An Effective and Robust Method for Short Text Classification

Victoria Bobicev, Marina Sokolova

Classification of texts potentially containing a complex and specific terminology requires the use of learning methods that do not rely on extensive feature engineering. In this work we use prediction by partial matching ( PPM), a method that compresses texts to capture text features and creates a language model adapted to a particular text. We show that the method achieves a high accuracy of text classification and can be used as an alternative to state-of-art learning algorithms.

Subjects: 13. Natural Language Processing; 12. Machine Learning and Discovery

Submitted: Apr 11, 2008


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.