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ABSTRACT 

The g-puzzle and the 15puzzle have been used for 
many years as a domain for testing heuristic search 
techniques. From experience it is known that these puzzles 
are “difficult” and therefore useful for testing search 
techniques. In this paper we give strong evidence that these 
puzzles are indeed good test problems. We extend the 8- 
puzzle and the Epuzzle to a nxn board and show that 
finding a shortest solution for the extended puzzle is NP-hard 
and thus computationally infeasible. 

We also present an approximation algorithm for 
transforming boards that is guaranteed to use no more than 
c%(V) moves, where L(SP) is the length of the shortest 
solution and c is a constant which is independent of the given 
boards and their size n . 

I. INTRODUCTION 

For over two decades the g-puzzle and the 15-puzzle 
have been a laboratory for testing search methods. Michie 
and Doran used these games in their general problem-solving 
program, called Graph Traverser [DM66]. Pohl used the 
15-puzzle in his research on bi-directional search and 
dynamic weighting Ipo77]. Recently Korf used these puzzles 
as examples for the Macro-Operators [K85a] and for IDA * 
[K85b]. Judea Pearl used the g-puzzle throughout the first 
half of his Heuristics book as one of the main examples 
[Pe84]. Also, these puzzles were used for testing the 
performance of some learning algorithms me83]. 

The main reasons for selecting these problems as 
workbench models for measuring the performance of 
searching methods are: 
1) There is no known algorithm that finds a shortest 

solution for these problems efficiently. 
2) The problems are simple and easy to manipulate. 
3) The problems are good representatives for a class of 

problems with the goal of finding a relative short path 
between two given vertices in an undirected graph. 

4) The size of the search graph is exponential in n even 
though the input configurations can be described easily 
( 0 ( n*>>. 

5) The search graph can be specified by a few simple rules. 

Certainly, if there existed simple efficient algorithms for 
finding a shortest solution for these problems, then heuristic 
approaches would become superfluous. Thus we need to give 
a convincing argument that no such algorithm exists. This is 
accomplished by using complexity theory. We show that 
finding the shortest solution for a natural extension of the 8- 
puzzle and the 15-puzzle is NP-hard. Thus unless P=NP, 

which is considered to be extremely unlikely, there is no 
polynomial algorithms for finding a shortest solution. Of 
course, since the number of distinct configurations in the 8- 
puzzle and the 15-puzzle are finite, theoretically (and 
practically for the g-puzzle) one can find shortest solutions 
for all the possible inputs by analyzing the whole search 
graph. To get problems of unbounded size we extend the 
problem to the n xn board ( (n 2-l)-puzzle ). 

The aim of the (n 2-l)-puzzle is to find a sequence of 
moves which will transfer a given initial configuration of an 
nxn board to a final (standard) configuration. A move 
consists of sliding a tile onto the empty square (blank tile ) 
from an orthogonally adjacent square. 

We will show that the following decision problem 
(nPU2) is NP-complete: 
Instance: two n xn boards and a bound k . 

th Question: is ere a solution for transforming the first board 
into the second board requiring less than k moves? 

The pebble games of [KMS84] can be viewed as a direct 
generalization of the nPUZ problem. Rather than moving 
tiles in the planar grid, they allow general graphs with an 
arbitrary number of empty spaces. They address the question 
of reachability, i.e. whether a final configuration is reachable 
from an initial configuration by moving pebbles to adjacent 
empty spaces. It was shown that the general reachability 
problem can be decided in polynomial time. 

The nPUZ problem is case where reachability is easy. 
We address the complexity of reaching the final configuration 
from the initial configuration in a small number of moves. 

In the nPUZ problem we relocate tiles. The relocation 
task, even without the specific rigid rules of the game, is the 
essence of the intractability. In the nPUZ problem we have 
additional restrictions that makes its proof of NP- 
completeness very difficult. Therefore we first show the 
intractability of a relocation problem. This problem, the REL 
problem, captures the hardness of nPUZ and is less 
restrictive and easier to prove NP-complete. The REL 
problem is specified as follows: 
Instance: A planar directed graph G (V,E) where each e E E 
has capacity 0 or 2, a set X of elements, and an initial and 
final configuration. A configuration specifies the location of 
each element of X at the vertices of V. 
Question: Is there a relocation procedure that ships the 
elements of X from their initial configuration to their final 
configuration such that the procedure moves along each e E E 
exactly once and along each edge it never ships more 
elements than allowed by its capacity? 
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The nPUZ and REL problems can be viewed as robotics 
problems: A robot needs to efficiently relocate objects in the 
plane. 

The NP-completeness proof of nPUZ will simulate the 
simpler proof for REL. The graph is mapped onto the board 
of the puzzle problem. The vertices and edges will 
correspond to certain areas of board. The elements and the 
capacities are encoded by the arrangements of tiles in these 
areas in the start and final configuration. 

Since finding the shortest solution is NP-hard we would 
like to know how close the shortest solution can be 
approximated. We show that finding a solution that is an 
additive constant away from the optimum is also NP-hard. 
However we have positive results for approximating the 
optimal solution by a multiplicative constant. We only give a 
proof for a high multiplicative constant. However we suspect 
that the algorithm outputs a solution that is not more than 
twice the optimal. It is an open problem to find the algorithm 
with the best possible constant. Note that this type of 
algorithm finds reasonable solutions even if n is large 
(around 100). The research based on search methods only 
addresses the cases of n14. The best solutions will be 
produced by a combined approach, as suggested in [RP86]: 
use an approximation algorithm and then do local 
optimization of the approximate solution employing search 
methods. 

We suggest to apply our approach to other puzzles, like 
the Rubik’s cube, which are studied extensively in the AI- 
literature. Is the problem of finding a shortest solution for the 
n -dimensional Rubik’s cube NP-hard? Are there polynomial 
time approximation algorithms for this puzzle that 
approximate the optimal solution by a multiplicative 
constant? 

II. THE NP-COMPLETENESS OF REL 

In this section we prove that REL problem is NP- 
complete, i.e. relocating elements that reside in vertices of a 
planar graph via an Eulerian path is NP-complete. We prove 
that REL and nPUZ are NP-complete by reducing a special 
very symmetric version of the satisfiability problem to nPUZ . 
This version is called 2/2/4-SAT and is defined as follows: 
each clause contains four literals; each variable appears four 
times in the formula, twice negated and twice not negated; 
the questions is whether there is a truth setting for the 
formula such that in each clause there are exactly two true 
literals. In the complete paper we give a standard NP- 
completeness reduction for 2/2/4-SAT. 

Theorem 1: REL is NP-complete. 
Proof: Let U={U~,U~;*., u,} be a set of variables and 
C={q,c2;y c, } be a set of clauses defining an 
arbitrary instance of 2/2/4-SAT. From this instance we will 
construct an instance of REL. An instance of REL is a graph 
G (V,E) with capacities (0 or 2) for each e E E, a set X of 
elements, an initial configuration (called B t), and a final 
configuration (called B 2). First we start with the description 
of the graph and later we define the configurations. 

The graph (Figure 2) consists of 5m+2 vertices and 
12m -3 edges. The vertices are divided to 4 groups. The first 
group is built up from m diamonds of 4 vertices each. The 
i -th diamond which is shown in Figure 1 corresponds to the 

variable Ui. This diamond contains the vertices: topi, nui, 
boti , and Yiiii . 

toPi 0 toPi 

Figure 1: The i -th diamond in B 1 and B 2. 

The second group is the single vertex TC (stands for 
truth collection). The third group is the single vertex FC 
(stands for false collection). The fourth group consists of m 
vertices. The i -th vertex of this group, called nci, 
corresponds to the i-th clause in the boolean formula of the 
2/2/4-SAT instance. 

The directed edges connecting the vertices and the 
capacities of the edges are specified in Figure 2. Note that 
their is a special edge of capacity zero from nc, to top 1. 
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Figure 2: The graph of the REL instance. 

To complete the definition of the instance of REL we 
need to specify the elements and their initial and final 
locations in the graph. The set of elements X consists of 4m 
elements. Recall that in 2/2/4-SAT each variable occurs 
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twice negated and twice unnegated. There is an element for 
each of the 4 occurrences: ni ,t and ni ,2 correspond to the two 
appearances of ui in C , and ni ,3 and ni,4 correspond to the 
two appearances of G in C . 

In B 1 the elements are located in the diamonds as 
specified in Figure 1. All the remaining vertices contain no 
elements. In B 2 all elements are in the vertices that 
correspond to the clauses. The 4 elements that are associated 
with the 4 literals of the i -th clause appear in vertex nci. 
This completes the definition of the instance of REL. The 
following two claims complete the proof of the theorem. 

Claim 1: If there is a truth assignment f : U +{T ,F } that 
satisfies the 2/2/4-SAT instance then there is a relocation 
procedure along an Eulerian path that shifts B 1 to B 2. 
Proof: The proof is constructive. First we ship all the 
ni,j elements that correspond to true literals from their 
vertices in B 1 to TC vertex. This collection is done by the 
following loop: 
for i := 1 to m do begin 

if f(Ui)=T 
then begin 

move along (tOpi,nUi) ; 

move along (nui,boti) with ni,l and ni,2; 
move along (boti ,TC ) with ni ,l and ni ,2; 

end 
else begin 

move along (tOpi ,nUi) ; 

move along (nUi ,boti) with ni ,3 and ni ,4; 

move along (boti ,TC) with ni,3 and ni,4; 

end { if }. 
if i # m then move along (TC ,topi+l) ; 

end. 

When the above loop is finished, then the vertex TC contains 
2m elements. Each diamond contributes exactly two 
elements. The two elements from the i -th diamond are either 
ni,l and ni,2 (from nu;) or n;,3 and ni,4 (from nu;). 

The next step drops the 2m ni,j elements that are in TC 
into the nci vertices they belonged to in B 2. As mentioned 
above, these 2m nij elements correspond to the 2m true 
literals. Since there is a truth assignment for the 2/2/4-SAT 
instance, it follows that two ni,j elements, that appear in each 
clause vertex nci in B 2 are now in TC. These elements are 
dropped into their clause vertices by the following loop: 
for i :=l to m do begin 

move along (TC ,nci) with the two ni ,j elements 
that are in nci in B 2; 

if i f m then move along (nci ,TC ) ; 

As a result of the above segment, each nci vertex receives the 
two ni,j elements that correspond to the true literals. 

Now we move along (nc,,top 1) . From this point we 
repeat the two loops given above. In the first loop we collect 
all the ni,j elements that correspond to false literals into the 
FC vertex. This is done by traversing all the edges of the 
diamonds that have not been traversed in the first pass and by 
traversing all the edges that connect FC with the diamonds. 
Once the first loop in this second pass is completed, the 
2m ni,j elements that correspond to the 2m false literals are 
in FC. In the second loop of the second pass, the algorithm 

drops the 2m ni,j elements from FC into their appropriate 
nci vertices in B 2. Once the second pass is completed the 
arrangement of the ni,j elements in the graph is as prescribed 
in B 2. Observe that each edge is traversed exactly once and 
the number of elements moved through each edge always 
equals the capacity of the edge. 

Claim 2: If there is a relocation procedure that ships the 
elements from B 1 to B 2 along an Eulerian path then there is a 
truth assignment f : U --+{T ,F } that satisfies the 2/2/4-SAT 
instance. 
Proof: We need to ship the four ni,j elements from their 
initial locations in the i -th diamond to the clause vertices (the 
rick) they belong to in B 2. The ni,j elements must pass 
through boti + There are only two edges (boti ,TC ) and 
(boti ,FC ) outgoing from boti. Both edges have capacity 2. 
This means that when the procedure moves along (boti,TC) 
and (boti,FC) it must carry 2 elements each time. 
Furthermore, the first time the procedure ships two elements 
to boti they must be either the pair (ni,l,ni,z) or the pair 
(ni,s,ni,d). NOW the procedure must continue to move along 
with these two elements. Thus, for each i, 1 I i I m , the 
procedure that relocates the elements ships the pair (ni,l,ni,z) 
along (boti,TC) or along (boti,FC ). 

Let us define the truth assignment f : U+{T ,F } as 
follows: 

f (Ui) = T if the procedure ships the pair (ni,l,ni,p) 
along (boti ,TC ). 

f (Ui ) = F if the procedure ships the pair (ni, 1 ,ni ,2) 
along (boti ,FC ). 

Note that if f (ui) = T (respectively F) then the procedure 
ships the pair (ni,3,ni,4) along (botiJ;C) (respectively 
(boti,TC)). 

We proceed to show that the above truth assignment 
satisfies the requirements of the 2/2/4-SAT instance. There 
are two ingoing edges to each nci vertex, each of capacity 
two. There is no way to ship elements from TC to FC or vise 
versa (see Figure 2). Thus the procedures ships from TC 
exactly two elements to each of the nci vertices. According 
to the definition of f these elements correspond to true 
literals. The other two elements that arrive at each 
nci vertices are from FC, which means that they correspond 
to false literals. This completes the proof of Claim 2 and 
Theorem 1. Cl 

III. THE NP-COMPLETENESS OF nPUZ 

In this section we will sketch a reduction of the 
2/2/4-SAT problem to the nPUZ problem. Given an instance 
of 2/2/4-SAT we define a corresponding instance of nPUZ. 
This instance (and the whole reduction) is similar to the 
instance of REL used in the previous section. We will map 
the graph of Figure 2 onto the board. The instance of nPUZ 
consists of two n xn board configurations B 1 (the initial 
configuration), B2 (the final configuration) and an integer k 
which is an upper bound on the number of moves that can be 
used to transform B 1 to B 2. To simulate the graph of Figure 
2 we have to capture the notions of vertices, edges, elements, 
relocation, moving along an edge and capacity of an edge. 
Each vertex in the graph of Figure 2 corresponds to a square 
of locations. Edges are identified as stripes (horizontal, 
vertical, or a pair of both) of locations that connect the 
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vertices. Each element of X corresponds to a specific tile on 
the board. The tiles which correspond to the elements appear 
in different locations on board B 1 than on board B 2. As in 
the instance of REL the element tiles are in the diamonds on 
B 1 and in the squares of the clauses in B 2. Moving these 
tiles to their destination in B 2 corresponds to relocating the 
elements in the graph of the REL problem. Until now, the 
analog between the components in the REL problem and the 
corresponding components in the game are straight forward. 
An outline of how the graph is mapped onto the board is 
given in Figure 3. The main difference is a 45 degree 
counterclockwise rotation. Note that the lines of Figure 3 
represent “thin” stripes of locations. The arrangements of the 
tiles outside the squares of the vertices and outside the stripes 
of the edges are the same on B 1 and B 2. Note that all the 
names of the tiles on the board are distinct. Thus the 
configurations B 1 and B 2 are equivalent w.r.t. renaming of 
tiles and only the relative location of equally named tiles on 
B 1 and B 2 is important. 
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Figure 3: The locations in which B 1 and B 2 differ. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-A 

We still need to show the analog to “move along an 
edge”. In the game, the tiles can be shifted to any location, 
and they are not tied to specific squares and stripes of 
locations. How can we force the tiles that correspond to the 
elements of the X to move only along the stripes of the 
edges? How can we force these tiles to move along a stripe 
exactly once? To realize the notion of capacity we need to 
guarantee that exactly two element tiles (in addition to the 
blank tile) move along the stripes of capacity two, and zero 
element tiles, i.e. only the blank tile, move along the stripes 
of capacity zero. To overcome the above difficulties we 
carefully arrange the tiles within the edges. The vertices and 
edges are the only locations in which B 1 and B 2 differ. 

Edges either have capacity zero or capacity two. They 
are stripes following the outline of Figure 3. The edges of 
capacity zero are stripes of width 1 and the edges of capacity 
two are stripes of width 3. The tiles within the edges are 
arranged differently in B 1 and B 2. Recall that each edge has a 

direction. For the edges of capacity zero the tiles of B 2 are 
shifted one location backward relative to their location in B 1. 
This will guarantee that the blank tile has to move through 
this edge to achieve the rearrangement of the edge. The 
overall bound on the number of moves will assure that this 
can happen only once. 

The rearrangement of the edges of capacity two is given 
in Figure 4,5 and 6. The figures show how to move two tiles 
(x and y ) together with the blank tile through a stripe edge of 
width 3 and length 6 (the edge is the portion between the 
double bars). Figure 4 shows the arrangement of the tiles on 
the edge in B 1 and Figure 6 the same for B 2. 

Figure 4: The arrangement of an edge with capacity 2 in B 1. 

Figure 5 (below) is produced from Figure 4 by advancing x 
and y one location to the right. This is accomplished by 
moving the blank tile: left, left, up, right, right, right, down, 
left, left, down, right, right, right, up. 

Figure 5: The arrangement after advancing x and y once. 

If we apply the above sequence 9 + 3 times then we end up 
with the following arrangement. 

Figure 6: The arrangement of an edge with capacity 2 in B 2. 

For all edges of capacity 2 the tiles on B 2 are rearranged 
as if two pieces and the blank tile moved through the edge on 
B 1 in the prescribed fashion. Note that the procedure 
specified in the three figures uses the minimal number of 
moves, i.e. there is no procedure that moves x and y through 
the edges using a smaller number of moves. Also the 
procedure uses no more moves than the manhattan distance 
between the arrangement of e on B 1 and B2. This 
rearrangement can not be accomplished efficiently by any 
other shifting procedure, i.e. by moving twice from the 
beginning to the end of the edge or by moving through the 
edge with less or more than 2 non-blank tiles. The number of 
moves required by any other shifting procedure exceeds the 
manhattan distance and the number of additional moves 
required is proportional to the length of the edge. Since the 
bound on the overall number of moves will be tight, B 1 must 
be rearranged efficiently to achieve B 2, i.e. each edge of 
capacity 2 is traversed exactly once while shipping exactly 2 
non-blank tiles along the edge. 

A detailed proof is given in the complete paper. We 
haven’t specified the rearrangements of the vertices and the 
comers of the edges. We define k to be equal to the number 
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of moves required by traversing each edge exactly once with 
the specified number of non-blank tiles plus enough freedom 
to achieve the rearrangements in the comers of the edges and 
in the vertices. This freedom is much smaller than the 
number of moves required to travel along an edge with only 
the blank tile. 

It might seem that B 2 uniquely determines the 
rearrangement procedure. However note that the 
rearrangement of the edges (Figure 4 and 6) is independent of 
the element tiles moved through the edge. The element tiles 
are located in the same vertices as in the instance of REL. 
They are to be moved from the diamonds to the clauses. Half 
of the element tiles are gathered in TC and these tiles 
correspond to the true literals. The other half is gathered in 
FC . The reduction is identical to the reduction of REL . 

IV. AN APPROXIMATION ALGORITHM 

Since finding a shortest solution is NP-hard we would 
like to know how close a shortest solution for the 
(n2-1)-puzzle can be approximated. We can prove that 

finding a solution that is an additive constant larger than the 
optimum is also NP-hard. We simply use the reduction of the 
previous’ section except that we enlarge the length of each 
edge by four times the additive constant. 

In this section we sketch the main ideas of a polynomial 
approximation algorithm that approximates the optimal 
solution by a multiplicative constant. We chose to present a 
simplified version of our algorithm. Therefore the 
multiplicative constant is not as low as possible. The main 
point is that such an approximation algorithm exists. Also for 
simplicity we assume that the blank tile resides in the same 
location (n ,n) in both configurations. 

Let us denote B 1 as a permutation of B 2 and then 
decompose the permutation into disjoint cyclic permutations. 
The decomposition can be produced in time which is linear in 
the size of the permutation. 

Assume that there is only one cycle, (Zc,Z 1, . . . , I,-I), 
denoting the fact that the tile located at Zi in B 1 is located at 
1 (i+l)mod c in B 2 * There are two simple lower bounds on the 

length of the optimal solution: d ((n ,n ),Za) and ‘- d (li,li+l), 
z I= 

where d (I ,I’) is the manhattan distance between the locations 
1 and 1’. The following procedure requires at most 
2d ((n ,n ),lo) + 20. ‘- d (li,Zi+l) moves, which is at most 22 

x 1= 
times the length of the optimal solution: the blank tile moves 
from (n ,n ) to lo; the pieces at locations lo,1 1, ’ * * ,lc-2 are 
shifted one at a time to the locations 11,12, * . * 1 , c-17 
respectively; this shifting process has the side effect that a 
large number of tiles on the path between the locations are 
shifted one or two places from their origin (see figures 4, 5 
and 6); now the tile at 1,-l is moved along the path 
Ldc-2, . . * ,I0 to its destination at lo; while relocating the 
tile of 1,-l the side effects of the shifting process are undone; 
finally, the blank tile moves from 10 to (n ,n ). 

In the case where there is more than one cycle, each 
cycle c contributes its sum of distances around the cycle 

(denoted by S (C )) to the lower bound, Thus the second 
lower bound becomes 

3 
S(C). The first lower bound 

all cyc es C 
d ((n ,n ),ZO) is replaced by the cost of the minimum spanning 
tree given below. We can view the 10 ‘s of each cycle and 
(n,n> ‘as nodes in a complete graph, where the cost of each 
edge is the manhattan distance between the corresponding 
locations. Clearly the cost of the minimum spanning tree is a 
lower bound for the length of the optimal solution. (Note that 
the minimum spanning tree can be constructed in 0 (n4) 
time.) In the case where there is only one cycle, the vertices 
(n ,n ) and IO, and the path between them represent the 
minimum spanning tree. If we have more than one cycle we 
connect the lo’s of all the cycles according to the edges of 
the minimum spanning tree. The procedure for the general 
case: the blank tile moves along the locations that correspond 
to edges of the spanning tree as if it traverses the tree; 
whenever it reaches an 10 location the shifting process in a 
cycle is executed; backtracking from a child to a parent in the 
traversal corresponds to undoing the changes made on the 
edge that connects the child with its parent. 

There are two difficulties in the above description. The 
first one is that if the number of locations in a cycle is even 
we can’t completely fix the cycle because of the group 
properties of nPUZ. The second difficulty is that when we 
shift tiles along a path we might increase the manhattan 
distance between the tiles of some cycle that crosses the path, 
and then the second lower bound is improper. In the 
complete paper we show how we overcome these difficulties 
without additional moves. 
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