A Bayesian Methodology Towards Automatic Ontology Mapping

Zhongli Ding, Yun Peng, Rong Pan, and Yang Yu

This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modeling uncertainty in semantic web. The proposed method includes four components: 1) learning probabilities (priors about concepts, conditionals between subconcepts and superconcepts, and raw semantic similarities between concepts in two different ontologies) using Naïve Bayes text classification technique, by explicitly associating a concept with a group of sample documents retrieved and selected automatically from World Wide Web (WWW); 2) representing in OWL the learned probability information concerning the entities and relations in given ontologies; 3) using the BayesOWL framework to automatically translate given ontologies into the Bayesian network (BN) structures and to construct the conditional probability tables (CPTs) of a BN from those learned priors or conditionals, with reasoning services within a single ontology supported by Bayesian inference; and 4) taking a set of learned initial raw similarities as input and finding new mappings between concepts from two different ontologies as an application of our formalized BN mapping theory that is based on evidential reasoning across two BNs.


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.