A Framework for Merging Qualitative Constraints Networks

Jean-François Condotta, Souhila Kaci, Nicolas Schwind

Spatial or temporal reasoning is an important task for many applications in Artificial Intelligence, such as space scheduling, navigation of robots, etc. Several qualitative approaches have been proposed to represent spatial and temporal entities and their relations. These approaches consider the qualitative aspects of the space relations only, disregarding any quantitative measurement. In some applications, e.g. multi-agent systems, spatial or temporal information concerning a set of objects may be conflicting. This paper highlights the problem of merging spatial or temporal qualitative constraints networks. We propose a merging operator which, starting from a set of possibly conflicting qualitative constraints networks, returns a consistent set of spatial or temporal information representing the result of merging.

Subjects: 7.1 Multi-Agent Systems; 3.5 Qualitative Reasoning

Submitted: Feb 23, 2008


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.