Relation Extraction from Wikipedia Using Subtree Mining

Dat P.T. Nguyen, Yutaka Matsuo, Mitsuru Ishizuka

The exponential growth and reliability of Wikipedia have made it a promising data source for intelligent systems. The first challenge of Wikipedia is to make the encyclopedia machine-processable. In this study, we address the problem of extracting relations among entities from Wikipedia's English articles, which in turn can serve for intelligent systems to satisfy users' information needs. Our proposed method first anchors the appearance of entities in Wikipedia articles using some heuristic rules that are supported by their encyclopedic style. Therefore, it uses neither the Named Entity Recognizer (NER) nor the Coreference Resolution tool, which are sources of errors for relation extraction. It then classifies the relationships among entity pairs using SVM with features extracted from the web structure and subtrees mined from the syntactic structure of text. The innovations behind our work are the following: a) our method makes use of Wikipedia characteristics for entity allocation and entity classification, which are essential for relation extraction; b) our algorithm extracts a core tree, which accurately reflects a relationship between a given entity pair, and subsequently identifies key features with respect to the relationship from the core tree. We demonstrate the effectiveness of our approach through evaluation of manually annotated data from actual Wikipedia articles.

Subjects: 10. Knowledge Acquisition; 1.10 Information Retrieval

Submitted: Apr 23, 2007


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.