Adaptive Control for Autonomous Underwater Vehicles

Conor McGann, Frederic Py, Kanna Rajan, John Ryan, Richard Henthorn

We describe a novel integration of Planning with Probabilistic State Estimation and Execution resulting in a unified representational and computational framework based on declarative models and constraint-based temporal plans. The work is motivated by the need to explore the oceans more cost-effectively through the use of Autonomous Underwater Vehicles (AUV), requiring them to be goal-directed, perceptive, adaptive and robust in the context of dynamic and uncertain conditions. The novelty of our approach is in integrating deliberation and reaction over different temporal and functional scopes within a single model, and in breaking new ground in oceanography by allowing for precise sampling within a feature of interest using an autonomous robot. The system is general-purpose and adaptable to other ocean going and terrestrial platforms.

Subjects: 1.11 Planning; 17. Robotics

Submitted: Apr 14, 2008


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.