Augmenting Wikipedia-Extraction with Results from the Web

Fei Wu, Raphael Hoffmann, Daniel S. Weld

Not only is Wikipedia a comprehensive source of quality information, it has several kinds of internal structure (e.g., relational summaries known as infoboxes), which enable self-supervised information extraction. While previous efforts at extraction from Wikipedia achieve high precision and recall on well-populated classes of articles, they fail in a larger number of cases, largely because incomplete articles and infrequent use of infoboxes lead to insufficient training data. This paper explains and evaluates a method for improving recall by extracting from the broader Web. There are two key advances necessary to make Web supplementation effective: 1) a method to filter promising sentences from Web pages, and 2) a novel retraining technique to broaden extractor recall. Experiments show that, used in concert with shrinkage, our techniques increase recall by a factor of up to 8 while maintaining or increasing precision.

Subjects: 10. Knowledge Acquisition; 13. Natural Language Processing

Submitted: May 5, 2008


This page is copyrighted by AAAI. All rights reserved. Your use of this site constitutes acceptance of all of AAAI's terms and conditions and privacy policy.