Sentence Compression as Tree Transduction

T. A. Cohn and M. Lapata

This paper presents a tree-to-tree transduction method for sentence compression. Our model is based on synchronous tree substitution grammar, a formalism that allows local distortion of the tree topology and can thus naturally capture structural mismatches. We describe an algorithm for decoding in this framework and show how the model can be trained discriminatively within a large margin framework. Experimental results on sentence compression bring significant improvements over a state-of-the-art model.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.