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ABSTRACT 

The field of AI is strewn with knowledge representation languages. The language 
designer typically has one particular application domain in mind: as subsequent 
types of applications are tried, what had originally been US&II j2urure.y become 
undesirable limitations, and the language is overhauled or scrapped. One remedy 
to this bleak cycle might be to construct a representational scheme whose domain 
is the field of representational languages itself. Toward this end, we designed and 
implemented RLL, a frame-based Representation Languange Language. The 
components of representation languages in general (such ti slots and inheritance 
mechanisms) and of RLL itself are encoded declaratively as frames. Modifvinn 
these frames can change the 
of the RLL environment. 

semantics of RLL, by altering the 

1. MOTIVATION 

“One ring to rule them all... and in the darkness bind them. ” 

Often a large Artificial Intelligence project begins by designing and 
implementing a high-level language in which to easily and precisely 
specify the nuances of the task. The language designer typically 
builds his Representation Language around the one particular 
highlighted application (such as molecular biology for Units 
[Sfe$k], or natural language understanding for KRL [Bobrow & 
Winogrudj and OWL [Szolovifs, et al.]). For this reason, his 
language is often inadequate for any subsequent applications 
(except those which can be cast in a form similar in structure to the 
initial task): what had originally been useful features become 
undesirable limitations (such as Units’ explicit copying of inherited 
facts, or KRL’s sophisticated but slow matcher). 

Building a new language seems cleaner than modifying the flawed 
one, so the designer scraps his “extensible, general” language after 
its one use. The size of the February 1980 SIGART shows how 
many similar yet incompatible representation schemes have 
followed this evolutionary path. 

One remedy to this bleak cycle might be to construct a 
representation scheme whose domain is the field of representational 
languages itself. a program which could thc’n bc tailored to suit 
many specific applications. Toward this end, WC arc designing and 
implementing RLL, an object-centered’ Representation Languange 
I,anguage.2 This paper reports on the current state of our ideas 
and our implementation. 

1 This “object-centering” does not represent a loss in geneiality. We will 
soon see that each part of the full system, including procedural information, 
is reified as a unit. 

* As RLL is itself a completely self-descriptive 
there is no need for an RLLL. 

representation language, 

2. INTRODUCTION 

RLL explicitly represents (i.e. contains units-? for) the components 
of reprcscntation languages in general and of itself in particular. 
The programming language LISP derives its flexibility in a similar 
manner: it, too, encodes many of its constructs within its own 
formalisms. Representation languages aim at easy, natural 
interfacing to users; therefore their primitive building blocks are 
larger, more abstract, and more complex than the primitives of 
programming languages. 

Building blocks of a representation language include such things as 
control regimes (ExhaustiveBackwardChaining, Agendas), methods 
3f associating procedures with relevant knowledge (Footnotes, 
Demons), tindamental access functions (Put/Get, Assert/Match), 
automatic inference mechanisms (InheritFromEvery2ndGeneration, 
InheritBut-PermitExceptions), and even specifications of the 
intended semantics and epistemology 
(ConsistencyConstraint, EmpiricalHeuristic). 

of the components 

RLL is designed to help manage these complexities, by providing 
(1) an organized library of such representation language 
components, and (2) tools for manipulating, modifying, and 
combining them. Rather than produce a new representation 
language as the “output” of a session with RLL, it is rather the 
RLL language itself, the environment the user sees, which changes 
gradually in accord with his commands. 

3. HOWJS A REPRESENTATION LANGUAGE LIKE AN 
ORGAN? 

When the user starts RLL, he finds himself in an environment very 
much like the Units package [Slefik], with one major difference. If 
he desires a new type of inheritance mechanism, he need only 
create a new Inheritance-type of unit, initialize it with that desired 
property; and that new mode of inheritance will automatically be 
enabled. This he can do using the same editor and accessing 
functions hc uses for cntcring and codifying his domain knowledge 
(say, poultry inspection); only hcrc the information pertains to the 
actual Knowledge Base system itself, not turkeys. 

The Units package has Get and Put as its tindamcntal storage and 
retrieval functions; therefore RLL also begins in that state. But 
there is nothing sacred about cvcn these two “primitives”. Get and 
Put arc encoded as modifiable units: if they are altered, the nature 
of accessing iI slot’s value will change correspondingly. In short, by 
issuing a small number of commands hc can radically alter the 
character of the RLI. cnvironmcnt. molding it to his personal 

-----______________ 
3 RLL is a frame-based system [Minsky], whose building blocks are called 
Units [Stefik], [Bobrow & Winograd]. Each unit consists of a set of Slots 
with their respective values. 
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preferences and to the specific needs of his application. RLL is 
responsible for performing the necessary “truth maintainence” 
operations, (e.g. retroactive updates) to preserve the overall 
correctness of the system as a whole. For example, Get and Put 
can be transformed into units which, when run as functions, 
resemble Assert (store proposition) and Match (retrieve 
propositions), and the user need never again mention “slots” at all. 

RLL is more like a stop organ than a piano. Each stop 
corresponds to a “pre-fabricated” representational part (e.g. a slot, 
inheritance, format, control regime, etc.), which resides in the 
overall RLL system. The initial RLL is simply one configuration 
of this organ, with certain stops “pulled out” to mimic the Units 
package. These particular stops reflect our intuitions of what 
constitutes a general, powerful system. Some of the units initially 
“pulled out” (activated) define more or less standard inheritance 
regimes, such as Inherit-Along-IS-A-Links, which enables Fido to 
gather default information from AnyDog. 

We chose to include a large assortment, of common slots. One 
hundred and six types of slots, including IS-A, SuperClass. 
BroaderHeuristics, and TypicalExamples, are used to hierarchically 
organize the units. That number grows daily, as we refine the 
organizing relationships which were originally “smeared” together 
into just. one or two kinds of slots (e.g. A-Kind-Ofl. An additional 
fifteen types of slots, including ToGerValue, ToPut Value, 
ToKillUnit. and To Add Value, collectively define the 
accessing/updating functions. 

This bootstrapping system (the initial configuration of “organ 
stops”,) dots not span the scope of RLL’s capabilities: many of its 
stops are initially in the dormant position. Just as a competent 
musician can produce a radically different sound by manipulating 
an organ’s stops, so a sophisticated RLL user can define his own 
representation by turning off some features and activating others. 
For instance, an FRL devotee may notice -- and choose to use 
exclusively -- the kind of slot called A-Kind-Ox which is the 
smearing together of Is- A, SuperSet, Abstraction, 
TypicalExampleOJ PartOf etc. He may then deactivate those 
more specialized units from his system permanently. A user who 
does not want to see his system as a hierarchy at all can simply 
deactivate the A-Kind-Of unit and its progeny. The user need not 
worry about the various immediate, and indirect, consequences of 
this alteration (e.g., deleting the Inherit-Along-IS-A-Links unit); 
RLL will take care of them. By selectively pushing and pulling, he 
should be able to construct a system resembling almost any 
currently used representational language, such as KRL, OWL and 
KLONE;4 after all, an organ can be made to sound like a piano. 
Unlike musical organs, RIL also provides its user with mechanisms 
for building his own stops (or even type of stops, or even 
mechanisms for building stops). With experience, one can use 
RLL to build his own new components. Rather than building 
them from scratch, (e.g., from CAR, CDR, and CONS,) he can modi& 
some existing units of RLL (employing other units which are 
themselves tools designed for just such manipulations.) 

4 This particular task, of actually simulating various existing Representation 
languages, has not yet been done. It is high on our agenda of things to do. 
We anticipate it will require the addition of many new components (and types of 
components) to RLL, many representing orthogonal decompositions of the space 
of knowledge representation. 

The following examples convey the flavor of what can currently 
done with the default settings of the RLL “organ stops”. 

4. EXAMPLES 

be 

4.1. EXAMPLE: Creating a New Slot 

In the following example, the user wishes to define a Fafher slot, in 
a sexist genealogical knowledge base which containes only the 
primitive slots Morher and Spouse. As RLL devotes a unit to 
store the necessary knowledge associated with each kind of slot, 
(see Figure 1,) defining a new kind of slot means creating and 
initializing one new unit. In our experience, the new desired slot is 
frequently quite similar to some other slot(s), with but a few 
distinguishing differences. We exploited this iegularity in 
developing a high level “slot-defining” language, by which a new 
slot can be defined precisely and succinctly in a single declarative 
statement. 

1 Name: IS-A 
1 Description: Lists the classes I AM-A member of. 
I Format: List-of-Entries 
1 Datatype: Each entry represents a class of objects. 
I Inverse: Examples 
1 IS-A: (AnySlot) 
1 UsedSylnhefifance: Inherit-Along-/S-A-Links 
1 MyTimeOfCfeation: 1 April 1979, 12:Ol AM 
1 MyCreator: D.B.Lenat 

Figure # 1 - Unit devoted to the “IS-A” slot. There are many other slots which are 
appropriate for this unit; whose value will be deduced automatically (e.g. 

inherited from AnySlot) if requested. 

Creating a new slot for Father is easy: we create a new unit called 
Father, and fill its HighLevelDefn slot with the value (Composition 
Spouse Mofher). Composition is the name of a unit in our initial 
system, a so-called “slot-combiner” which knows how to compose 
two slots (regarding each slot as a function from one unit to 
another). We also fill the new unit’s Isa slot, deriving the unit 
shown in Figure 2. 

Name: 
1 IS-A: 
I HighLevelDefn: 

Father 
(AnySlot) 
(Composition Spouse Mother) 

Figure # 2 - Slots filled in by hand when creating the unit devoted to the”Father” 
slot. Several other slots (e.g., the syntactic slots MyCreator, MyTimeOfCreation) 

are filled in automatically at this time. 

The user now asks for KarlPhilippEmanuel’s father, by typing 
(GetVal ue 'KPE 'Father). 

GetValue first tries a simple associative lookup (GET), but finds 
there is no Fafher property stored on KPE, the unit representing 
KarlPhilippEmanuel. GctValue then tries a more sophisticated 
approach: ask the Father unit how to compute the Father of any 
person. Thus the call becomes 

[Apply* (GetValue 'Father 'ToCompute) 'KPE]. 
Notice this calls on GctValue recursivelv. and once again there is 
no value stored on the ToCompure slot-of the unit tilled Father. 
The call now has expanded into 
[Apply* (Apply* (GetValue 'ToCompute 'ToCompute) 

'Father) 'KPE]. 
Luckily, there is a value on the ToCompute slot of the unit 
ToCompute: it says to find the HighLevelDefn, find the slot- 
combiner it employs, find its ToComput$, and ask it. Our call is 
now cxpandcd out into the following: 

[Apply* (Apply* (GetValue 'Composition 
'ToCompute) 'Spouse 'Mother) 'KPE]. 

’ Each unit which represents a function has a ToCompure slot, which holds the 
actual LISP function it encodes. Associating such a ToCompute slot with each slot. 
reflects our view that each slot is a function, whose argument happens to be a 
unit, and whose computed value may be cached away. 
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The unit called Composition does indeed have a ToCompute Slot; 

after applying it, we have: 
CApply* ‘(h (x) (GetValue (GetValue x ‘Mother) 

‘Spouse)) ‘KPE]. 
This asks for the Mother slot of KPE, which is always physically 
stored in our knowledge base, and then asks for the value stored in 
her Spouse slot. The final result, JohannSebastian, is then 
returned. It is also cached (stored redundantly for future use) on 
the Fafher slot of the unit KPE. See [Lenat et al., 19791 for details. 

Several other slots (besides ToCompufe) are deduced automatically 
by RLL from the HighLevelDefn of Father (see Figure 3) as they 
are called for. The Format of each Fafher slot must be a single 
entry, which is the name of a unit which represents a person. The 
only units which may have a Fafher slot are those which may 
legally have a Mofher slot, viz., any person. Also, since Fafher is 
defined in terms of both Mother and Spouse, using the slot 
combiner Composition, a value stored on KPE:Fafher must be 
erased if ever we change the value for KPE’s M&her or 
AnnaMagdelena’s Spouse, or the definition (that is, 7’oCompufe) of 
Composition. 

Name: 
1 IS-A: 

Father 
(AnySlot) I 

1 HighLevelDefn: (Composition Spouse Mother) 
1 Description: Value of unit’s Mother’s Spouse. 1 
1 Format: SingleEntry 
1 Datatype: Each entry is unit representing a person. I 
1 MahesSenseFor: AnyPerson 
1 DefinedlnTermsOf: (Spouse Mother) I 
1 DefinedUsing: Composition 
1 ToCompute: (A (x) (GetValue (GetValue x ‘Mother) ‘Spouse) i 

Figure # 3 - Later form of the Father unit, showing 
automatically. 

slots filled in 

Notice the the ease with which a use; can currently :‘extend his 
representation”, enlarging his vocabulary of new slots. A similar, 
though more extravagant example would be to define FavorifeAunf 
*as (SingieMost (Unioning (Composition Sister Parenfs) 
(Composition Spouse Brofher Parenfs)) $$). Note that “Unioning” 
and “SingleMost” are two of the slot combiners which come with 
RLL, whose definition and range can be inferred from this 
example. 

It is usually no harder to create a new type of slot format 
(OrderedNonemptySet), slot combiner (TwoMost, Starring), or 
datatype (MustBePersonOverl6), than it was to create a new slot 
type or inheritance mechanism. Explicitly encoding such 
information helps the user (and us) understand the precise function 
of each of the various components. We do not yet feel that we 
have a complete set of any of these components, but are 
encouraged by empirical results like the following: The first two 
hundred slots we defined required us to define thirteen slot 
combiners, yet the lasf two hundred slots required only five new 
slot combiners. 

4.2. EXAMPLE: Creating a New Inheritance Mode 

Suppose a geneticist wishes to have a type of inheritance which 
skips every second ancestor. He browses through the hierarchy of 
units descending from the general one called Inheritance, finds the 
closest existing unit, InheritSelectively, which he copies into a new 
unit, InheritFromEvery2ndGeneration. Editing this copy, he finds 
a high level description of the path taken during the inheritance, 
wherein he replaces the single occurrence of “Parenf” by 
“GrandParent” (or by two occurrences of Parenf, or by the phrase 
(Composition Parenf Parent)). After exiting from the edit, the new 
type of inheritance will be active; RLL will have translated the 
slight change in the unit’s high-level description into a multitude of 
low-level changes. If the geneticist now specifies that 
Organism # 34 is an “InheritFromEvery2ndGeneration offspring” of 
Organism#20, this will mean the right thing. Note that the tools 
used (browser, editor, translator, etc.) are themselves encoded as 
units in RLL. 

4.3. EXAMPLE: Epistemological Status 

Epistemological Status: To represent the fact that John believes 
that Mary is 37 years old, RLL adds the ordered pair (SeeUnit 
AgeOfMaryOOOl) to the the Age slot of the Mary unit. RLL 
creates a unit called AgeOfMaryOOOl, fills its *value* slot with 37 
and its EpiSfa/us slot with “John believes”. See Figure 4. Note 
this mechanism suffices to rcprcscnt belief about belief (just a 
second chained SeeUnit pointer), quoted belief (“John thinks he 
knows Mary’s age”, by omitting the *value* 37 slot in 
AgeOfMaryOOOl), situational fluents, etc. This mechanism can also 
be used to represent arbitrary n-ary relations, escaping the 
associative triple (i.e. Unit/SZof/value) limitation. 

Name: 
] IS-A: 

Mary 

I Description: 
(Person Female ContraryActor) 1 
The grower of silver bells etc. I 

i Age: 

1 Name AgeOfMaryOOOl il Name- 
1 Isa (UnitForASlotFiller) I I lsa 

AgeOfMaryOO02 I 

I LiveslnUnit I I LiveslnUnit 
(UnitForASlotFiller) I 

Mary Mary I 
1 LiveslnSlot Age- 

I ~Zs 
37 
John believes 

I Teleology: Epistemic 

. . 
I 1 LiveslnSlot Age- 
1 1 *value* 1 
I I Epistatus gring Wedding805 I 
1 I Teleology: Historic I 

Figure 4 - Representing “John believes that Mary is 37, but she’s 
When she was married. she was 21”. 

really 39. 

4.4. EXAMPLE: Enforcing Semantics 

Suppose that Lee, a user of RLL, is constructing HearSayXXIV, a 
representation language which contains cooperating knowledge 
sources (KSs). He specifies that each unit representing a 
knowledge source should have some very precise applicability 
criteria (he defines a FuZZRelevancy slot) and also a much quicker, 
rougher check of its potential relevance (he defines a 
PrePreCondifions slot). If HearSayXXIV users employ these two 
slots in just the way he intended, they will be rewarded with a very 
efficiently-running program. 

But how can Lee be sure that users of HearSayXXIV will use these 
two new slots the way he intended? He also defines a new kind of 
slot called Semantics. The unit for each type of slot can have a 
Semanfics slot, in which case it should contain criteria that the 
values stored in such slots are expected to satisfy. 

Lee fills the Semanfics slot of the unit called PrePreConditions with 
a piece of code that checks that the PrePreConditions slot of every 
KS unit is filled by a Lisp predicate, which is very quick to 
execute, which (empirically) correlates highly to the FullRelevancy 
predicate, and which rarely returns NIL when the latter would 
return T. This bundle of constraints captures what he “really 
means” by PrePreCondifions 

A user of HearSayXXIV, say Bob, now builds and runs a speech 
understanding program containing a large collection of cooperating 
knowledge sources. As he does so, statistics are gathered 
empirically. suppose Bob frequently circumvents the 
PrePreCondifions slot cntircly, by placing a’ pointer there to the 
same long, slow, complete criteria he has written for the 
FuNReZevancy slot of that KS. This is empirically caught as a 
violation of one of the constraints which Lee recorded in the 
Semanfics slot of the unit PrePreConditions. As a result, the 
Semanfics slot of the Semantics unit will be consulted to find an 
appropriate reaction; the code therein might direct it to print a 
warning message to Bob: “The PrePreCondifions slot of a KS is 
meant to run very quickly, compared with the F&Relevancy slot, 
but 70% of yours don’t; please change your PrePreCondifions slots, 
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or your FullRelevancy slots, or (if you insist) the Semantics slot of 
the PrePreConditions unit”.6 

5. SPECIFICATIONS FOR ANY REPRESENTATION 
LANGUAGE LANGUAGE 

The following are some of the core constraints around which RLL 
was designed. One can issue commands to RLL which effectively 
“turn off’ some of these features, but in that case the user is left 
with an inflexible system we would no longer call a representation 
language language. Further details may be found in [Lena& Haye* 
Rorh, & Klahr] and in [Geneserelh & Lenaf]. 

Self-description: No part of the RLL system is opaque; even the 
primitive Get and Put and Evaluate finctions are represented by 
individual units describing their operation.2 Current status: 
complete (to a base language level). 

Self-modification: Changes in the high-level description of an RLL 
process automatically result in changes in the Lisp code for -- and 
hence behavior of -- RLL. Current status: this works for changes 
in definition, format, etc. of units representing slots and control 
processes. Much additional effort is required. 

Codification of Representation Knowledge: Taxonomies of 
inheritance, function invocation, etc. Tools for manipulating and 
creating same. These correspond to the stops of the organ, 
illustrated above. Current status: this is some of the most exciting 
research we foresee; only a smattering of representation knowledge 
has yet been captured. 

6. INITIAL “ORGAN STOPS” 

The following characteristics pertain especially to the initirll state of 
the current RLL system, wherein all “organ stops” are set at their 
default positions. Each RLL user will doubtless settle upon some 
different settings, more suited to the representation environment he 
wishes to be in while constructing his application program. For 
details, see [Greiner]. 

Cognitive economy: Decision-making about what intermediate 
values to cache away, when to recompute values, expectation- 
f-iltcring. Current status: simple reasoning is done to determine 
each of these decisions; the hooks for more complex procedures 
exist, but they have not been used yet. 

Syntactic vs Semantic slots: Clyde should inherit values for many 
slots from TypicalElephant, such as Color, Diet, Size; but not from 
slots which refer to TypicalElephant qua data structure, slots such 
as NumerOjFilledInSlots and DaleCreated. Current status: RLL 
correctly treats these two classes of slots differently, e.g. when 
initializing a new unit. 

Onion field of languages: RLL contains a collection of features 
(e.g., automatically adding inverse links) which can be individually 
enabled or disabled, rather than a strict linear sequence of higher 
and higher level languages. Thus it is more like an onion field 
than the standard “skins of an onion” layering. Current status: 
Done. Three of the most commonly used settings are bundled 
together as CORLL, ERLL, and BRLL. 

’ This work has led us to realize the impossibility of unambiguously stating 
semantics. Consider the case of the semantics of the Lisp function “OR”. 
Suppose one person believes it evaluates its arguments left to right until a non- 
null value is found: a second person believes it evaluates right to left: a third 
person believes it evaluates all simultaneously. They go to the Semanfics slot of 
the unit called OR, to settle the question. Therein they find this expression: 
(OR (Evaluate the args Iefi to right) [Evaluate the args right to leJ)J. Person #3 
is convinced now that he was wrong, but persons 1 and 2 point to each other 
and exclaim in unison “See, I toId you!” The point of all this is that even 
storing a Lisp predicate in the Semanfics slots only specifies the meaning of a slot 
up to a set of fixed points. One approaches the description of the semantics with 
some preconceived ideas, and there may be more than one set of sucpi hypotheses 
which are consistent with everything stored therein. See [Genesereth & Lenar]. 

Economy via Appropriate Placement: Each fact, heuristic. 
comment, etc. is placed on the unit (or set of units) which are as 
general and abstract as possible. Frequently, new units are created 
just to facilitiate such appropriate placement. In the long run, this 
reduces the need for duplication of information. One example of 
this is the use of of appropriate conceptual units: 

Clarity of Conceptual Units: RLL can distinguish (i.e. devote a 
separate unit to each of) the following concepts: 
TheSetOfAllElephants, (whose associated properties describe this as 
a set -- such as #OjMembers or SubCaregories), TypicalElephant, 
(on which we might store Expected-TuskLenglh or DefauKolor 
slots), ElephantSpecies, (which EvoZvedAsASpecies some 60 million 
years ago and is CloselyRelaredTo the HippopatamusSpecies,) 
ElephantConcept, (which QuaZifiesAsA BeastOfBurden and a 
TuskedPackyderm,) ArchetypicalElephant (which represents an 
elephant, in the real world which best exemplifies the notion of 
“Elephant-ness”). It is important for RLL to be able to represent 
them distinctly, yet still record the relations among them. On the 
other hand, to facilitate interactions with a human user, RLL can 
accept a vague term (Elephant) from the user or from another unit, 
and automatically refine it into a precise term. This is vital, since a 
term which is regarded as precise today may be regarded as a 
vague catchall tomorrow. Current status: distinct representations 
pose no problem; but only an exhaustive solution to the problem 
of automatic disambiguation has been implemented. 

7. CONCLUSION 

“‘...in Mordor, where the Shadow lies. ” 

The’system is currently usable, and only through use will direction.* 
for future effort be revealed. Requests for documentation and 
access to RLL are encouraged. There are still many areas for 
tirther development of RLL. Some require merely a large 
amount of work (e.g., incorporating other researchers’ 
representational schemes and conventions); others require new 
ideas (es., handling intensional objects). To provide evidence for 
our arguments, we should exhibit a large collection of distinct 
representation languages which were built out of RLL; this we 
cannot yet do. Several specific applications systems live in (or are 
proposed to live in) RLL; these include ELI-RISK0 (discoiery of 
heuristic rules), E&E (combat gamina). FUNNEL (taxonomv of 
Lisp objects, with an aim toward-autor&tic programming), ROGET 
(Jim Bennett: guiding a medical expert to directly construct a 
knowledge based system), VLSI (Mark Stefik and Harold Brown: a 
foray of AI into the VLSI layout area), and WHEEZE (Jan Clayton 
and Dave Smith: diagnosis of pulminary function disorders, 
reported in [Smifh & Clayton]). 

Experience in AI research has repeatedly shown the need for a 
flexible and extensible language -- one in which the very 
vocabulary can be easily and usefully augmented. Our 
representation language language addresses this challenge. We 
leave the pieces of a representation in an explicit and modifiable 
state. By performing simple modifications to these representational 
parts (using specially-designed manipulation tools), new 
representation languages can be quickly created, debugged, 
modified, and combined. This should ultimately obviate the need 
for dozens of similar yet incompatible representation languages, 
each usable for but a narrow spectrum of task. 
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