Kernel Matrix Evaluation

Canh Hao Nguyen, Tu Bao Ho

We study the problem of evaluating the goodness of a kernel matrix for a classification task. As kernel matrix evaluation is usually used in other expensive procedures like feature and model selections, the goodness measure must be calculated efficiently. Most previous approaches are not efficient, except for Kernel Target Alignment that can be calculated in O(n2) time complexity. Although KTA is widely used, we show that it has some serious drawbacks. We propose an efficient surrogate measure to evaluate the goodness of a kernel matrix based on the data distributions of classes in the feature space. The measure not only overcomes the limitations of KTA, but also possesses other properties like invariance, efficiency and error bound guarantee. Comparative experiments show that the measure is a good indication of the goodness of a kernel matrix.

Subjects: 12. Machine Learning and Discovery; 9.3 Mathematical Foundations

Submitted: Oct 14, 2006


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.