
FINDING A SHORTEST SOLUTION FOR THE N xN EXTENSION
OF THE H-PUZZLE IS INTRACTABLE

Daniel Ratner and Manfred Warrnuth

Computer & Information Sciences
University of California Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

The g-puzzle and the 15puzzle have been used for
many years as a domain for testing heuristic search
techniques. From experience it is known that these puzzles
are “difficult” and therefore useful for testing search
techniques. In this paper we give strong evidence that these
puzzles are indeed good test problems. We extend the 8-
puzzle and the Epuzzle to a nxn board and show that
finding a shortest solution for the extended puzzle is NP-hard
and thus computationally infeasible.

We also present an approximation algorithm for
transforming boards that is guaranteed to use no more than
c%(V) moves, where L(SP) is the length of the shortest
solution and c is a constant which is independent of the given
boards and their size n .

I. INTRODUCTION

For over two decades the g-puzzle and the 15-puzzle
have been a laboratory for testing search methods. Michie
and Doran used these games in their general problem-solving
program, called Graph Traverser [DM66]. Pohl used the
15-puzzle in his research on bi-directional search and
dynamic weighting Ipo77]. Recently Korf used these puzzles
as examples for the Macro-Operators [K85a] and for IDA *
[K85b]. Judea Pearl used the g-puzzle throughout the first
half of his Heuristics book as one of the main examples
[Pe84]. Also, these puzzles were used for testing the
performance of some learning algorithms me83].

The main reasons for selecting these problems as
workbench models for measuring the performance of
searching methods are:
1) There is no known algorithm that finds a shortest

solution for these problems efficiently.
2) The problems are simple and easy to manipulate.
3) The problems are good representatives for a class of

problems with the goal of finding a relative short path
between two given vertices in an undirected graph.

4) The size of the search graph is exponential in n even
though the input configurations can be described easily
(0 (n*>>.

5) The search graph can be specified by a few simple rules.

Certainly, if there existed simple efficient algorithms for
finding a shortest solution for these problems, then heuristic
approaches would become superfluous. Thus we need to give
a convincing argument that no such algorithm exists. This is
accomplished by using complexity theory. We show that
finding the shortest solution for a natural extension of the 8-
puzzle and the 15-puzzle is NP-hard. Thus unless P=NP,

which is considered to be extremely unlikely, there is no
polynomial algorithms for finding a shortest solution. Of
course, since the number of distinct configurations in the 8-
puzzle and the 15-puzzle are finite, theoretically (and
practically for the g-puzzle) one can find shortest solutions
for all the possible inputs by analyzing the whole search
graph. To get problems of unbounded size we extend the
problem to the n xn board ((n 2-l)-puzzle).

The aim of the (n 2-l)-puzzle is to find a sequence of
moves which will transfer a given initial configuration of an
nxn board to a final (standard) configuration. A move
consists of sliding a tile onto the empty square (blank tile)
from an orthogonally adjacent square.

We will show that the following decision problem
(nPU2) is NP-complete:
Instance: two n xn boards and a bound k .

th Question: is ere a solution for transforming the first board
into the second board requiring less than k moves?

The pebble games of [KMS84] can be viewed as a direct
generalization of the nPUZ problem. Rather than moving
tiles in the planar grid, they allow general graphs with an
arbitrary number of empty spaces. They address the question
of reachability, i.e. whether a final configuration is reachable
from an initial configuration by moving pebbles to adjacent
empty spaces. It was shown that the general reachability
problem can be decided in polynomial time.

The nPUZ problem is case where reachability is easy.
We address the complexity of reaching the final configuration
from the initial configuration in a small number of moves.

In the nPUZ problem we relocate tiles. The relocation
task, even without the specific rigid rules of the game, is the
essence of the intractability. In the nPUZ problem we have
additional restrictions that makes its proof of NP-
completeness very difficult. Therefore we first show the
intractability of a relocation problem. This problem, the REL
problem, captures the hardness of nPUZ and is less
restrictive and easier to prove NP-complete. The REL
problem is specified as follows:
Instance: A planar directed graph G (V,E) where each e E E
has capacity 0 or 2, a set X of elements, and an initial and
final configuration. A configuration specifies the location of
each element of X at the vertices of V.
Question: Is there a relocation procedure that ships the
elements of X from their initial configuration to their final
configuration such that the procedure moves along each e E E
exactly once and along each edge it never ships more
elements than allowed by its capacity?

168 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

The nPUZ and REL problems can be viewed as robotics
problems: A robot needs to efficiently relocate objects in the
plane.

The NP-completeness proof of nPUZ will simulate the
simpler proof for REL. The graph is mapped onto the board
of the puzzle problem. The vertices and edges will
correspond to certain areas of board. The elements and the
capacities are encoded by the arrangements of tiles in these
areas in the start and final configuration.

Since finding the shortest solution is NP-hard we would
like to know how close the shortest solution can be
approximated. We show that finding a solution that is an
additive constant away from the optimum is also NP-hard.
However we have positive results for approximating the
optimal solution by a multiplicative constant. We only give a
proof for a high multiplicative constant. However we suspect
that the algorithm outputs a solution that is not more than
twice the optimal. It is an open problem to find the algorithm
with the best possible constant. Note that this type of
algorithm finds reasonable solutions even if n is large
(around 100). The research based on search methods only
addresses the cases of n14. The best solutions will be
produced by a combined approach, as suggested in [RP86]:
use an approximation algorithm and then do local
optimization of the approximate solution employing search
methods.

We suggest to apply our approach to other puzzles, like
the Rubik’s cube, which are studied extensively in the AI-
literature. Is the problem of finding a shortest solution for the
n -dimensional Rubik’s cube NP-hard? Are there polynomial
time approximation algorithms for this puzzle that
approximate the optimal solution by a multiplicative
constant?

II. THE NP-COMPLETENESS OF REL

In this section we prove that REL problem is NP-
complete, i.e. relocating elements that reside in vertices of a
planar graph via an Eulerian path is NP-complete. We prove
that REL and nPUZ are NP-complete by reducing a special
very symmetric version of the satisfiability problem to nPUZ .
This version is called 2/2/4-SAT and is defined as follows:
each clause contains four literals; each variable appears four
times in the formula, twice negated and twice not negated;
the questions is whether there is a truth setting for the
formula such that in each clause there are exactly two true
literals. In the complete paper we give a standard NP-
completeness reduction for 2/2/4-SAT.

Theorem 1: REL is NP-complete.
Proof: Let U={U~,U~;*., u,} be a set of variables and
C={q,c2;y c, } be a set of clauses defining an
arbitrary instance of 2/2/4-SAT. From this instance we will
construct an instance of REL. An instance of REL is a graph
G (V,E) with capacities (0 or 2) for each e E E, a set X of
elements, an initial configuration (called B t), and a final
configuration (called B 2). First we start with the description
of the graph and later we define the configurations.

The graph (Figure 2) consists of 5m+2 vertices and
12m -3 edges. The vertices are divided to 4 groups. The first
group is built up from m diamonds of 4 vertices each. The
i -th diamond which is shown in Figure 1 corresponds to the

variable Ui. This diamond contains the vertices: topi, nui,
boti , and Yiiii .

toPi 0 toPi

Figure 1: The i -th diamond in B 1 and B 2.

The second group is the single vertex TC (stands for
truth collection). The third group is the single vertex FC
(stands for false collection). The fourth group consists of m
vertices. The i -th vertex of this group, called nci,
corresponds to the i-th clause in the boolean formula of the
2/2/4-SAT instance.

The directed edges connecting the vertices and the
capacities of the edges are specified in Figure 2. Note that
their is a special edge of capacity zero from nc, to top 1.

J-+----- ----------- --1

nu1 -52
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

k-

SW----->

edge with capacity 0 nc,------------
-- ------ -1

Figure 2: The graph of the REL instance.

To complete the definition of the instance of REL we
need to specify the elements and their initial and final
locations in the graph. The set of elements X consists of 4m
elements. Recall that in 2/2/4-SAT each variable occurs

Search: AUTOMATED REASONING / 169

twice negated and twice unnegated. There is an element for
each of the 4 occurrences: ni ,t and ni ,2 correspond to the two
appearances of ui in C , and ni ,3 and ni,4 correspond to the
two appearances of G in C .

In B 1 the elements are located in the diamonds as
specified in Figure 1. All the remaining vertices contain no
elements. In B 2 all elements are in the vertices that
correspond to the clauses. The 4 elements that are associated
with the 4 literals of the i -th clause appear in vertex nci.
This completes the definition of the instance of REL. The
following two claims complete the proof of the theorem.

Claim 1: If there is a truth assignment f : U +{T ,F } that
satisfies the 2/2/4-SAT instance then there is a relocation
procedure along an Eulerian path that shifts B 1 to B 2.
Proof: The proof is constructive. First we ship all the
ni,j elements that correspond to true literals from their
vertices in B 1 to TC vertex. This collection is done by the
following loop:
for i := 1 to m do begin

if f(Ui)=T
then begin

move along (tOpi,nUi) ;

move along (nui,boti) with ni,l and ni,2;
move along (boti ,TC) with ni ,l and ni ,2;

end
else begin

move along (tOpi ,nUi) ;

move along (nUi ,boti) with ni ,3 and ni ,4;

move along (boti ,TC) with ni,3 and ni,4;

end { if }.
if i # m then move along (TC ,topi+l) ;

end.

When the above loop is finished, then the vertex TC contains
2m elements. Each diamond contributes exactly two
elements. The two elements from the i -th diamond are either
ni,l and ni,2 (from nu;) or n;,3 and ni,4 (from nu;).

The next step drops the 2m ni,j elements that are in TC
into the nci vertices they belonged to in B 2. As mentioned
above, these 2m nij elements correspond to the 2m true
literals. Since there is a truth assignment for the 2/2/4-SAT
instance, it follows that two ni,j elements, that appear in each
clause vertex nci in B 2 are now in TC. These elements are
dropped into their clause vertices by the following loop:
for i :=l to m do begin

move along (TC ,nci) with the two ni ,j elements
that are in nci in B 2;

if i f m then move along (nci ,TC) ;

As a result of the above segment, each nci vertex receives the
two ni,j elements that correspond to the true literals.

Now we move along (nc,,top 1) . From this point we
repeat the two loops given above. In the first loop we collect
all the ni,j elements that correspond to false literals into the
FC vertex. This is done by traversing all the edges of the
diamonds that have not been traversed in the first pass and by
traversing all the edges that connect FC with the diamonds.
Once the first loop in this second pass is completed, the
2m ni,j elements that correspond to the 2m false literals are
in FC. In the second loop of the second pass, the algorithm

drops the 2m ni,j elements from FC into their appropriate
nci vertices in B 2. Once the second pass is completed the
arrangement of the ni,j elements in the graph is as prescribed
in B 2. Observe that each edge is traversed exactly once and
the number of elements moved through each edge always
equals the capacity of the edge.

Claim 2: If there is a relocation procedure that ships the
elements from B 1 to B 2 along an Eulerian path then there is a
truth assignment f : U --+{T ,F } that satisfies the 2/2/4-SAT
instance.
Proof: We need to ship the four ni,j elements from their
initial locations in the i -th diamond to the clause vertices (the
rick) they belong to in B 2. The ni,j elements must pass
through boti + There are only two edges (boti ,TC) and
(boti ,FC) outgoing from boti. Both edges have capacity 2.
This means that when the procedure moves along (boti,TC)
and (boti,FC) it must carry 2 elements each time.
Furthermore, the first time the procedure ships two elements
to boti they must be either the pair (ni,l,ni,z) or the pair
(ni,s,ni,d). NOW the procedure must continue to move along
with these two elements. Thus, for each i, 1 I i I m , the
procedure that relocates the elements ships the pair (ni,l,ni,z)
along (boti,TC) or along (boti,FC).

Let us define the truth assignment f : U+{T ,F } as
follows:

f (Ui) = T if the procedure ships the pair (ni,l,ni,p)
along (boti ,TC).

f (Ui) = F if the procedure ships the pair (ni, 1 ,ni ,2)
along (boti ,FC).

Note that if f (ui) = T (respectively F) then the procedure
ships the pair (ni,3,ni,4) along (botiJ;C) (respectively
(boti,TC)).

We proceed to show that the above truth assignment
satisfies the requirements of the 2/2/4-SAT instance. There
are two ingoing edges to each nci vertex, each of capacity
two. There is no way to ship elements from TC to FC or vise
versa (see Figure 2). Thus the procedures ships from TC
exactly two elements to each of the nci vertices. According
to the definition of f these elements correspond to true
literals. The other two elements that arrive at each
nci vertices are from FC, which means that they correspond
to false literals. This completes the proof of Claim 2 and
Theorem 1. Cl

III. THE NP-COMPLETENESS OF nPUZ

In this section we will sketch a reduction of the
2/2/4-SAT problem to the nPUZ problem. Given an instance
of 2/2/4-SAT we define a corresponding instance of nPUZ.
This instance (and the whole reduction) is similar to the
instance of REL used in the previous section. We will map
the graph of Figure 2 onto the board. The instance of nPUZ
consists of two n xn board configurations B 1 (the initial
configuration), B2 (the final configuration) and an integer k
which is an upper bound on the number of moves that can be
used to transform B 1 to B 2. To simulate the graph of Figure
2 we have to capture the notions of vertices, edges, elements,
relocation, moving along an edge and capacity of an edge.
Each vertex in the graph of Figure 2 corresponds to a square
of locations. Edges are identified as stripes (horizontal,
vertical, or a pair of both) of locations that connect the

17’0 / SCIENCE

vertices. Each element of X corresponds to a specific tile on
the board. The tiles which correspond to the elements appear
in different locations on board B 1 than on board B 2. As in
the instance of REL the element tiles are in the diamonds on
B 1 and in the squares of the clauses in B 2. Moving these
tiles to their destination in B 2 corresponds to relocating the
elements in the graph of the REL problem. Until now, the
analog between the components in the REL problem and the
corresponding components in the game are straight forward.
An outline of how the graph is mapped onto the board is
given in Figure 3. The main difference is a 45 degree
counterclockwise rotation. Note that the lines of Figure 3
represent “thin” stripes of locations. The arrangements of the
tiles outside the squares of the vertices and outside the stripes
of the edges are the same on B 1 and B 2. Note that all the
names of the tiles on the board are distinct. Thus the
configurations B 1 and B 2 are equivalent w.r.t. renaming of
tiles and only the relative location of equally named tiles on
B 1 and B 2 is important.

r
k

I
I

~

I
I

I
I
I
I

L--.

I
I
I

r---------, 1
I

1 I
1 I
I I

I I I

I I I

I I I

I
I
I

I I

I
I I
I I
I I
I
I I

J I
1 I I
1 L-------l I

I
-I

edge with capacity 2
---mm)

edge with capacity 0

Figure 3: The locations in which B 1 and B 2 differ.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-A

We still need to show the analog to “move along an
edge”. In the game, the tiles can be shifted to any location,
and they are not tied to specific squares and stripes of
locations. How can we force the tiles that correspond to the
elements of the X to move only along the stripes of the
edges? How can we force these tiles to move along a stripe
exactly once? To realize the notion of capacity we need to
guarantee that exactly two element tiles (in addition to the
blank tile) move along the stripes of capacity two, and zero
element tiles, i.e. only the blank tile, move along the stripes
of capacity zero. To overcome the above difficulties we
carefully arrange the tiles within the edges. The vertices and
edges are the only locations in which B 1 and B 2 differ.

Edges either have capacity zero or capacity two. They
are stripes following the outline of Figure 3. The edges of
capacity zero are stripes of width 1 and the edges of capacity
two are stripes of width 3. The tiles within the edges are
arranged differently in B 1 and B 2. Recall that each edge has a

direction. For the edges of capacity zero the tiles of B 2 are
shifted one location backward relative to their location in B 1.
This will guarantee that the blank tile has to move through
this edge to achieve the rearrangement of the edge. The
overall bound on the number of moves will assure that this
can happen only once.

The rearrangement of the edges of capacity two is given
in Figure 4,5 and 6. The figures show how to move two tiles
(x and y) together with the blank tile through a stripe edge of
width 3 and length 6 (the edge is the portion between the
double bars). Figure 4 shows the arrangement of the tiles on
the edge in B 1 and Figure 6 the same for B 2.

Figure 4: The arrangement of an edge with capacity 2 in B 1.

Figure 5 (below) is produced from Figure 4 by advancing x
and y one location to the right. This is accomplished by
moving the blank tile: left, left, up, right, right, right, down,
left, left, down, right, right, right, up.

Figure 5: The arrangement after advancing x and y once.

If we apply the above sequence 9 + 3 times then we end up
with the following arrangement.

Figure 6: The arrangement of an edge with capacity 2 in B 2.

For all edges of capacity 2 the tiles on B 2 are rearranged
as if two pieces and the blank tile moved through the edge on
B 1 in the prescribed fashion. Note that the procedure
specified in the three figures uses the minimal number of
moves, i.e. there is no procedure that moves x and y through
the edges using a smaller number of moves. Also the
procedure uses no more moves than the manhattan distance
between the arrangement of e on B 1 and B2. This
rearrangement can not be accomplished efficiently by any
other shifting procedure, i.e. by moving twice from the
beginning to the end of the edge or by moving through the
edge with less or more than 2 non-blank tiles. The number of
moves required by any other shifting procedure exceeds the
manhattan distance and the number of additional moves
required is proportional to the length of the edge. Since the
bound on the overall number of moves will be tight, B 1 must
be rearranged efficiently to achieve B 2, i.e. each edge of
capacity 2 is traversed exactly once while shipping exactly 2
non-blank tiles along the edge.

A detailed proof is given in the complete paper. We
haven’t specified the rearrangements of the vertices and the
comers of the edges. We define k to be equal to the number

Search: AUTOMATED REASONING i I’ 1

of moves required by traversing each edge exactly once with
the specified number of non-blank tiles plus enough freedom
to achieve the rearrangements in the comers of the edges and
in the vertices. This freedom is much smaller than the
number of moves required to travel along an edge with only
the blank tile.

It might seem that B 2 uniquely determines the
rearrangement procedure. However note that the
rearrangement of the edges (Figure 4 and 6) is independent of
the element tiles moved through the edge. The element tiles
are located in the same vertices as in the instance of REL.
They are to be moved from the diamonds to the clauses. Half
of the element tiles are gathered in TC and these tiles
correspond to the true literals. The other half is gathered in
FC . The reduction is identical to the reduction of REL .

IV. AN APPROXIMATION ALGORITHM

Since finding a shortest solution is NP-hard we would
like to know how close a shortest solution for the
(n2-1)-puzzle can be approximated. We can prove that

finding a solution that is an additive constant larger than the
optimum is also NP-hard. We simply use the reduction of the
previous’ section except that we enlarge the length of each
edge by four times the additive constant.

In this section we sketch the main ideas of a polynomial
approximation algorithm that approximates the optimal
solution by a multiplicative constant. We chose to present a
simplified version of our algorithm. Therefore the
multiplicative constant is not as low as possible. The main
point is that such an approximation algorithm exists. Also for
simplicity we assume that the blank tile resides in the same
location (n ,n) in both configurations.

Let us denote B 1 as a permutation of B 2 and then
decompose the permutation into disjoint cyclic permutations.
The decomposition can be produced in time which is linear in
the size of the permutation.

Assume that there is only one cycle, (Zc,Z 1, . . . , I,-I),
denoting the fact that the tile located at Zi in B 1 is located at
1 (i+l)mod c in B 2 * There are two simple lower bounds on the

length of the optimal solution: d ((n ,n),Za) and ‘- d (li,li+l),
z I=

where d (I ,I’) is the manhattan distance between the locations
1 and 1’. The following procedure requires at most
2d ((n ,n),lo) + 20. ‘- d (li,Zi+l) moves, which is at most 22

x 1=
times the length of the optimal solution: the blank tile moves
from (n ,n) to lo; the pieces at locations lo,1 1, ’ * * ,lc-2 are
shifted one at a time to the locations 11,12, * . * 1 , c-17
respectively; this shifting process has the side effect that a
large number of tiles on the path between the locations are
shifted one or two places from their origin (see figures 4, 5
and 6); now the tile at 1,-l is moved along the path
Ldc-2, . . * ,I0 to its destination at lo; while relocating the
tile of 1,-l the side effects of the shifting process are undone;
finally, the blank tile moves from 10 to (n ,n).

In the case where there is more than one cycle, each
cycle c contributes its sum of distances around the cycle

(denoted by S (C)) to the lower bound, Thus the second
lower bound becomes

3
S(C). The first lower bound

all cyc es C
d ((n ,n),ZO) is replaced by the cost of the minimum spanning
tree given below. We can view the 10 ‘s of each cycle and
(n,n> ‘as nodes in a complete graph, where the cost of each
edge is the manhattan distance between the corresponding
locations. Clearly the cost of the minimum spanning tree is a
lower bound for the length of the optimal solution. (Note that
the minimum spanning tree can be constructed in 0 (n4)
time.) In the case where there is only one cycle, the vertices
(n ,n) and IO, and the path between them represent the
minimum spanning tree. If we have more than one cycle we
connect the lo’s of all the cycles according to the edges of
the minimum spanning tree. The procedure for the general
case: the blank tile moves along the locations that correspond
to edges of the spanning tree as if it traverses the tree;
whenever it reaches an 10 location the shifting process in a
cycle is executed; backtracking from a child to a parent in the
traversal corresponds to undoing the changes made on the
edge that connects the child with its parent.

There are two difficulties in the above description. The
first one is that if the number of locations in a cycle is even
we can’t completely fix the cycle because of the group
properties of nPUZ. The second difficulty is that when we
shift tiles along a path we might increase the manhattan
distance between the tiles of some cycle that crosses the path,
and then the second lower bound is improper. In the
complete paper we show how we overcome these difficulties
without additional moves.

REFERENCES
[DM66] Doran, J. and Michie, D., “T Experiments with the

graph traverser program”’ Proc. of the Royal Society
(A), No. 294, pp.235-259, 1966.

[K85a] Korf, R. E., Learning to solve problems by searching
for Macro-Operators. Research Notes in Artificial
Intelligence 5, Pitman Advanced Publishing Program,
1985.

[K85b] Korf, R. E., “Iterative-Deepening-A * : An Optimal
Admissible Tree Search,” Proceedings of the Ninth
International Joint Conference on Artijcial Intelligence,
Vol. 2, pp. 1034-1035, 1985.

[KMS84] Kornhauser, D., Miller, G. and Spirakis, P.,
“Coordinating Pebble Motion on Graphs, The Diameter
of Permutation Groups, and Applications,” 25th FOCS,
pp. 241-250, 1984.

[Pe84] Pearl, J., Heuristics. Intelligent search strategies for
computer problem solving, Addison-Wesley Publishing
Company, 1984.

[Po77] Pohl, I., “Practical and theoretical considerations in
heuristic search algorithms,” in Bernard Meltzer and
Donald Michie (editors) ,Machine Intelligence 8, pp.
55-72, American Elsevier, New York, 1977.

[Re83] Rendell, L. A., “A new basis for state-space learning
systems and a successful implementation,” Artificial
Intelligence, Vol. 20, pp. 369-392, 1983.

[RP86] Ratner, D. and Pohl, I., “Joint and LPA *:
Combination of Approximation and Search,” to appear
in the Proceedings of AAAI-86, 1986.

1’2 / SCIENCE

