NON-MINIMAX SEARCH STRATEGIES
FOR USE AGAINST FALLIBLE OPPONENTS

Andrew L. Reibman
Bruce W. Ballard

Computer Science Dept.
Duke University
Durham, NC 27706

ABSTRACT

Most previous research on the use of search for
minimax game playing has focused on improving search
efficiency rather than on better utilizing available
information. In a previous paper we developed models of
imperfect opponent play based on a notion we call
playing strength. In this paper, we use the insights
acquired in our study of imperfect play and ideas
expressed in papers by Slagle and Dixon, Ballard, Nau,
and Pearl to develop alternatives to the conventional
minimax strategy. We demonstrate that, in particular
situations, against both perfect and imperfect
opponents, our strategy yields an improvement
comparable to or exceeding that provided by an
additional ply of search.

I. INTRODUCTION

Any two-player, zero-sum, perfect information
game can be represented as a minimax game tree, where
the root of the tree denotes the initial game situation
and the children of a node represent the results of the
moves which could be made from that node. Most
previous research on search for minimax game playing
has focused on improving search efficiency. Results of
this type improve the quality of player decision making
by providing more relevant information. In contrast,
our research focuses on better utilizing information
rather than searching for more. In this paper, we
summarize previous work on this issue, describe a new
approach based on a model of opponent fallibility, and
provide and discuss our results. In particular, we have
devised a modification of the *-minimax search
procedure for tree containing chance nodes (Ballard
[82,83]) to improve the overall performance of the
minimax backup search algorithm. We shall
demonstrate that, in particular situations, against
perfect and imperfect opponents, our strategy yields an
improvement comparable to or exceeding that provided
by an additional ply of search. In the examples
appearing below, we follow convention and call the two
players "Max" and "Min" and use "+" to denote nodes
where Max moves and "-" to represent similar nodes for
Min. Positive endgame (leaf) values denote positive
payoffs for Max. Readers unfamiliar with the
conventional minimax backup search and decision
procedure should refer to Nilsson [86].

II. PREVIOUS WORK ON PROBLEMS WITH MINIMAX

Given perfect play by our opponent, we know from
game theory that a conventional minimax strategy
which searches the entire game tree yields the highest
possible payoff. However, most actual players, whether
human or machine, lack the conditions needed to insure
optimal play. In particular, because the trees of many
games are very deep, and tree size grows exponentially
with depth, a complete search of most real game trees is
computationally intractable. In these instances, static
evaluation functions and other heuristic techniques are
employed to reduce the search used in making
decisions. Before presenting our current work, we
discuss previous efforts to deal with incomplete search
and imperfect opponents.

A. Compensating for incomplete search

During the middle to late 1960's, James Slagle and
his associates sought to improve the performance of
minimax backup by attempting to predict the expected
value of (D+1)-level minimax search with only a D-level
search (Slagle and Dixon [70]). Their strategy was
called the "M and N procedure" and determined the
value of a Min node from its M best children and the
value of a Max node from its N best children. The M and
N procedure is based on the notion that the expected
backed-up value of a node is likely to differ from the
expected backed-up value of its best child. From
empirical data, they defined a "bonus function" to be
added to the static value of the best looking child of a
node, hoping that this would lead to a better estimate of
the true value of the parent. Using the game of "Kalah",
they found that M and N yields an improvement in the
expected outcome of the game about 13% as great as
does an additional ply of search.

B. Modeling Imperfect Opponent Play

In Reibman and Ballard [83] we introduced general
rules for constructing a model for an imperfect player
based on a notion we call playing strength. Intuitively,
playing strength is an indication of how well a player
can be expected to do in actual competition, rather
than against a theoretical perfect opponent. In our
previous work, we also presented a model of an
imperfect opponent based on a fixed probability of
player error. The simulated imperfect Min player chose
the best available move a fixed percentage of the time;
otherwise Min chose another of the available moves.
Thus the expected value of an imperfect opponent's "-"
node was considered to be the value of its best child
plus a fixed fraction of the value of any other children.
Though it failed to consider the relative differences

This work has been supported by the Air Force Office of
Scientific Research under grant AFOSR-81-0221.
between the values of moves, this simple model was
found to be better for use in our study than
conventional minimax.

The reader may have noticed in the preceding
section a resemblance between the notion of a bonus
function and our attempt to accurately predict the
expected value of moves made by a fallible opponent. In
Ballard and Reibman [83b], we prove that in a simplified
form of the model we present below, with a fixed
probability of opponent error, our strategy can be
obtained by an appropriate form of M and N (and vice
verse), although the exact backed up values being
determined will differ. This is because Slagle and Dixon's
bonus function was approximately linear, while ours,
based on the arc-sum tree model we use below, is a 4-th
degree polynomial.

III. THE UNRESOLVED PROBLEM OF OPPONENT FALLIBILITY

In addition to having an inability to completely
search actual game trees, actual implementations of
minimax assume perfect play by their opponent.
However, this assumption often is overly conservative
and can be detrimental to good play. We now present
two general classes of situations where minimax's
perfect opponent assumption leads to sub-optimal play.

A. Forced Losses and Breaking Ties

The first problem with minimax that we consider is
its inability to "break ties" between nodes which, though
they have the same backed-up value, actually have
different expected results. A readily observable example
of this problem is found in forced loss situations. In
the two-valued game in Figure 1, Max is faced with a forced
loss. Regardless of the move Max makes at the "+" node,
if Min plays correctly Max will always lose. Following
the conventional minimax strategy, Max would play
randomly, picking either subtree with equal frequency.
Suppose, however, that there is a nonzero probability
that Min will play incorrectly. For illustration, assume
Min makes an incorrect move 10% of the time. Then if
Max moves randomly, the expected outcome of the game
is .5(0) + .5(.9*0 + .1*1) = .05. If Max knows that, on
occasion, Min will make an incorrect move, this knowledge can
be used to improve the expected payoff from the game.
Specifically, Max can regard each "-" node as a "chance
node" similar to those that represent chance events such as dice rolls in non-minimax games. (Ballard
[82,83] gives algorithms suited to this broader class
of "-minimax" games.) Thus Max evaluates "-" by
computing a weighted average of its children, based on
their conjectured probabilities of being chosen by Min,
rather than by finding just the minimum. Following
this strategy, Max converts the pure minimax tree of Figure
1 into the -minimax tree also shown, and determines
the values of the children of the root as 0 and 0.1. The
rightmost branch of the game tree is selected because it
now has the higher backed-up value. In terms of
expected payoff, (which is computed as .5*0 + 1.0*(.9*0
+ .1*1) = .01), this is clearly an improvement over
standard minimax play. Furthermore, this strategy is an
improvement over minimax in forced loss situations
regardless of the particular probability that Min will err.

Our observed improvement in forced loss
situations is a specific example of "tie-breaking", where
the equal grandchild values happen to be zero. Because
minimax uses only information provided by the
extreme-valued children of a node, positions with
different expected results often appear equivalent to
minimax. Variant strategies can thus improve
performance by breaking ties with information minimax
obtains but does not use.

B. Exploiting Our Opponent’s Potential For Error

By always assuming its opponent is a minimax
player, minimax misses another class of opportunities to
improve its expected performance, although less
obvious than the forced loss situation presented above.
An example is found in Figure 2. Assume as above that
Min makes the correct move with probability .9. If Max
uses the conventional backup strategy and chooses the
left node, the expected outcome of the game is 2.1. If
however, we recognize our opponent's fallibility and
convert the Min nodes to "*'s", (as in Figure 2), we must
choose the right branch and the game's expected result
increases to 2.9. Thus by altering the way we back up
values to our opponent's nodes in the game tree, we can
improve our expected performance against an imperfect
opponent.

In the example of a forced loss, the improvement
in performance was due to the ability of a weighted
average backup scheme to correctly choose between
moves which appear equal to conventional minimax. In
the second example, our variant backup yielded a
"radical difference" from minimax, a choice of move
which differed not because of "tie-breaking", but
because differing backup strategies produced distinct
choices of which available move is correct.
Having observed an opportunity to profit by
exploiting errors which might be made by our opponent,
we have formulated a more sophisticated model of an
imperfect opponent than was previously considered. We
will first provide the motivation for our enhancements
and then describe the details of the imperfect player
model used in the remainder of the paper.

A. Motivation for a Noise-based Model

In general, it should be fairly easy to differentiate
between moves whose values differ greatly. However, if
two moves have approximately the same value, it could
be a more difficult task to choose between them. The
strength of a player is, in part, his ability to choose the
correct move from a range of alternatives. Playing
strength can therefore correspond to a "range of
discernment", the ability of a player to determine the
relative quality of moves. An inability to distinguish
between moves with radically different expected
outcomes could have drastic consequences, while
similar difficulties with moves of almost equal expected
payoff should, on the average, have less effect on a
player's overall performance.

We model players of various strengths by adding
noise to the information they use for decision making. A
player with noiseless move evaluation is a perfect
opponent, while a player with an infinite amount of noise
 injected into its evaluation plays randomly. We introduce noise at the top of an imperfect player's
search tree in an amount inversely proportional to the
player's strength.

B. The Noise-based Model in Detail

We now describe the details of our imperfect
player model. Each imperfect Min player is assigned a
playing strength. In simulating actual games, the
imperfect Min player conducts a conventional minimax
backup search to approximate the actual value of each
child of the current position. The backed-up values of
each child are then normalized with respect to the
range of possible backed up values and a random
number, chosen from the uniform distribution 0 <= x <=
S, where S is inversely related to the player's strength,
is added to the normalized value of each child. Thus the
deeper a player's strength, the higher the average
magnitude of the noise generated. The true node value
with noise added is then treated as a conventional
backed-up value. We add the noise to the top of a
player's search tree because the actual effect of adding
noise to the top of the tree can be studied analytically
while the effect of introducing noise in the leaves is less
well understood (Nau [80,82]). As described in Reibman
and Ballard [83], we have verified that, in our noise-

assumptions are used as a foundation: (1) Against a Min
player assumed to be perfect, we should use a
conventional Max strategy. (2) Against an opponent who
plays randomly, we should evaluate "-" nodes by taking an
unweighted average of the values of their children.
(3) In general, against imperfect players, we should
evaluate "-" nodes by taking a weighted average of the
values of their children, deriving the appropriate
probabilities for computing this average from an
estimate of our opponents' playing strength.

In an attempt to predict the moves of our
imperfect opponent, we assign our opponent a predicted
strength, denoted PS, between 0 and 1. To determine
the value of "-" nodes directly below the root, our
predictive strategy searches and backs up values to the
"-" nodes directly below each "-" node using
conventional minimax. A "-" node with branching factor
Br is then evaluated by first sorting the values of its
children in increasing order, then taking a weighted
average using probabilities PS (1-PS)*PS,...,(1-
PS)**(Br-1) * PS. If PS=1, we consider only the
minimum-valued child of a "-" node, in effect predicting
that our opponent is perfect. At the other extreme, as
PS approaches 0, a random opponent is predicted and,
since the probabilities used to compute the weighted
average become equal, the Min node is evaluated by an
unweighted average of its children. How well our model
predicts the moves of an imperfect opponent should be
reflected in our strategy's actual performance against
such a player.

VI. AN EMPIRICAL ANALYSIS OF THE PREDICTIVE STRATEGY

In Reibman and Ballard [83] we conducted an
empirical analysis to investigate the correlation between
playing strength as defined in our model and
performance in actual competition. We now conduct an
empirical study to compare the performance of our
predictive algorithm with that of conventional minimax
backup. We conduct our trials with complete n-ary
game trees generated as functions of three parameters:
D denotes the depth of the tree in ply, Br the branching
factor, and V, the maximum allowable arc value. In
our study we assign values to the leaves of the game
tree by growing the tree in a top-down fashion (Fulmer,
et al [73]). Every arc in the tree is independently
assigned a random integer chosen from the uniform
distribution between 0 and V. The value of each leaf is
then the sum of arcs leading to it from the root.

The portion of our study presented here consists of
several identical sets of 5000 randomly generated
game trees with Br=4, D=5, and V=10. Against seven 2-
ply Min opponents, ranging from pure minimax to almost
random play, we pit conventional minimax players
searching 1-, 2-, and 3-ply, and 10 predictive players,
each with a 2-ply search and a PS chosen from between
.1 and .9. The results of this experiment are found in
Table 1. Before summarizing our observations, we note
that the numbers in Table 1 represent points on a
continuum; they indicate general trends but do not
carry the entire spectrum of values which lie between
the points we have considered.

In the first column of Table 1, we observe that,
though it might be expected that pure Max backup
would be the optimum strategy against conventional
Min, several of our predictive players perform better
Table 1

Empirical Study Results

<table>
<thead>
<tr>
<th>Trials=5000, Br=4, D=5, Game Values 0-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average payoff over all games</td>
</tr>
</tbody>
</table>

Average payoff over all games

Max's Strategy 0.00

1-ply minimax	27.23	30.60	32.34	33.13	33.62	34.14	34.58
2-ply minimax	28.15	31.29	32.90	33.46	33.90	34.47	34.76
3-ply minimax	28.98	32.05	33.38	33.96	34.31	34.65	35.01

2-ply PS = 0.9	28.21	31.40	33.03	33.62	34.03	34.58	34.91
2-ply PS = 0.8	28.21	31.40	33.03	33.62	34.03	34.58	34.92
2-ply PS = 0.7	28.21	31.40	33.02	33.62	34.04	34.58	34.92
2-ply PS = 0.6	28.21	31.40	33.02	33.62	34.05	34.60	34.95
2-ply PS = 0.5	28.20	31.41	33.05	33.66	34.10	34.68	35.00
2-ply PS = 0.4	28.20	31.42	33.10	33.70	34.15	34.72	35.07
2-ply PS = 0.3	28.17	31.41	33.11	33.75	34.19	34.90	35.12
2-ply PS = 0.2	28.13	31.40	33.13	33.77	34.22	34.83	35.16
2-ply PS = 0.1	28.08	31.39	33.14	33.79	34.24	34.85	35.19

than a conventional Max player searching the same number of ply. The observed improvement is as much as 7% of the gain we would expect from adding an additional ply of search to the conventional Max strategy. This result is analogous to that obtained with Slagle and Dixon's M and N strategy. Like M and N, our improvement is due, at least in part, to a strategy which, by considering information from more than one child of a node, partially compensates for a search which fails to reach the leaves.

In the central columns of Table 1, we see that against an opponent whose play is imperfect, our strategy can provide almost half the expected improvement given by adding an additional ply of search to the conventional Max strategy. We believe this gain is due primarily to the ability of our strategy to capitalize on our opponent's potential for errors.

If we examine the results in the last two columns of Table 1, we observe that, against a random player, our strategy yields an improvement up to twice that yielded by an additional ply of search. As the predicted strength of our opponent goes down, our predictions of our opponent's moves become more a simple average of the alternatives available to him than a minimax backup. We have previously conjectured that the most accurate prediction of the results of random play is such a weighted average and, as expected, our strategy's performance continues to improve dramatically as the predicted strength decreases.

We also observe a possible drawback to the indiscriminate use of our strategy. When we begin to overestimate our opponent's fallibility, our performance degrades. In Column 1 of Table 1, our performance peaks. If we inaccurately overestimate the weakness of our opponent, our performance declines and eventually falls below that of minimax. We have observed similar declines in other columns as we let the predicted strength move even closer to 0 than the minimum predicted strengths shown in Table 1.

Having derived the results given above, we decided to tabulate the maximum improvement our strategy achieves over minimax. This summary is found in Table 2. We also give the results (in Table 2) of statistical confidence tests we have applied to our empirical analysis. These tests help to assess whether our strategy actually performed better than minimax. The percentages indicate the level of confidence that the improvements observed were not due to chance (given the actual normal distribution of our sample of trees). We note that in all but the first two columns our confidence levels are well over 90%.

VII. CONCLUSION

In this paper we have discussed the problem of adapting game playing strategies to deal with imperfect opponents. We first observed that, against a fallible adversary, the conventional minimax backup strategy does not always choose the move which yields the best expected payoff. To investigate ways of improving minimax, we formulated a general model of an imperfect adversary using the concept of "playing strength". We then proposed an alternative game playing strategy which capitalizes on its opponent's potential for error. An empirical study was conducted to compare the performance of our strategy with that of minimax. Even against perfect opponents, our strategy showed a marginal improvement over minimax and, in some other cases, great increases in performance were observed.

We have presented some results of our efforts to develop variant minimax strategies that improve performance of game players in actual competition. Our present and future research includes a continued effort to expand and generalize our models of play, our predictive strategy, and the assessment of opponents using a playing strength measure. Further study of our models has included not only additional empirical experiments but also closed-form analysis of some closely related game tree search problems. We hope to eventually acquire a unified understanding of several
distinct problems with minimax in order to develop a more general game playing procedure which retains the strong points of minimax while correcting its perceived inadequacies.

REFERENCES

Table 2

Statistical Analysis of Empirical Study

<table>
<thead>
<tr>
<th>Imperfect Player Noise Range</th>
<th>0.00</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictive play %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% improvement over 2-ply minimax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in % of 1-ply)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Confidence:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is our optimum expected payoff better than that of 2-ply minimax?</td>
<td>58.2%</td>
<td>82.9%</td>
<td>98.2%</td>
<td>99.8%</td>
<td>99.8%</td>
<td>99.8%</td>
</tr>
</tbody>
</table>