Adaptive Localization in a DynamicWiFi Environment Through Multi-view Learning

Sinno Jialin Pan, James T. Kwok, Qiang Yang, Jeffrey Junfeng Pan

Accurately locating users in a wireless environment is an important task for many pervasive computing and AI applications, such as activity recognition. In a WiFi environment, a mobile device can be localized using signals received from various transmitters, such as access points (APs). Most localization approaches build a map between the signal space and the physical location space in a offline phase, and then using the received-signal-strength (RSS) map to estimate the location in an online phase. However, the map can be outdated when the signal-strength values change with time due to environmental dynamics. It is infeasible or expensive to repeat data calibration for reconstructing the RSS map. In such a case, it is important to adapt the model learnt in one time period to another time period without too much re-calibration. In this paper, we present a location-estimation approach based on Manifold co-Regularization, which is a machine learning technique for building a mapping function between data. We describe LeManCoR, a system for adapting the mapping function between the signal space and physical location space over different time periods based on Manifold Co-Regularization. We show that LeManCoR can effectively transfer the knowledge between two time periods without requiring too much new calibration effort.We illustrate LeManCoR's effectiveness in a real 802.11 WiFi environment.

Subjects: 17. Robotics; 12. Machine Learning and Discovery

Submitted: Apr 23, 2007


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.