Unstructured Tree Search on SIMD Parallel Computers: Experimental Results

George Karypis, Vipin Kumar

In this paper, we present new methods for load balancing of unstructured tree computations on largescale SIMD machines, and analyze the scalability of these and other existing schemes. An efficient formulation of tree search on a SIMD machine comprises of two major components: (i) a triggering mechanism, which determines when the search space redistribution must occur to balance search space over processors; and (ii) a scheme to redistribute the search space. We have devised a new redistribution mechanism and a new triggering mechanism. Either of these can be used in conjunction with triggering and redistribution mechanisms developed by other researchers. We analyze the scalability of these mechanisms, and verify the results experimentally. The analysis and experiments show that our new load balancing methods are highly scalable on SIMD architectures. Their scalability is shown to be no worse than that of the best load balancing schemes on MIMD architectures. We verify our theoretical results by implementing the 15-puzzle problem on a CM-21 SIMD parallel computer.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.