A Distributed Solution to the PTE Problem

Ignacio Giráldez, Charles Elkan, Daniel Borrajo

A wide panoply of machine learning methods is available for application to the Predictive Toxicology Evaluation (PTE) problem. The authors have built four monolithic classification systems based on Tilde, Progol, C4.5 and naive bayesian classification. These systems have been trained using the PTE dataset, and their accuracy has been tested using the unseen PTE1 data set as test set. A Multi Agent Decision System (MADES) has been built using the aforementioned monolithic systems to build classification agents. The MADES was trained and tested with the same data sets used with the monolithic systems. Results show that the accuracy of the MADES improves the accuracies obtained by the monolithic systems. We believe that in most real world domains the combination of several approaches is stronger than the individuals.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.