nevin L. Zhang,” Dit-Yan Yeung, Peixian Chen
Hong Kong University of Science and Technology
{zchenbb,lzhang,dyyeung,pchenac} @cse.ust.hk

Abstract

We are interested in exploring the possibility and benefits of
structure learning for deep models. As the first step, this paper
investigates the matter for Restricted Boltzmann Machines
(RBMs). We conduct the study with Replicated Softmax, a
variant of RBMs for unsupervised text analysis. We present
a method for learning what we call Sparse Boltzmann Ma-
chines, where each hidden unit is connected to a subset of the
visible units instead of all of them. Empirical results show
that the method yields models with significantly improved
model fit and interpretability as compared with RBMs where
each hidden unit is connected to all visible units.

Introduction

Deep learning has achieved great successes in recent years.
It has produced superior results in a range of applica-
tions, including image classification (Krizhevsky, Sutskever,
and Hinton 2012), speech recognition (Hinton et al. 2012;
Mikolov et al. 2011), language translation (Sutskever,
Vinyals, and Le 2014) and so on. It is now time to ask
whether it is possible and beneficial to learn structures for
deep models.

To learn the structure of a deep model, we need to deter-
mine the number of hidden layers and the number of hidden
units at each layer. More importantly, we need to determine
the connections between neighboring layers. This implies
that we need to talk about sparse models where neighbor-
ing layers are not fully connected.

Sparseness is desirable and full connectivity is unneces-
sary. In fact, (Han et al. 2015) have shown that many weak
connections in the fully connected layers of Convolutional
Neural Networks (CNNs) (Lecun et al. 1998) can be pruned
without incurring any accuracy loss. The convolutional lay-
ers of CNNs are sparse, and the fact is considered one of the
key factors that have led to the success of CNNs. Moreover,
it is well known that overfitting is a serious problem in deep
models. One method to address the problem is dropout (Sri-
vastava et al. 2014), which randomly drops out units (while
keeping full connectivity) during training. The possibility of
randomly dropping connections has also been explored in

*Corresponding authors.
Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example RBM with K = 6 and F' = 4.

(Wan et al. 2013). Sparseness offers an interesting alterna-
tive. It amounts to deterministically dropping out connec-
tions.

How can one learn sparse deep models? One method is
to first learn a fully connected model and then prune weak
connections (Han et al. 2015). The drawbacks of this method
are that it is computationally wasteful and does not provide a
way to determine the number of hidden units. We would like
to develop a method that determines the number of hidden
units and the connections between units automatically. The
key intuition is that a hidden unit should be connected to a
group of strongly correlated units at the level below. This
idea is used in the convolutional layers of CNNs, where a
unit is connected to pixels in a small patch of an image. In
image analysis, spatial proximity implies strong correlation.

To apply the intuition to applications other than image
analysis, we need to identify groups of strongly correlated
variables for which latent variables should be introduced.
Hierarchical Latent Tree Analysis (HLTA) (Liu et al 2014,
Chen et al 2016) offers a plausible solution. HLTA first par-
titions all the variables into groups such that the variables
in each group are strongly correlated and the correlations
can be properly modelled using a single latent variable. It
then introduces a latent variable for each group. After that it
converts the latent variables into observed variables via data
completion and repeats the process to produce a hierarchy.
The output of HLTA is a hierarchical latent tree model where
the observed variables are at the bottom and there are mul-
tiple layers of latent variables on top. To obtain a non-tree
sparse deep model, we propose to use the tree model as a
skeleton and introduce additional connections to model the
residual correlations not captured by the tree.

In this paper, we fully develop and test the idea in the
context of RBMs, which have a single layer of hidden units
and are the building blocks of Deep Belief Networks (Hin-

ton, Osindero, and Teh 2006). The target domain is unsu-
pervised text analysis. We present an algorithm for learning
what we call Sparse Boltzmann Machines (SBMs). Empiri-
cally, we show that the full-connectivity restriction of RBMs
can easily lead to overfitting, and that SBMs are effective in
avoiding overfitting. We also demonstrate that Sparse Boltz-
mann Machines are more interpretable than RBMs.

Related Works

The term sparse RBMs first appeared in (Lee, Ekanadham,
and Ng 2008), where it was used to refer to sparse hid-
den unit activations rather than sparse connections. (Adams,
Wallach, and Ghahramani 2010) proposed to learn sparse
structure for deep directed belief networks by introducing
the cascading Indian buffet process, which was very time-
consuming.

Network pruning is also a potential way to optimize the
structure of a neural network. Biased weight decay was the
early approach to pruning. Later, Optimal Brain Damage
(Cun, Denker, and Solla 1990) and Optimal Brain Surgeon
(Hassibi, Stork, and Com 1993) suggested that magnitude-
based pruning may not be the best strategy and they pro-
posed pruning methods based on the Hessian of the loss
function. With respect to deep neural networks, (Han et al.
2015) proposed to compress a network through a three-step
process: train, prune connections, and retrain. We call it re-
dundancy pruning. In contrast, (Srinivas and Babu 2015)
proposed to prune redundant neurons directly. They all re-
duced the number of parameters vastly with slight or even
no performance loss. The drawback of network pruning is
that the original networks should be large enough and hence
some computation would be wasted on those unnecessary
parameters during pre-training.

Restricted Boltzmann Machines

An Restricted Boltzmann Machine (RBM) (Smolensky
1986) is a two-layer undirected graphical model with a layer
of K visible units {v!,...,v®} and a layer of F' hidden
units {h1,...,hr}. The two layers are fully connected to
each other, while there are no connections between units at
the same layer. An example is shown in Figure 1. In the sim-
plest case, all the units are assumed to be binary. An energy
function is defined over all the units as follows:

JU —Zv br — Zhaj, (1

F K
o -
where a; and b* are bias parameters for the hidden and vis-
ible units respectively, while Wf is the connection weight
between hidden unit /; and visible unit v*. The energy func-
tion defines a joint probability over v and h as follows:

P(Va h) - eXp(fE(V, h))/Za 2
where Z = 37, exp(—~E(V,h’)) is a normalization term
called the partition function. An important property of RBM
is that the conditional distributions P(h|v) and P(v|h) fac-
torize as below:

P(hly) = HPh\v P(v|h) = HPv|h 3)

Figure 2: An example SBM with K = 6 and F' = 4.

P(h; = 1|v) = o(a; + Wiv") ©)

k=1

P(* =1h) =o(b +Z Wlhy) 5)
where o(x) = 1/(1 + e~%) is the logistic function. The
model parameters of an RBM are learned using the Con-
trastive Divergence (CD) algorithm (Hinton 2002), which
maximizes the data likelihood via stochastic gradient de-
scent.

In (Hinton and Salakhutdinov 2009), RBM was used for
topic modeling and the proposed model was called Repli-
cated Softmax. Suppose the vocabulary size is K. Let us
represent a document with D tokens as a binary matrix
of size K * D with uf = 1 if the i*" token is the k" word
in the vocabulary. The energy function of a document ¢/ and
hidden units h is defined as follows:

F K K F
=D > wingat = > @t — DY hjay,
j=1k=1 k=1 j=1
where 4F = ZZI u¥ denotes the count for the k" word.
The conditional probability P(h; = 1|i/) is:
K
P(h; =1lU) = o(Da; + Y Wii"). (7
k=1

The motivation behind Replicated Softmax is to properly
model word counts in documents of varying lengths through
weight sharing. It was shown to generalize better than La-
tent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003)
in terms of log-probability on held-out documents and ac-
curacy on retrieval tasks. In this paper, we use Replicated
Softmax for text analysis.

Sparse Boltzmann Machines

In this section, we propose our new models, Sparse Boltz-
mann Machines (SBMs). An SBM is a two-layer undi-
rected graphical model with a layer of K visible units
{v',..., 0%} and a layer of F hidden units {h1,...,hr}.
The hidden units in SBMs are directly linked up to form
a tree structure, while each hidden unit is also individually
connected to a subset of the visible units. See Figure 2 for
an example SBM. In SBMs, the number of hidden units and
the connectivities are both learned from data.

One technical difference between SBMs and RBMs is
that there are direct connections among the hidden units in
SBMs. We call them hidden connections. The reason we in-
troduce the hidden connections into our models is that, the
hidden connections provide a way to relate a hidden unit to

a visible unit without a direct connection. For example, in
Figure 2, hidden unit h; is not directly connected to visi-
ble unit v4. However, the existence of the hidden connection
between h; and ho introduces a path connecting h; and vy,
which can help us to better model the correlation between
the two units. This is crucial in reducing the number of con-
nections between hidden units and visible units. To avoid the
connections among the hidden units becoming too dense, we
restrict them to form a tree structure. Tree structures among
hidden units were used before in Boltzmann Trees (Saul and
Jordan 1994). In Restricted Boltzmann Forest (Larochelle,
Bengio, and Turian 2010), the activations of hidden units
were also constrained to follow a tree-based rule. However
those trees were determined manually rather than learned
from data. Moreover, the hidden and visible layers were
fully connected.

Parameter Learning

SBMs also can be extended for text analysis as RBMs are
extended to Replicated Softmax. Here we introduce SBMs
in the context of Replicated Softmax and use the same nota-
tions as in the previous section. Let G be a graph represent-
ing the model structure. Edge (74, k) belongs to G if and only
if there is a link between visible unit v* and hidden unit h;.
Edge (j,) belongs to G if and only if there is a link between
hidden unit i; and hidden unit 2; (5 < [). Also let W}, be
the weight on the connection between h; and h;. Then the
energy function of an SBM for a document &/ and hidden
units h is as below:

K
=Y Wit -y
(4,k)EG k=1
e ®)
—DZhjaj - D Z lehjhl.
Jj=1 (4,)eg

Similar to Replicated Softmax, our model defines the joint
distribution as:

P(U,h) = %exp(—E(Z/l, h)), ©)

where Z = %, >, exp(—E(U’, h)). Note that the summa-
tion over I’ is done over all the possible documents with the
same length as U.

LetU = {U,}N_; be a collection of N documents with
potentially different lengths D1, ..., Dy. We assume that

PU) =12, PU,), where P(U) S, P(Uy, h). The
objective of training an SBM for I/ is to maximize the log-
likelihood of the documents log P({{). We maximize the ob-
jective function via stochastic gradient descent. The partial
derivatives of log P(U) w.r.t the parameters W¥, b* and a;

remain the same as in Replicated Softmax:

akggimgc(w B i(EP(hjum[hjﬁﬁ} — Bpww(h;a']) - (10)
Qo8 P _ S~k _)
obk ot
Olog P(U) _ iD (Epngiun) (1] = Epny [hs])
0a; !

3
Il
-

mmmmmmmm
mmmmmmm

g
Yue
Je|o:

Ae|dsnp
sojydelb
pieo
o8pIA
JoAUp

3
]
]

B
0

mmmmm

Figure 3: An example HLTM from (Chen et al. 2016).

while the partial derivative of log P({{) w.r.t the new param-
eter W) for fixed j and [is:

dlog P(U)
W, > Du(Epmie,)[hihi] — Epylhshi]) (1)

n=1

The first terms in these partial derivatives require the
computation of the conditional probabilities P(h;|i,,) and
P(h|U,). In Replicated Softmax, P(h;|U,) can be calcu-
lated using Equation (7). While in SBMs, due to the con-
nections between hidden units, P(h|i/,) no longer factor-
izes and hence Equation (7) cannot be applied. Nevertheless,
since the hidden units in SBMs are linked as a tree, we can
easily compute the value of P(h;|U,,) and P(h|l,) by con-
ducting message propagation (Murphy 2012) in the model.

The second terms in these derivatives require taking an
expectation with respect to the distribution defined by the
model, which is intractable. Thus as in Replicated Softmax,
we adopt the CD algorithm to approximate the second terms
by running Gibbs sampling chains in the model. Specifically,
the Gibbs chains are initialized at the training data and run
for T' full steps to draw samples from the model. In SBMs,
given a document I/ and the value of all the other hidden
units h_;, the conditional probability to sample h; is:

P(h; = 1U,h;) =o(Y W;i" + Da;+

(4,k)eg
D Z Wiihi + D Z Wiih),
(J,Heg (1,5)eg

while the conditional probability to sample a visible unit re-
mains the same as in Replicated Softmax.

Structure Learning

We regard SBMs as a method to model correlations among
the visible units. Learning an SBM hence amounts to build-
ing a latent structure to explain the correlations. Recently,
(Liu, Zhang, and Chen 2014) and (Chen et al. 2016) pro-
posed a method, called HLTA, for learning a Hierarchical
Latent Tree Model (HLTM) from data. Our structure learn-
ing algorithm for SBMs is built upon their work. We expand
the tree model from HLTA to obtain the structure of an SBM.

HLTA learns a tree model 7 with a layer of observed vari-
ables at the bottom and multiple layers of latent variables.
Note that the visible units and hidden units in SBMs are
called observed variables and latent variables in HLTM re-
spectively. Figure 3 and the left panel in Figure 4 illustrate
example models that HLTA produces. Each latent variable
in the model is connected to a set of highly-correlated vari-
ables in the layer below. The number of latent variables at
each layer is determined automatically by the algorithm. The

m G
tssiss 38 %= O& Q%?%@
e = vl v2 v3 vd vh v6b

)
v7 v8 v9 v10 vil

s v8 v9 vi0 v1l

Figure 4: Structure learning for SBMs: A three layer HLTM is first learned (left). The hidden variables at the top level are used
to build a skeleton for an SBM (middle). An SBM is finally obtained by adding connections to the skeleton (right).

number L of latent layers in 7 is controllable. In this paper,
we set L = 2. Let H; be the [*" latent layer in 7. Also let
'V 7 be the set of observed variables which are located in the
subtree rooted at latent variable Z in 7.

To build the structure of an SBM from 7T, we first remove
all the latent layers except the top layer Hy,. Then we con-
nect each latent variable Z in H, to the set of observed vari-
ables Vz. We use the resulting structure as a skeleton 7~
of the corresponding SBM. This is illustrated in Figure 4,
where the hidden units hq, hy in SBM correspond to Zo,
Zso in T respectively. Note that the skeleton is still a tree
structure, where each node has only one parent.

As to remove the tree-structure constraint, we conduct an
expansion step to increase the number of “fan-out” connec-
tions for each hidden unit in 7’. The key question is how
to determine the new set of visible units that a hidden unit
should be connected to. We introduce our method using Z5;
(correspondingly hy in 7') and v7 in Figure 4 as an exam-
ple. To determine whether Z5; should also be connected to
v7, we consider the empirical conditional mutual informa-
tion I(Za1,v7|Z22,U), where Zag is the root of the subtree
that v; is in. To estimate the value, we first estimate the em-
pirical joint distribution p(Za1, Zaa, v7). We go through all
the documents and compute p(Zs1, Zas|U,,) for each docu-
ment U, in U by conducting inference in 7. Then we collect
the statistics of Za1, Zoo and vy to get p(Za1, Zoo, v7). After

that, I(Zs1,v7|Z22,U) can be estimated as:

I(Z21,v7|Z22,U) =

5(Z21,v7| 2
ST B(Z22) YD 8(Zo1,v7| Zaz)log P2, vr|Z33)

Za9 o7 7o D(Z21]Z22)P(v7|Z22)

All the distributions in the above formula can be derived
from the joint distribution p(Za1, Z22,v7).

If the correlation between Z»; and vy is properly modeled
in T, the two variables should be conditionally independent
given Zso, and hence I(Z21, v7|Z22,U) should be 0. There-
fore, if I(Za1,v7|Za2,U) is not 0, then we can conclude that
the correlation between Z»; and vy is not properly modeled
in the model, and the model needs to be expanded by adding
new connections between the two variables.

Our algorithm, called SBM-SFC (SBM-Structure from
Correlation), is given in Algorithm 1. It considers the latent
variables one at a time. For a given latent variable Z (sup-
pose the corresponding hidden unit in 7~ is k), it computes
the conditional mutual information between Z and each un-
connected observed variable, and sorts the observed vari-
ables in descending order with respect to the conditional mu-
tual information. Then in 77, it connects hidden unit A to the
visible units corresponding to the top M observed variables

Algorithm 1 SBM-SFC(T)

Inputs: 7—Graph of an HLTM, {—Collection of training docu-
ments, M—Number of new connections for each hidden unit.

Outputs: Graph 7" of a corresponding SBM.

1: 7' < 0, Hy < graph of the top latent layer in 7~
2: V < observed variables in T

3: T'.add_graph(Hy), T .add_units(V)

4. for variable Z in Hr, do

5: Vz < observed variables in subtree rooted at variable Z
6: T'.add_-edges(Z,Vz), 1 + 0

7. for V'in(V —Vz) do

8: Z' < root of the subtree containing V'

9:]Z,V’ <—I(Z,V/\Z’,L{)
10: I.add(IZsz)

11: end for

12: I + sort(I, ‘descend’)

13: for V' in the top Mz pairs in I do
14: T'.add-edge(V', Z)

15: end for

16: end for

17: return 7’

with the highest conditional mutual information. M is a pre-
defined parameter, which normally is set to the value such
that each hidden unit is connected to 0.2 * K visible units.
After the above expansion step is done for each hidden unit
in 77, the whole structure of an SBM is determined.

Experiments

In this section we test the performance of SBMs on three
text datasets of different scales: NIPS proceeding papers',
CiteULike articles?, and New York Times dataset®. Exper-
imental results show that SBMs perform consistently well
over the three datasets in terms of model generalizability,
and SBMs always give much better interpretability.

Datasets

NIPS proceeding papers consist of 1,740 NIPS papers pub-
lished from 1987 to 1999. We randomly sample 1,640 papers
as training data, 50 as validation data and the remaining 50
as test data. We choose the 1,000 most frequent words and
each document is represented as a vector of 1,000 dimen-
sions, with each element being the number of times a word
appears in the current document.

"http://www.cs.nyu.edu/ roweis/data.html
“http://www.wanghao.in/data/ctrsr_datasets.rar
*http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

NIPS Proceedings

CiteULike

New York Times

Validation scores

\/ g0 —/
540 T\

2350

2300

2250

2200

2150

2100

Validation scores

/ |
2050 P / N
2000f \/

1950 N/ Y

520
40 60 80 100 120 140 160 180 200 220 240 40 60 80
Number of hidden units

100

Number of hidden units

1900
80 100 120 140 160 180 200 220 240 260

Number of hidden units

120 140 160

Figure 5: The generalization performance of Replicated Softmax with different number of hidden units.

CiteULike article collection contains 16,980 articles.
Similarly, we randomly divide it into training data with
12,000 articles, validation data with 1,000 articles and test
data with 3,980 articles. Then, 2,000 words with the highest
average TF-IDF values are chosen to represent the articles.

The New York Times dataset includes 300,000 docu-
ments, among which we randomly pick 290,000 documents
for training, 1,000 for validation and 9,000 for testing. Then,
10,000 words with the highest average TF-IDF values are
chosen to represent the documents.

Training

We divide the training data into mini-batches for training.
The batch sizes of dataset NIPS, CiteULike and New York
Times are 10, 100 and 1,000 respectively. Model parame-
ters are updated after each mini-batch. We set the maximum
number of training epochs to 50. And we train all the models
using the CD algorithm with T" = 10 full Gibbs steps.

As for RBM-based Replicated Softmax, we determine the
optimal number of hidden units over the validation data with
10 units as the step size. While for SBMs, we firstly train a
two-layer HLTM and then increase the number of connec-
tions such that every hidden unit is connected to 20% of
the visible units that are most correlated. A mask matrix is
applied to the connection matrix after each parameter up-
date so as to force the sparse connectivity. The numbers of
hidden units automatically determined by our algorithm are
112, 194 and 326 for dataset NIPS, CiteULike and New York
Times respectively.

Evaluations

The log-probability on held-out data is used to gauge the
generalization performance of different models. As com-
puting these values exactly is intractable, Annealed Impor-
tance Sampling (AIS) (Neal 2001; Salakhutdinov and Mur-
ray 2008) was used in (Hinton and Salakhutdinov 2009)
to estimate the partition function of Replicated Softmax.
We extend AIS to SBMs in our experiments. In AIS, we
use 500 “inverse temperatures” [, spaced uniformly from
0 to 0.5, 3,000 B spaced uniformly from 0.5 to 0.9,
and 6,500 () spaced uniformly from 0.9 to 1.0, with a
total of 10,000 intermediate distributions. The estimates
are averaged over 100 AIS runs for each held-out docu-
ment. Then we calculate the average per-word perplexity

as exp(— % Z,f:;l DinlogP(Z/In)). A smaller score indicates
better generalization performance. Due to the high com-
putation cost, we follow the experiments in (Hinton and
Salakhutdinov 2009) and randomly sample 50 documents
from the validation data to calculate the score. While for
testing, we use all of the 50 test documents in the NIPS
dataset, and randomly sample 500 documents from test data
in CiteULike and New York Times datasets.

Results

Overfitting of Fully-Connected RBMs We first empiri-
cally show that, the fully-connected structure in Replicated
Softmax can easily lead to overfitting once the number of
hidden units (and hence the number of parameters) gets too
large. Figure 5 depicts the average perplexity scores over
validation data for Replicated Softmax with different num-
ber of hidden units after 30 epochs. We can see that the op-
timal numbers of hidden units for the three datasets are 110,
60 and 120 respectively. After that, the performances of the
models worsen when the numbers of hidden units gradu-
ally increase. Therefore, selecting a proper number of hid-
den units is crucial to Replicated Softmax since the model is
very likely to overfit the training data.

Generalizability of SBMs and Replicated Softmax In
this part, we compare the generalization performance of
SBMs with Replicated Softmax. We denote our method as
SBM-SFC. Two variants of Replicated Softmax included in
comparison are RS* and RS*. RS* trains Replicated Soft-
max with the optimal number of hidden units. RS™ produces
Replicated Softmax with the same number of hidden units
as SBM-SFC. Since this number is normally larger than the
optimal number, we denote the method as RS™. As we can
see in Table 1, SBM-SFC consistently outperforms RS* and
RS™ over the three datasets. This confirms that Replicated
Softmax with full connectivity is prone to overfitting. It also
shows that SBMs can lead to better model fit than fully con-
nected RBMs. This is true even when the number of hid-
den units in RBMs is optimized through held-out validation.
Moreover, the poor performance of RST shows that the per-
formance gain of SBM-SFC cannot be attributed to the larger
number of hidden units.

Comparisons with Redundancy Pruning We also com-
pare our method with the redundancy pruning method which

Table 1: Average per-word perplexity achieved by different methods on different datasets.

NIPS CiteULike New York Times

Validation Test Validation Test Validation Test

RS* 518 547 591 636 1,865 1,809
RST 505 538 795 913 2,129 1,985
RST SFC 532 551 632 668 2,021 1,910
RST Pruned 542 565 534 584 1,697 1,608
SBM-SFC 476 488 545 597 1,624 1,583

produces Replicated Softmax with sparse connections (Han
et al. 2015). We denote the method as RSt Pruned. It starts
from a fully trained model, produced by RS*, and prunes
the connections gradually until the number of connections
is reduced to be the same as the model by SBM-SFC. For
each hidden unit, it prunes the set of connections with the
smallest absolute weight value. Then it retrains the pruned
model for 1 epoch, and conducts pruning again. The pruning
and retraining process is repeated until the desired sparsity is
reached. In our experiments, the pruning process took 80, 40
and 40 epochs on the three datasets respectively. As shown
in Table 1, SBM-SFC achieves comparable model fit as RS™
Pruned. It shows that our structure learning algorithm is ef-
fective and can ease the overfitting problem of fully con-
nected structure as well as the pruning method does. Our
method has three advantages over RS™ Pruned. First, the it-
erative pruning process of RS' Pruned is computationally
expensive. Second, it does not offer a way to determine the
number of hidden units. One can do this using held-out vali-
dation, but that would be computationally prohibitive. Third,
as will be seen later, the models produced by RS™ Pruned
are not as interpretable as those obtained by our method.

Necessity of Hidden Connections In SBMs, we impose a
tree structure among the hidden units. Is this necessary? To
answer the question, we compare SBM-SFC with a method
for Replicated Softmax denoted as RS SFC. The model
produced by RSt SFC is the same as that by SBM-SFC, ex-
cept that there are no connections among the hidden units.
As we can see in Table 1, SBM-SFC always performs better
than RST SFC. This supports our conjecture that the hid-
den connections are necessary in our models. The result is
not surprising. In a multiple layer model, units at a layer are
connected via units at higher layers. In a two layer model,
there are no higher layers. Hence it is natural to connect the
second-layer units directly. To generalize our work to multi-
ple layers, we will need to add connections only among the
hidden units at the top layer.

Interpretability of SBMs and Replicated Softmax Next
we compare the interpretability of SBMs and Replicated
Softmax. Here is how we interpret hidden units. For each
hidden unit, we sort the words in descending order of the
absolute value of the connection weights between the words
and the hidden unit. The top 10 words with the high-
est absolute weights are chosen to characterize the hidden
unit. We propose to measure the “interpretability” of a hid-

Table 2: Interpretability scores of models: The three models
included have the same number of hidden units.

NIPS CiteULike NYTimes
RST 0.1102 0.1499 0.1407
RS Pruned 0.1006 0.1449 0.1420
SBM-SFC 0.1235 0.1725 0.1433

Table 3: Characterizations of selected hidden units in models
produced by SBM-SFC. Only top 5 words are listed.

spike neuron pruning weight rules

NIPS pixel pca image pixels images
markov likelihood conditional posterior probabilities

models model modeling causal modelling

CiteULike ancestral species selection duplication evolution
network networks connected topology connectivity
china beijing south_africa mexican chinese

NYTimes george_bush laura_bush bill_clinton tournament jew

gene patient doctor medical physician

den unit by considering how similar pairs of words in the
top-10 list are. The similarity between two words is de-
termined using a word2vec model (Mikolov et al. 2013a;
2013b) trained on part of the Google News datasets 4, where
each word is mapped to a high dimensional vector. The sim-
ilarity between two words is defined as the cosine similar-
ity of the two corresponding vectors. High similarity sug-
gests that the two words appear in similar contexts. Let
L be the list of words representing a hidden unit. We de-
fine the compactness of L to be the average similarity be-
tween pairs of words in £. We also call it the interpretability
score of the hidden unit. Note that some of the words in £
might not be in the vocabulary of the word2vec model we
use. This happens infrequently, and when it does, the words
are simply skipped. Suppose there are F' hidden units in a
model. Let C'p, ...C'r be the interpretability scores of hidden
units. We define the interpretability score of the model as:
Q = % Zle C;. Obviously the score depends heavily on
the number of hidden units.

Table 2 reports the interpretability scores of the models
produced by RS™, RST Pruned and SBM-SFC. The models
all have the same number of hidden units and hence their in-

*https://code.google.com/archive/p/word2vec/

terpertability scores are comparable. SBM-SFC consistently
performs the best over the three datasets, showing superior
coherency and compactness in the characterizations of the
hidden units and thus better model interpretability. Table 3
shows the characterizations of selected hidden units in mod-
els produced by SBM-SFC. They are clearly meaningful.

Conclusions

Overfitting in deep models is caused not only by excessive
amount of hidden units, but also excessive amount of con-
nections. In this paper we have developed, for models with
a single hidden layer, a method to determine the number of
hidden units and the connections among the units. The mod-
els obtained by the method are significantly better, in terms
of held-out likelihood, than RBMs where the hidden and
observed units are fully connected. This is true even when
the number of hidden units in RBMs is optimized by held-
out validation. In comparison with redundancy pruning, our
method is more efficient and is able to determine the number
of hidden units. Moreover, it produces more interpretable
models. In the future, we will generalize the structure learn-
ing method to models with multiple hidden layers.

Acknowledgments

Research on this article was supported by Hong Kong
Research Grants Council under grants 16202515 and
16212516.

References

Adams, R. P.; Wallach, H. M.; and Ghahramani, Z. 2010. Learn-
ing the structure of deep sparse graphical models. In AISTATS,
1-8.

Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirichlet
allocation. Journal of Machine Learning Research 3:993-1022.

Chen, P.; Zhang, N. L.; Poon, L. K. M.; and Chen, Z. 2016.
Progressive EM for latent tree models and hierarchical topic de-
tection. In Proceedings of the Thirtieth AAAI Conference on Ar-
tificial Intelligence, 1498—1504.

Cun, Y. L.; Denker, J. S.; and Solla, S. A. 1990. Optimal brain
damage. In Advances in Neural Information Processing Systems,
598-605.

Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both
weights and connections for efficient neural network. In Ad-
vances in Neural Information Processing Systems 28. Curran As-
sociates, Inc. 1135-1143.

Hassibi, B.; Stork, D. G.; and Com, S. C. R. 1993. Second
order derivatives for network pruning: Optimal brain surgeon. In
Advances in Neural Information Processing Systems 5, 164—171.

Hinton, G. E., and Salakhutdinov, R. R. 2009. Replicated soft-
max: an undirected topic model. In Advances in Neural Informa-
tion Processing Systems 22. 1607-1614.

Hinton, G. E.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-r.;
Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T. N.;
et al. 2012. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups.
IEEFE Signal Processing Magazine 29(6):82-97.

Hinton, G. E.; Osindero, S.; and Teh, Y.-W. 2006. A fast learning
algorithm for deep belief nets. Neural computation 18(7):1527—
1554.

Hinton, G. E. 2002. Training products of experts by minimizing
contrastive divergence. Neural Computation 14(8):1771-1800.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems, 1097-1105.

Larochelle, H.; Bengio, Y.; and Turian, J. 2010. Tractable mul-
tivariate binary density estimation and the restricted boltzmann
forest. Neural computation 22(9):2285-2307.

Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. In Proceedings
of the IEEE, 2278-2324.

Lee, H.; Ekanadham, C.; and Ng, A. Y. 2008. Sparse deep belief
net model for visual area v2. In Advances in Neural Information
Processing Systems, 873—-880.

Liu, T.; Zhang, N. L.; and Chen, P. 2014. Hierarchical latent tree
analysis for topic detection. In Machine Learning and Knowl-
edge Discovery in Databases 2014, 256-272.

Mikolov, T.; Deoras, A.; Povey, D.; Burget, L.; and éernocka, J.
2011. Strategies for training large scale neural network language
models. In IEEE Workshop on Automatic Speech Recognition
and Understanding, 196-201.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a. Efficient
estimation of word representations in vector space. In Interna-
tional Conference on Learning Representations Workshops.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean,
J. 2013b. Distributed representations of words and phrases and
their compositionality. In Advances in Neural Information Pro-
cessing Systems 26, 3111-3119.

Murphy, K. P. 2012. Machine learning: a probabilistic perspec-
tive.

Neal, R. M. 2001. Annealed importance sampling. Statistics and
Computing 11(2):125-139.

Salakhutdinov, R., and Murray, I. 2008. On the quantitative
analysis of deep belief networks. In Proceedings of the 25th In-
ternational Conference on Machine Learning, 872-879.

Saul, L., and Jordan, M. I. 1994. Learning in boltzmann trees.
Neural Computation 6(6):1174-1184.

Smolensky, P. 1986. Parallel distributed processing: Explo-
rations in the microstructure of cognition, vol. 1. chapter Infor-
mation Processing in Dynamical Systems: Foundations of Har-
mony Theory, 194-281.

Srinivas, S., and Babu, R. V. 2015. Data-free parameter pruning
for deep neural networks. In Proceedings of the British Machine
Vision Conference, 31.1-31.12.

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Re-
search 15(1):1929-1958.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In Advances in Neural
Information Processing Systems, 3104-3112.

Wan, L.; Zeiler, M.; Zhang, S.; Cun, Y. L.; and Fergus, R.
2013. Regularization of neural networks using dropconnect. In

Proceedings of the 30th International Conference on Machine
Learning, 1058-1066.

