A Stochastic Approach to Stereo Vision

Stephen T. Barnard

A stochastic optimization approach to stereo matching is presented. Unlike conventional correlation matching and feature matching, the approach provides a dense array of disparities, eliminating the need for interpolation. First, the stereo matching problem is defined in terms of finding a disparity map that satisfies two competing constraints: (1) matched points should have similar image intensity, and (2) the disparity map should be smooth. These constraints are expressed in an "energy" function that can be evaluated locally. A simulated annealing algorithm is used to find a disparity map that has very low energy (i.e., in which both constraints have simultaneously been approximately satisfied). Annealing allows the large-scale structure of the disparity map to emerge at higher temperatures, and avoids the problem of converging too quickly on a local minimum. Results are shown for a sparse random-dot stereogram, a vertical aerial stereogram (shown in comparison to ground truth), and an oblique ground-level scene with occlusion boundaries.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.