Diagnosis as Approximate Belief State Enumeration for Probabilistic Concurrent Constraint Automata

Oliver B. Martin, Michel D. Ingham, Brian C. Williams

As autonomous spacecraft and other robotic systems grow increasingly complex, there is a pressing need for capabilities that more accurately monitor and diagnose system state while maintaining reactivity. Mode estimation addresses this problem by reasoning over declarative models of the physical plant, represented as a factored variant of Hidden Markov Models (HMMs), called Probabilistic Concurrent Constraint Automata (PCCA). Previous mode estimation approaches track a set of most likely PCCA state trajectories, enumerating them in order of trajectory probability. Although Best-First Trajectory Enumeration (BFTE) is efficient, ignoring the additional trajectories that lead to the same state can significantly underestimate the true state probability and result in misdiagnosis. This paper introduces an innovative belief approximation technique, called Best-First Belief State Enumeration (BFBSE), that addresses this limitation by computing estimate probabilities directly from the HMM belief state update equations. Theoretical and empirical results show that BFBSE significantly increases estimator accuracy, uses less memory, and requires less computation time when enumerating a moderate number of estimates for the approximate belief state of subsystem sized models.

Content Area: 5. Automated Reasoning

Subjects: 1.5 Diagnosis; 3.4 Probabilistic Reasoning

Submitted: May 11, 2005


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.