
ABSTRACT

Knowledge Embedding in
the Description System Omega

Carl Mewitt, 6iuseppe Attardi, and Maria Simi
M.I.T.

545 Technology Square
Cambridge, Mass 02139

Omega is a description system for knowledge embedding
which combines mechanisms of the predicate calculus,
type systems, and pattern matching systems. It can
express arbitrary predicates (achieving the power of the
o-order quantificational calculus), type declarations in
programming systems (Algal, Simula, etc.), pattern
matching languages (Planner, Merlin, KRL, etc.).
Omega gains much of its power by unifying these
mechanisms in a single formalism

In this paper we present an axiomatization of basic
constructs in Omega which serves as an important
component of the interface between implementors and
users+

Omega is based on a small number of primitive
concepts. It is sufficiently powerful to be able to
express its own rules of inference In this way Omega
represents a self-describing system in which a great deal
of knowledge about itself can be embedded. The
techniques in Omega represent an important advance in
the creation of self-describing systems without
engendering the problems discovered by Russell
Meta-descriptions (in the sense used in mathematical
logic) are ordinary descriptions in Omega.
Together with Jerry Barber we have constructed a
preliminary implementation of Omega on the MLT.
CADR System and used it in the development of an
office workstation prototype.

I -- Introduction

First Order Logic is a powerful formalism for
representing mathematical theories and formalizing
hypotheses about the world. Logicians have developed a
mathematical semantics in which a number of important
results have been established such as completeness.
These circumstances have motivated the development of
deductive systems based on first order predicate calculus
[FOL, PROLOG, Bledsoe’s Verifier, etc.] However,
First Order Logic is unsatisfactory as a language for
embedding knowledge in computer systems. Therefore
tnany recent reasoning system have tried to develop
their own formalisms [PLANNER, FRL, KL-ONE,
KRL, LMS, NETL, AMORD, XPRT, ETHERJ The
semantics and deductive theory of these new systems
however has not been satisfactorily developed. The only
rigorous description of most of them has been their
implementations which are rather large and convoluted
programs.

2 -- Overview

The syntax of Omega is a version of template English,
For example we use the indefinite article in instance
descriptions such as the one below:

(a Son)

Instance descriptions like the previous one in general
describe a whole category of objects, like the category
of sons, in this example
Such description however can be tnade more specific, by
‘prescribing particular attributes for the instance
‘description So for example,

(a Son (With father Paul) (With mother Mary))

describes a son with father Paul and with mother Mary.

Otnega differs from systems based on records with
attached procedures (SIMULA and its descendants),
generalized property lists (FRL, XRL, etc.), frames
‘(Minsky), and units (KRL) in several important respects.
One of the most important differences is that instance
descriptions in Omega cannot be updated. This is a
consequence of the monotonicity of knowledge
accutnulation in Omega Change in Omega is modeled
through the use of viewpoints [Barber: 19801 Another
difference is that in Omega an instance description can
have more than one attribution with the same relation,
For example

(a Human (with child Jack) (with child Jill))

is a description of a human with a child Jack and a
child Jill

Statements
inheritance

can be
relation

deduced
is. For

of because
example

transitivity of the

157

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

(John is (a Man))

can be deduced from the following statements

(John is (a Son))

((a Son) is (a Man))

In order to aid readability we will freely mix infix and
prefix notations. For example the statement

(John is (a Man))

is completely equivalent to
(is John (a Man))

3 -- Inheritance

The inheritance relation in Omega differs somewhat
from the usual ISA relation typically found in semantic
networks. For example from

(John iS (a Human))

((a Human) is (a Mammal))

(Human is (a Species))

we can deduce

(John is (a Mammal))

but cannot conclude that (John is (a Species)). However
we can deduce that

(John is (a (a Species)))

which says that John is something which is a species

We can often avoid the use of explicit universal
quantifiers. For instance the following sentence in
quantificational calculus

Vx Man(x) * Mortal(x)

can be expressed as

((a Man) is (a Mortal))

In this case we avoid the need to restrict the range of a
universal quantifier by means of a predicate, as it is
usually necessary in the quantificational calculus. When
unrestricted quantification is required, or when we need
to give a name to a description which occurs several
times in the same expression, we denote a universally
quantified variable by prefixing the symbol = to the
name of the variable, wherever it appears in the
statement, as in:

(=x is (a Man)) * (=x is (a Mortal))

The scope of such a variable is the whole statement.
Thus the above statement is an abbreviation for

(for-a// =x ((=x is (a Man)) 3 (=x is (a Mortal))))

Occasionally it is necessary to use a for-all in the
interior of a statement. For example in the following
statement expresses the Axiom of Extensionality which is
one of the most fundamental principles in Omega:

((for-a// =d ((=d is =dr) * (=d is =d2))) 3 (=dl is =d2))

In the above statement, the scope of =dl and =d2 is the
whole statetnent, while the scope of =d is only the
statetnent ((=d is =dl) * (=d is =d2)).

A form of existential quantification is implicit in the use
of attributions+ For instance

(Pat is (a Man (with father (an Irishman))))

says that there is an Irishman who is Pat’s father.

Omega makes good use of the ability to place nontrivial
descriptions on the left hand side of an inheritance
relation. For example from the following statements

(a Teacher (with subject =s)) iS (an Expert (W/f/l field ES))

(John is (a Teacher (With subject Music)))

we get the following by transitivity of inheritance:

(John iS (an Expert (Wifh field Music)))

Note that statements like the following
(is

(and (a WarmBloodedAnimal) (a BearerOfLiveYoung))

(a Mammal))

are much more difficult to express in systems such as
KRL and FRL which are based on generalized records
and property lists.

If it happens that two descriptions inherit from each
other, we will say they are the same. For example if

((a Woman) is (a Human (Wifh sex female)))

((a Human (wifh sex female)) is (a Woman))

then we can conclude

(a Woman) Same (a Human (wifh sex female))

We can express the general principle being used here in
Omega as follows

158

((=dl same =d2) <=> (A f=dl is =d2) (=d2 is =dl)))

4 -- Lattice Operators and Logical Operators

The domain of descriptions constitutes a complemented
lattice, with respect to the inheritance ordering is, meet
and join operations and and or, complementation
operation not, and Nothing and Something as the bottom
and top respectively of the lattice Some axioms are
required to express these relations For example all
descriptions inherit from Something.

(=d is Something)

Furthermore Nothing is the complement of Something

(Nothing same (not Something))

The usual logical operators on statements are A, V, -, =>
for conjunction, disjunction, negation, and implication
respectively. The description operators not, and, or, etc.
apply to all descriptions including statements. It is very
important not to confuse the logical operators with the
lattice operators in Omega. Note for example:

((A true false) is false)

((and true false) is /Vothingj

((and true true) is true)

Unfortunately most “knowledge representation languages”
have not carefully distinguished between lattice operators
and logical operators leading to a great deal of
confusion.

Note that a statement of the form (p is true) does not in
general imply that (p same true). For example

((Nixon iS (a UnindictedCoConspirator)) is true)

(((a Price (with merchandise Tea) (with place China)) is 81) is true)

does not imply

(same
(Nixon is (a UnindictedCoConspirator))

(a Price (with merchandise Tea) (with place China)))

5 -- Basic Axioms

We will state some of the axioms for the description
system. The axioms for a theory are usually stated in a
metalanguage of the theory. However, since our
language contains its metalanguage, we can here give the
axioms as ordinary statements in the description system
itself.

5.1 Extensionality

Inheritance obeys an Axiom of Extensionality which is
one of the most fundamental axioms of Omega. Many
important properties can be derived from extensionality
which can be expressed in Omega as follows:

(W (=descriptionl iS =description2)

(for-a// =d (=j

(=d iS =descriptionl)

(=d iS zdescription2))))

Note that the meaning of the above statement would be
drastically changed if we simply omitted the universal
quantifier as follows

(W (=descriptionl iS =description2)

(3

(=d iS =descriptionl)

(=d is =description2)))

The axiom extensionality illustrates the utility of
explicitly incorporating quantification in the language in
contrast to some programming languages which claim to
be based on logic.

From this axiom alone we are able to derive most of
the lattice-theoretic properties of descriptions. In
particular we can deduce that is is a reflexive and
transitive relation. The following

(=description iS =description)

expresses the reflexivity of inheritance whereas the
following

(4
(A

(=descriptionl /S =description2)

(=description2 is =descriptions))

kdescriptionl is zdescriptiong))

expresses the transitivity of inheritance.

5.2 Commutativity

Commutativity says that the order in which attributions
Of a concept are written is irrelevant We use the
notation that an expression of the form XC..>> is a
sequence of 0 or more elements

159

(same
(a =descriptionl

<<=attributionsl>>

=attribution2

<<=attributions3>>

=attributionq

<<=attributionsg>>)

(a =descriptionl

<<=attributionsl>>

=attributionq

<<=attributionsg>>

=attribution2

<<=attributionsg>>))

(Susan is (a Mother

(with child Jim)

(with father Bill)

(with child (a Female))))

5.5 Monotonicity of Atributes
Monotonicity of attributes is a fundamental property of
instance descriptions which is close)y related to
transitivity of inheritance.

(=descriptionl is =description2)

(is
(a =concept (With =attribute =descriptionl))

(a =concept (With =attribute =descriptionp))))

For example

((a Father (with child Henry) (With mother Martha)) same
(a Father (with mother Martha) (with child Henry)))

For example if
5.3 Deletion

(Fred is (an American))

(Bill is (a Person (with The axiom of Deletion is that attributions of an
instance description can be deleted to produce a more
general instance description.
(is

(a =descriptionl <<=attributions-l>> zattribution-2 <<=ettributiona-3

(a =descriptionl <<=attributions-I>> <<=attributions-3))))

father Fred)))

then

(Bill is (a Person (With father (an kkTWkaI7~~~~

Note that the complementation in
monotonic. For example

Omega is not

For example

((a Bostonian) is (a NewEnglander)) (is
(a Father

(With child Henry)

(With mother Martha))

(a Father (with mother Martha)))

does not imply that

((not (a Bostonian)) is (not (a NewEnglander)))

5.6 Constraints 5.4 Merging

Constraints can be used to restrict the objects
will satisfy certain attributions. For example

which One of the most fundamental axioms in Omega is
Merging which says that attributions of the same
concept can be merged.

(a Human (withh?straint child (a Male)))

describes humans who have
Axiom for Constraints is

only male children. The
(=descriptionl is (a =description2 <<=attributions-l>>))

kdescriptionl is (a =description2 <<=attributions-2)))))

(is
=descriptionl

(a =description2 <<=attributions-1>> <<=attributions-2)))))

((a =C (withconstraint =R =dl) (with =R =d2)) is
(a =C (with =R (and=dl =d2))))

If
For example if

(Joan is (a Human

(WithConstraint child (a Male))

(With child Jean)))
(Susan is (a Mother (with child Jim)))

(Susan is (a Mother (with father Bill)))

(Susan is (a Mother (With child (a Female))))

160

then 6.2 Projective Relations

(Joan iS (a Human (with child (SfK! (a Male) Jean))))

Note that solely from the statement

(Ann iS (a Human (with child (a Male)) (With child Jean)))

no important conclusions can be drawn in Omega. It
entirely possible that Jean is a female with a brother.

is

We have found the constrained attributions in Omega to
be useful generalizations of the increasingly popular
“constraint languages” which propagate values through a
network of property lists.

If (2 is (a Complex (with real-part (> 0)))) and
(2 iS (a Complex (With real-part (an Integer)))) then by
merging it follows that

(z iS (a Complex (With real-part (> 0)) (with real-part (an Integer)))).

However in order to be able to conclude that

(z iS (a Complex (With real-part (and (> 0) (an Integer)))))

some additional information is needed. One very
general way to provide this information is by

(rsalgart iS (a Projective-relation (with concept Complex)))

6 -- Higher Order Capabilities
and by the statement

In this section we present examples which illustrate
power of the higher-order capabilities of Omega.

the

6.1 Transitive Relations

If (3 is ($7 Integer (with larger 4))) and
(4 is (an Integer (with larger 5))), we can conclude by
monotonicity that

(3 is (an Integer (With larger (an Integer (with larger 5)))))

From the above statement, we would like to be able to
conclude that (3 is (an Integer (with larger 5))). This goal
can be accomplished by the statement

(larger is (a Transitive-relation (with concept Integer)))

which says that larger is a transitive relation for the
concept Integer.

The Axiom for Transitive Relations states that if R is a
transitive relation for a concept c and x is an instance
of c which is R-related to an instance of c which is
R-related to m, then x is R-related to m.

(=> (=R iS (a Transitive-relation (With concept =C)))

(is
(a =C (with =R (a =C (with =R =m))))

(a =C (with =R m))))

The desired conclusion can be reached by using the
above description with c bound to Integer, R bound to
larger, and m bound to 5.

(=R k (a Projective-relation (with concept =C)))

(is
(a =C (with =R =d))

(a =C (wifhConsfrainf =R =d))))

The desired conclusion is reached by using the above
description with =C bound to Complex, =R bound to
real-part, =descriptionl bound to (> 01, and =description2

bound to (an Integer).

6.3 Inversion

Inverting relations for efficiency of retrieval is a
standard technique in data base organization. Inversion
makes use of the converse of a relation with respect to
a concept which satisfies the following Axiom for
Converse:

(=R same
(a Converse

(With relation (a Converse

(with relation =R)

(With concept =C)))

(With concept =C)))

The Axiom of Inversion expresses how to invert
inheritance relations for constrained instance
descriptions

(<=>

(=dl is (a =C (withConstraint =R (an =d2))))

((a =R (wifh (a Converse

(with relation =R)

(With relation =C) =dl)) is =d2)))

161

For example suppose

((a Converse (with relation son) (with concept Person))

same Parent)

we can conclude

(Sally iS (a Person (wifhConsfrainf son (an American))))

if and only if

((a Son (with parent Sally)) is (an American))

We have inversion to be a useful generalization of the
generalized selection mechanisms in Simula, SmallTalk,
and KRL as well as the generalized getprop mechanism
in FRL.

The interested reader might try to define the
transitivity, projectivity, and converse relations in other
“knowledge representation languages”

7 -- Conclusions

Omega encompasses ‘?he capabilities of both the w-order
quantification calculus, type theory, and pattern
matching languages in a unified way. We have
illustrated how Omega is more powerful than First
Order Logic by showing how it can directly express
important properties of relations such as transitivity,
projectivity, and converse that . are not first order
definable

Omega is based on a small number of primitive concepts
including inheritance, instantiation, attribution,
viewpoint, logical operations (conjunction, disjunction,
negation, quantification, etc.) and lattice operations
(meet, join, complement, etc.) It makes use of
inheritance and attribution between descriptions to
build a network of descriptions in which knowledge can
be embedded.

Omega is sufficiently powerful to be able to express its
own rules of inference. In this way Omega represents a
self-describing system in which a great deal of
knowledge about itself can be embedded. Because of its
expressive power, we have to be very careful in the
axiom system for Omega in order to avoid Russell’s
paradox. Omega uses mechanisms which combines ideas
from the Lambda Calculus and Intutionistic Logic to
avoid contradictions in the use of self reference

We have found axiomatization to be a powerful
technique in the development, design, and use of
Omega Axiomatization has enabled us to evolve the
design of Omega by removing many bugs which have
shown up as undesirable consequences of the axioms.
The axiomatization has acted as a contract between the
implementors and users of the system. The axioms
provide a succinct specification of the rules of inference
that can be invoked. The development of Omega has
focused on the goals of conceptual simplicity and power.
The axiomatization of Omega in itself is a measure of
our progress in achieving these goals.

8 -- Related Work

The intellectual roots of our description system go back
to von Neumann-Bernays-Goedel set theory [Goedel:
19401, the o-order quantificational calculus, and the
lambda calculus. Its development has been influenced
by the property lists of LISP, the pattern matching
constructs in PLANNER-71 and its descendants QA-4,
POPLER, CONNIVER, etc., the multiple descriptions
and beta structures of .MERLIN, the class mechanism of
SIMULA, the frame theory of Minsky, the packagers of
PLAShlA, the stereotypes in [Hewitt: 19751, the tangled
hierarchies of NETL, the attribute grammars of Knuth,
the type system of CLU, the descriptive mechanisms of
KRL-0, the partitioned semantic networks of [Fikes and
Hendrix: 19771, the conceptual representations of
[Yonezawa: 19771, the class mechanism of
SMALL-TALK [Ingalls: 19781, the goblets of Knowledge
Representation Semantics [Smith: 19781, the selector
notation of BETA, the inheritance mechanism of OWL,
the mathematical semantics of actors (Hewitt and
Attardi: 19781, the type system in Edinburgh LCF, the
XPRT system of Luc Steels, the constraints in [Borning:
1977, 1979 and Steele and Sussman: 1978]

9 -- Further Work

We have also developed an Omega Machine (which is
not described in this paper) that formalizes the
operational semantics of Omega.

Mike Brady has suggested that it might be possible to
develop a denotational semantics for Omega along the
lines of Scott’s model of the lambda calculus. This
development is one possible approach to establishing the
consistency of Omega.

162

10 -- Acknowledgments

We are grateful to Dana Scott for pointing out a few
axioms that were incorrectly stated in a preliminary
version of this paper. Jerry Barber has been extremely
helpful in aiding us in developing and debugging Omega.
Brian Smith and Gene Ciccarelli helped us to clear up
some important ambiguities. Conversations with Alan
Borning, Scott Fahlman, William Martin, Allen Newell,
Alan Perlis, Dana Scott, Brian Smith, and the
participants in the “Message Passing Systems” seminar
were extremely helpful in getting the description system

‘nailed down. Richard Weyhrauch has raised our
interests in meta-theories. His system FOL is one of

lthe first to exploit the classical logical notion of
metatheory in AL systems Several discussions with
Luc Steels have been the source of cross-fertilization
between the ideas in our system and his XPRT system
‘Roger Duffey and Ken Forbus have served as extremely
able teaching assistants in helping to develop this
material for the Paradigms for Problem Solving Course
at MIT. Comments by Peter Deutsch and Peter
Szolovits have materially helped to improve the
presentation.

Our logical rules of inference are a further development
of a natural deduction system by Kalish and Montague.
Some of the axioms for inheritance were inspired by Set
Theory.

11 -- Bibliography

Barber, G. “Reasoning About Change in Knowledgeable
Office Systems” 1980.

Birtwistle, G. M; Dahl, 0.; Myhrhaug, B.; and
Nygaard, K. “SIM..JLA Begin” Auerbach
1973.

Bobrow, D. G. and Winograd, T. “An Overview of
KRL-0 Knowledge Representation
Language” ’ Co:nitive Science VoL 1 No. I.
1977.

Borning, A. “ThingLab -- An Object-Oriented System
for Building Simulations Using Constraints”
Proceedings of IJCAI-77. August, 1977.

Bourbaki, N. “Theory of Sets” Book I of Elements of
Mathematics. Addison-Wesley. 1968.

Church, A.. “A Formulation of the Simple Theory of
Types”, 194 1.

Dahl, 0. J. and Nygaard, K. “Class and Subclass
Declarations” In Simulation Programming
Languages J. N. Buxton (Ed.) North Holland.
1968. pp. 158-174.

Fahlman, Scott “Thesis Progress Report” MIT AI
Memo 331. May, 1975.

Fikes, R. and Hendrix, G. “A Network-Based
Knowledge Representation and its Natural
Deduction System” IJCAI-77. Cambridge,
Mass. August 1977. pp 235-246.

Goedel, K “The Consistency of the Axiom of Choice
and of the Generalized Continuum Hypothesis
with the Axioms of Set Theory” Annals of
Mathematics Studies No. 3, Princeton, 1940.

Hammer, M. and McLeod, D. “The Semantic Data
Model: A Modeling &Mechanism for Data Base
Applications SIGMOD Conference on the
Management of Data. Austin Texas. May
31-June 2, 1978.

Hawkinson, Lowell “The Representation of Concepts in
OWL” Proceedings of IJCAI-75. September,
1975. Tiblisi, Georgia, USSR pp. 107-114.

Hewitt, C. “Stereotypes as an ACTOR Approach
Towards Solving the Problem of Procedural
Attachment in FRAME Theories” “Proceedings
of Interdisciplinary Workshop on Theoretical
Issues in Natural Language Processing”
Cambridge, June 1975.

Kalish and Montague

Kristensen, B. B.; Madsen, 0. L.; Moller-Pedersen, B.;
and Nygaard, K. “A Definition of the BETA
Language” TECHNICAL REPORT TR-8.
Aarhus University. February 1979.

Moore, J. and Newell, A. “How Can MERLIN
Understand?” CMU AM. November, 1973.

Quine, W. K. “New Foundations of Mathematical
Logic” 1952

Burstall, R and Goguen , J. “Putting Theories Together
to Make Specifications”, Proceedings of
IJCAI-77. August, 1977.

163

Rulifson, J. F.; Derksen, J. A.; and Waldinger, R. J.
“QA4: A Procedural Calculus for Intuitive
Reasoning” SRI Technical Note 73. November
1972.

Schubert, L. K. “Extending the Expressive Power of
Semantic Networks” Artificial Intelligence 7.

Steele, G. L. and Sussman, G. J. “Constraints” MIT
Artificial Intelligence Memo 502. November
1978.

Steels, L. Master Thesis, MIT 1979.

Weyhrauch, R. “Prolegomena to a Theory of Formal
Reasoning”, Stanford AI Memo AIM-315,
December 1978. Forthcoming in AL JournaL

164

