*
L. Xia, V. Conitzer
*

Usually a voting rule requires agents to give their preferences as linear orders. However, in some cases it is impractical for an agent to give a linear order over all the alternatives. It has been suggested to let agents submit partial orders instead. Then, given a voting rule, a profile of partial orders, and an alternative (candidate) c, two important questions arise: first, is it still possible for c to win, and second, is c guaranteed to win? These are the possible winner and necessary winner problems, respectively. Each of these two problems is further divided into two sub-problems: determining whether c is a unique winner (that is, c is the only winner), or determining whether c is a co-winner (that is, c is in the set of winners). We consider the setting where the number of alternatives is unbounded and the votes are unweighted. We completely characterize the complexity of possible/necessary winner problems for the following common voting rules: a class of positional scoring rules (including Borda), Copeland, maximin, Bucklin, ranked pairs, voting trees, and plurality with runoff.

This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.