
ADVANCES IN RETE PATTERN MATCHING

Marshall 1. Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts

IBM T. J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598 USA

Abstract
A central algorithm in production systems is the pattern match among
rule predicates and current data. Systems like OPS5 and its various
derivatives use the RETE algorithm for this function. This paper de-
scribes and analyses several augmentations of the basic RETE algo-
rithm that are incorporated into an experimental production system,
YES/OPS, which achieve significant improvement in efficiency and
rule clarity.

Introduction
Rule based systems often spend a large fraction of their execution
time matching rule patterns with data. The production system OPS5
[FOR11 and many other systems (e.g. [ART11 [YAP11 [FOR3]), each
use the OPS5 pattern match algorithm known as RETE. This paper
describes four augmentations of the basic RETE algorithm that
achieve much improved performance and rule clarity. As we describe
each augmentation, we give an analysis of its effects, and some ex-
amples of its use. These ideas are implemented in an experimental
production system language, YES/OPS, running on LISP/VM in IBM
Yorktown Research.

We presume some familiarity with production systems, and the RETE
algorithm. The reader is referred to the book, Programming Expert
Systems in OPSS [BROl], and the AI Journal article on the RETE
algorithm [FOR21 for background information.

The first augmentation involves handling changes to existing data. In
OPS5, three operations affect the data being matched with the rule
patterns: make, which adds new data, remove, which removes data
previously added, and modify, which modifies data previously
added. However, modlf y is implemented in OPS5 as a remove of the
previously existent data, followed by the creation of new data that is
a copy of the previous data, except for the attributes that were
changed. This new data is then added, which causes a new match
cycle to occur. We change this to support modify as an update-in-
place operation, and change how the rules are (re-)triggered, for
greater clarity.

The second augmentation allows the user to group rule patterns
(called condition elements) together, in an arbitrary fashion. This
enables specifying negated joins of patterns, not just individual con-
dition elements, and plays an important role in specifying when to do
maximize and minimize operations (which follows). The grouping can
also be used to increase pattern match result sharing among the rules,
for efficiency.

The third augmentation supports the specification of sorted orderings
among sets of data, in a much more efficient and syntactically clear
manner.

The final augmentation is the ability to do the pattern matching on
demand, incrementally. This supports both the incremental addition
of new rules, such that the new rule does match the existing data (not
possible in OPS5), and the matching of particular patterns as part of
an action done w-hen a rule fires, not when the data changes. This
aspect eliminates the (OPS5) requirement that data to be manipulated
in the action part of a rule must be matched by a condition element
pattern in the rule’s tests (its Left Hand Side). This allows many
practical rule sets to achieve orders of magnitude performance im-

provement, by reducing the pattern matching part
that part which needs to be data-change sensitive.

of the rules to just

All examples of rules are written using the YES/OPS syntax. This is
similar to OPS5 syntax, except: 1) attributes are not preceded by an
“f” character, but are followed instead by a colon “:‘I; 2) the rule
form is:
(P rule-name
WHEN

pattern matching specifications
THEN

actions to be done)

MODIFY as update-in-place, new triggering conditions
OPS5’s implementation of modify as a remove of the old value, and
a re-make of it with the modified attributes causes excessive re-
triggering of rules. Two commonly occurring instances of unwanted
re-triggering are modification of attributes not tested in a rule and
modification of an attribute to a value that still passes the same rule
patterns as before.

Example: Don’t-care slots re-triggering

Suppose the user structures his working memory elements for a prob-
lem involving genealogy research, as follows:

Classname: PERSON
Attributes: Name : Father: Mother: Gender:

Native-language: Native-country:
Language: Marital-status: Spouse :

Now suppose some rules infer about ancestry, and other rules infer
about languages spoken. If the ancestry rules have fired, and now,
some new information about language causes the person’s lan-
guage : attribute to be changed, in OPS5, the ancestry rules would
fire again, even though they had taken all the actions appropriate for
their matches to the existing data, and that data had not changed in
the attributes of interest.

The solution to this behavior in OPS5 is to separate attributes whose
change should not re-trigger other rules, into different working mem-
ory elements. This is often not the natural partition of the knowledge,
and is less efficient, because the RETE must now do run-time joins
of the split-apart attributes.

Example: Tests true once, true again after modifying, re-triggering

In OPS5, whenever a rule’s action part modifies a working memory
element such that it still satisfies the rule’s tests, that rule loops. Users
are told to “get around” this problem by coding extra control infor-
mation in the working memory element and set flags that prevent
looping. An example from the book Programming Expert Systems in
OPS5 [BROl] is the problem of adding one to a set of items. The
natural formulation (the one inexperienced users tend to write) looks
like :

(p add-l-to-items
when

(goal name: add-l-to-items)
;the goal to do it

<i> (item value: <v>)
;an item, whose value is <v>

then
(modify <i> ;modify the item

value: (<v> + 1) >) ;setting the value
; to <v’ + 1

226 / SCIENCE

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

This works in YES/OPS, when modify is update-in-place, but loops
in OPS5. The suggested rule formulation to get around this problem
in OPS5 is to add an extra attribute to Item, called status, and set
it from nil to marked when doing the adding. After adding to all the
items, the goal is advanced to unmark, and another rule fires re-
peatedly, once per item, to change the status attribute back to
nil. This clearly is more rule firings, and also, more testing (the value
of the status attribute must be tested). The example also is now
cluttered up with control information, unrelated to the task of adding
1 to a set of items, which makes these OPSS-style rules less readable:

(p add-l-to-items
when

(goal name: add-l-to-items)
;the goal to do it

<i> (item value: <v> status: nil)
then

(modify <i> value: (compute <v> + 1)
status: MARKED))

----------________---------------------------

(p change-task
when

;this rule fires after
;prev. rule because it

<g> (goal name:
;tests fewer things

add-l-to-items)
then

(modify <g> name: UNMARK))
-----______----------------------------------

(p unmark
when

(goal name: UNMARK)
<i> (item status: MARKED)

then
(modify <i> status: NIL))

Having to code this kind of status information makes the rules less
clear. Without implementing the new modify definition, the natural
rule an expert often writes would need to be “fixed” to eliminate the
unwanted triggering. The efficiency also suffers, in that the fixes re-
quire more pattern matching tests.

New modify definition remom re-tri&gering problems
We define modify as an atomic update-in-place operation, rather
than as a remove followed by a make of the modified working mem-
ory element. The triggering rules are changed so that an existing
instantiation that continues to exist after the modify, does NOT
cause re-triggering.

In addition to improving performance by eliminating extra control
flags and their testing and maintenance, modify done as update-in-
place reuses existing working memory data structure and RETE
memory nodes. This improves the performance by reducing the ac-
tivity involved with maintaining these structures.

Triggering on any change
The new modify semantics normally trigger a rule when a rule
instantiation that was not previously present gets created. This means
that a modify operation does not re-trigger a rule, if it does not result
in a new instantiation.

Sometimes, however, triggering on any change is desirable. An ex-
ample might be a rule that counted how many times a person’s marital
status changed. Here, we want the rule to re-trigger, no matter what
the status changed to. To provide for this case, we extend the syntax
to allow specifying re-triggering on any change of one or more se-
lected attributes, by preceding the attribute name by an exclamation
point (!). In addition, to specify re-triggering on the change of any
attribute in the class, an exclamation point may be placed in front of
the class name. This gives behavior like OPS5. For example:

(p count-marital-status-changes
when

(person ! marital-stat:)

cc> (counter type:
*I retriggers on change
Marital-stat-chg value: <v>>

then
(modify cc> value: (<v> + 1)))

New algorithm for Modify in RETE Beta Join nod&s
Tokens passed down the RETE have the operation ADD, REMOVE,
or MODIFY associated with them (ADD corresponds to make). For
modify operations, if at some point in the processing, the test result
of the previous value of the modified working memory element differs
from that of the current value, the modify operation is converted to
a remove or add operation:

CASE 1 CASE 2
Previous value: tests fail tests OK
Current value: tests OK tests fail
New operation: ADD REMOVE

When a token arrives at the bottom of the RETE, if the operation is
add or remove, then the rule instantiation in the production node is
either inserted to or removed from the conflict set, according to the
operation; if the operation is modify, then nothing is done. This
prevents re-triggering.

For modify operations, specification of re-triggering attributes
causes an exception. If one or more of the attributes was preceded
by an “!” to indicate that re-triggering is wanted on any change of
that attribute, the attributes so designated are compared with those
that were modified; if one or more match, then the rule is reinserted
into the conflict set even if it has already fired.

Join nodes where left and right predecessors are identical

Special case handling is required where the left and right inputs to a
join node are identical. This arises in rules like:

(p find-skilled-persons
when

(person name: <s> skill: <sl>)
(person name: <n> needs-skilled-service: <sl>)

then
(say <s> can help <n> with service <sl>))

This yields the RETE structure:

A problem can occur when a new working memory element is added
which matches with itself; in this example, this could happen if the
person needs the skilled-service which he himself has. The problem
happens because the RETE algorithm sends the result of any changes
in a node to all of its successors. In particular, a change token arriving
at the previous node would be sent down both the right and left legs to
the same Beta Join node. If no special consideration is taken, what
can happen is that the change token on each path causes an
instantiation to be added to the conflict set, resulting in double
instantiations.

OPS5 handles this case by first sending the token to all successors
having left inputs, before updating the memory node by adding or re-
moving (depending on the operation being done) the token to/from
the memory. Thus, a change only sees itself on one leg (the right leg
for add, the left leg for remove).

Uncertainty and Expert Systems: AUTOMATED REASONING / 227

With modify implemented as an update-in-place, the token in ques-
tion is a/ready in the memory node. The new RETE code removes the
particular element temporarily, before sending the modify operation
to the left-successors. This prevents it from seeing itself during this
phase. Then it puts it back into the list before sending it to the right
successors.

Running backwud
Normal forward running of production systems repeats a cycle of
matching rules with data, picking a rule to fire, and executing the
picked rule’s actions, which may change the data being matched. A
very useful debugging tool is the ability to run backwards, that is, re-
store the state of the system to that which existed in previous cycles.
OPS5 implements the back function for this; we have extended this
function to handle modify as update-in-place.

The utility of back requires that the user be able to make top-level
changes as well; otherwise, when forward running resumes, the sys-
tem would merely repeat what it had already done. Two kinds of
changes are possible: changing data, and changing rules.

In OPS5, incrementally added (or changed) rules do not match the
existing data, which means that adding or changing rules dynamically
is not practical. Extensions we have implemented for procedural
matching support matching new or changed rules with existing data,
making incremental rule editing a powerful debugging technique, us-
able with back.

Back requires that a history of changes to working memory and rule
refractions (the firing of a rule instantiation) be kept during forward
running. This history record is used to incrementally undo rule firing
effects and restore the system to a previous state. Modify operations
record the previous (unmodified) value, together with a pointer to the
current working memory element in this history, so that the previous
values can be restored when backing up.

Generalization of OPSS validity test for reinserting refracted rules

When a rule fires, a record is made; when backing up, that rule is re-
inserted into the conflict set, re-enabling it to fire, unless something
was done (at top level) that prevents it from being true anymore. In
OPS5, the test done was to verify that all the working memory ele-
ments, which matched positive condition elements of a rule being
backed up, were still present. This test is inadequate in the general
case. Consider the following example:

(p back-bug ’
when

(a)
iT~i’“~~‘~e~~sPe~~~s~~t,
;in order to fire.

-(b)
then

(. . . . 1)

Now suppose we do the following top level actions:

1. (make a) ; this will insert the “back-bug” rule into the conflict
set.

2. (run 1) ; fires the rule, running forward
3. (make b) ; add (b) to the working memory
4. (back 1) ; backs up 1 rule

If step 3 had not been done at top level, we would expect to see the
“back-bug” rule reinserted into the conflict set. However, because
(b) now exists, that instantiation is no longer valid.

YES/OPS verifies that a reinserted instantiation actually exists, be-
fore reinserting it into the conflict set. To do this, we keep a RETE
memory with each rule representing its current instantiations, given
the current data in working memory. Before reinserting a rule when
backing up, the instantiation is looked up in this memory. If it is
present, then the rule instantiation is reinserted into the conflict set.
If it is not present, then some top-level action changed working

memory in such a manner to preclude this instantiation being true. In
this case, the instantiation is not reinserted.

Arbitrary grouping of pattern condition elements
Rule condition element patterns of rules in OPS5 are grouped in a
left-associative manner. For example, the joining of condition ele-
ments of the rule

(p rule1 when (a> (b) cc> (d) then . ..>

results in a RETE join tree:

Memory nodes at the bottom of
the Alpha part of the RETE

0 D

d 3 RETE
Beta
Join
Nodes

+47

Rule1

We have augmented the basic RETE to allow arbitrary groupings, in
addition to the default left-to-right linear associative grouping.

Sharing pattern matching work among sewral rules
Part of the RETE algorithm efficiency comes from sharing pattern
matching tests which are identical among all the rules that have the
tests. However, the OPS5 RETE shares results of join tests only if the
patterns are the same starting from the first one. For example, con-
sider the three rules:

(p rule1 (p rule2 (p rule3
when when when
(a) (a) (cl
(b) lb) Cd)
(cl (f) (e)
Id)

then . . then . . then..

The join for (a) and (b) are shared between rule1 and rule2, but the
join of (c 1 and (d) in rule1 and rule3 are not shared, because of the
top-to-bottom associativity of the joins.

By grouping as follows, one can get the benefits of shared tests:
(p rule1 (p rule2 (p rule3
when when when
(a) (a) (cl
(b) (b) (d)
((c) (f) (e)
Cd) 1

then . . then . . then..

The join part of the RETE would look like this:

Memory nodes at the bottom of
the Alpha part of the RETE

T
Rule2

T
Rule1

T
Rule3

One of the major factors in the run-time performance in OPS5 is the
number of beta nodes (two-input join nodes). That is due to the fact

228 / SCIENCE

that testing beta nodes involves time-consuming tasks proportional to
the size of the memory nodes, e.g., checking bound variables for pos-
sible join, evaluation of predicates, subsequent update of beta memo-
ries, etc. Reducing the number of beta nodes, by sharing RETE
structures, increases the run-time performance.

Negating joined groupr
One of the constructs supported by RETE is the negated condition
element. Our grouping extension allows the negation of arbitrary
combinations of condition elements. For example, a rule that verifies
that no men and women pairs in a group share the same birthday:

(p no-same-birthday
when

(goal type: check-shared-birthdays)

-((person gender: male
(person gender:

birthday: <bd>)
female birthday: <bd>))

then
(say No man and woman share the same birthday))

The above rule could not have been expressed in OPS5 without cre-
ating new working memory elements containing all the attributes to
be negated, because the negated conditions have joins among them-
selves, and the test is for whether or not the join result is empty.

In OPS5, because only single condition elements could be negated, the
knowledge programmer would have to rearrange the working memory
data structures such that any test for non-existence would involve only
single condition elements, never joins of multiple ones. Grouping
gives the knowledge programmer the freedom to design working
memory elements in a way that best suits the problem, without having
to be concerned with support for negated conditions.

Maximize/Minimize
Many problems require sorting and selection of “best” or perhaps,
“top two,” for example, finding the maximum, finding the best two
financial alternatives, etc. The OPS5 technique for specifying these
patterns is somewhat obscure:

(p top-student
when

(student grade: <top>
name: <name> >

-(student grade: gt <top>)
then . ..>

This rule logically means “find a student having a grade <top> such
that no other student has a grade which is greater than <top>". This
is semantically equivalent to finding the student (or students in case
of a tie) who have the best grades.

We have augmented the syntax and RETE algorithm to support a
clearer and more efficient expression of this kind. The same rule in
the new syntax is:

(p top-student
when

(student grade: maximize name : <name> >
then . ..>

The implementation is done by keeping the normal partial match
memory nodes maintained during the RETE algorithm in sorted order,
and adding a new kind of RETE node to do the selection of the max-
imum, or top two or minimum, etc.

Anulp& of sorting efficiency
A simple binary tree search to insert a new element into a sorted list
takes O(log n) comparisons, where n is the number of elements in the
list. The average complexity to create a sorted list of n elements using
the binary tree search, and pick the maximum is O(n log n).

When n elements are added to the working memory in the OPS5 for-
mulation, the RETE does O(n2) comparisons. The situation gets
worse if the top two students are requested: The OPS5 formulation
is:

(p select-best-two
when

(student grade: <topl> name : <nl>)
(student grade: <top2> & le <topl>

name : <n2> & ne <nl>)
-(&uden; grade: gt <top2> name: ne <nl>)

9 . .

The first two condition elements cause a join involving O(n*) com-
parisons, and this is joined with the third (negated) condition element,
yielding a complexity of O(n)). When the top k values are wanted,
O(n**k+ 1) complexity ensues.

Such shortcomings can be avoided by keeping memory nodes sorted,
if rule patterns include sorting operators. Once memory nodes are
sorted, selection of the top, or the top 2 or 3, etc., elements is fast.

Sekction opemtom
The syntax supports selection of both maximum and minimum sorting
sequences, and the selection of the top “n” elements, assuming there
are that many. For example:

(person age: minimize select 2 to 4)

selects persons whose ages, when ranked in ascending order, are the
second, third, and fourth in the ranking. This selection ignores the
fact that some of the items may have the same sort value. Alterna-
tively, one may instead pick all items having the second thru fourth
unique values, using the following variation:

(person age: minimize select-values 2 to 4)

Sort& owr arbitmty expresrions
The sorts described so far sort on the value of one attribute of one
working memory element. In general, the sort can be done on an ex-
pression involving multiple attributes from multiple working memory
elements. Consider the following example where prodigy-score
is a Lisp function:

(person age: <a>
piano-skill-level: <p>
& maximize (prodigy-score <a> <p>>)

This would pick the top person by some combination of skill and early
age.

Placement of selection in the RETE

The following examples illustrate the importance of placing the sorting
and selection operators at the proper point in the RETE. Grouping
of condition elements is required to achieve correct placement. Con-
sider the following two rules:

(p same-age-wonder-kids1
when

(person skill: piano-player age: <x>)
minimize <x>

(person skill: ice-skater age : <x>)
then . ..>

(p same-age-wonder-kids2
when
((person skill: piano-player age: <x>)

(person skill: ice-skater age : cx>))
minimize <x>

then . ..>

These build the following RETE fragments:

Uncertainty and Expert Systems: AUTOMATED REASONING / 229

same
age v p-G&~1

same
age v

Select

i?

Youngest

The first case picks the youngest piano-player, who, let us suppose, is
4 years old. If there are no ice-skaters who are 4 years old, then the
join in the first case is empty, because the ages do not match. The
second case first forms pairs of same-aged piano-players and ice-
skaters, and then, from that set, picks the youngest. The grouping
construct described earlier is required to give the correct meaning to
the sorting constructs.

Sorting owr subsets of 4 memofy node
In many cases of picking the maximum, we want to find the maximum
over subsets of a memory node. For example, suppose we wanted to
know the oldest speaker of each language:

OPS5 method:

(p oldest-speaker
when

(person language: <I> age: <a>)
-(person language: <l> age: gt <a>)
then . ..>

YES/OPS method:

(p oldest-speaker
when

(person language: <l>
age: FOR-UNIQUE <l> maximize)

then . ..I

Without the FOR-UNIQUE clause, the maximize would merely find
the oldest person. Relational database query languages, for example,
SQL [DATl], support this same notion of determining subsets over
which to apply group operations, like maximum. The subset classi-
fication is done on the basis of unique values for attributes, or for
some expressions involving one or more attributes.

Sorting extemions being conside&
The select operation for sorted memory nodes can be extended to
select the top half, etc. The goal is to eventually specify a fixed
interface for selection to enable the user to use his own particular
notion.

Sorting is only one of many operations that can be done on subsets
of a memory node. Other examples we are investigating are the
common operations available from relational database, such as
counting the number in the subset, computing the average, selecting
the item closest to the mean, etc. The eventual goal is to provide the

tools to allow the user to write his own group operations as needed to
augment the ones supplied by the system.

Procedural match augments data-driven match
In OPS5, in order to reference any working memory attribute value,
the working memory has to be matched by a condition element in the
rule’s pattern. This invokes all the same RETE machinery that make
the rule sensitive to changes in data matching that pattern. Often, this
causes unwanted triggering, and is not the way the rule writer initially
conceives of the knowledge. Consider the following example rule to
print lists of language translators:

(p translators1

(goal type: print-translators)
(language from: <from-lang> to: <to-lang>)
(person translate-from: <from-lang>

translate-to: <to-lang>
name: <n>)

then
(say <t-r> can translate <from-language>

to <to-language>))

Some of the characteristics of this knowledge representation for
printing translators are: The goal working memory element can’t be
removed by this rule when the task is completed; a “cleanup” rule
must also be written that fires when all the instantiations of the
translators 1 rule have fired, presumably by being less specific
than this rule. To print “headings” for the list, another rule must be
written that will fire before this one to print the headers.

Allowing matching in the action part of a rule alleviates these prob-
lems. The rule writer can choose whether to make a match be a trig-
gering condition or not. The following example does a procedural
match, iterating over all matches of the language-persons combina-
tion.

(p translators2

<g> (goal type: print-translators)
; This is the trigger condition

; print heading once
(say Source-language Target-language Person)
(for-all-matches-of

(language from: <from-lan
(person translate-from: <

g> to
from-

<to-
anq>

lang>)

translate-to: <toylang>-
name: <n>)

,d?say <from-lang> <to-lang> <n>)

iremove <g>)) ;one rule fires, goal removed

The pattern matching work to find all languages and persons and
compute their join is not done until the rule has fired.

Impiementation of procedural matching
A mini-RETE is created for the match expression. For efficiency
reasons, the compilation of the mini-RETE is delayed until the first
time the match is called for. This mini-RETE is then built in such a
way as to reuse, wherever possible, partial matches already present in
the main RETE. It is temporarily grafted onto the main RETE, and
the partial matches present at the graft points form the starting point
for computing the match. This section of the added RETE is “turned
off” after the procedural match execution takes place, and only
“turned on” again when the rule fires again. In this manner the pro-
cedural matching isn’t done again until (and unless) the rule fires
again.

New rules matching existing working memory data
In OPSS, if one compiles a large set of rules, then does many makes,
then starts to run the production system and discovers a bug in one

230 / SCIENCE

of the rules, one is prohibited from simply fixing the rule and recom-
piling it, since it would not match against existing working memory.
The same problem pertains when writing a “debugging” rule in the
middle of a run to try and determine the cause of some bug. The de-
bugging rule doesn’t match existing working memory and is therefore
not of much help at finding problems with existing data.

The procedural matching ability in YES/OPS allows rules to be added
after working memory has been defined, and these added rules match
the existing working memory elements. For example, the following rule
could be added after the production system had started running, to
“catch” the rule that changes one spouse to be divorced but not the
other one, assuming that it wasn’t obvious by inspection.

(p catch-unfinished-divorces
when

(person name: <sl> marital-stat: divorced)
(person name: <s2> marital-stat: ne divorced

spouse: <sl>)
then priority 100 ;a high rule priority

(say the culprit has been found!)
(back 1) ;run back to the previous state
(halt)) ;and stop

Without having the rule match existing data, the knowledge of the
spouse-spouse join would be missing, if it existed before the rule was
added. The priority specification causes this rule to fire earlier
than other rules in the conflict set, assuming we want to be notified
of the condition as soon as it appears.

Building new rules as a rule action

An interesting consequence of this feature is that rules can be added,
or existing rules changed, while running, by the action part of some
other rule, and they will match existing data. This feature can be used
in constructing self-modifying rule systems (a form of learning), al-
though we have not yet experimented with this.

Implementation of incremental rule addition

The incremental rule addition handles its matching in a similar way to
the procedural match discussed above. A mini-RETE is created for
the new rule, sharing existing RETE structures if previously compiled
rules contain matching patterns that can be reused by the new rule.
This new RETE is then grafted onto the existing RETE; in this case,
the new addition to the RETE is permanent; the new nodes are not
“turned off” when the match is complete. Existing memory nodes at
the points where the new mini-RETE is added are pushed down
through the new part of RETE, thus matching the new rule’s patterns
with existing working memory elements.

Performance of YES/OPS
Using YES/OPS, small projects done so far have exhibited orders of
magnitude improvement in certain cases, even when the new exten-
sions are minimally used. A subset of the rules of a large OPS5 system
was converted to YES/OPS, without being rewritten to take advan-
tage of the new mod if y technology. It ran approximately 20 CPU
seconds in OPS5, but only 2 CPU seconds in YES/OPS. Further-
more, a slight expansion of the problem (more working memory ele-
ments) increased the OPS5 time by 30%, while the YES/OPS time
increased only about 5 %. The performance comparison can be made
arbitrarily good by increasing the size of the problem.

The performance improvements come from five factors: The modify
as update-in-place substantially reduces the flags that must be set and
tested to control rule re-triggering. The grouping construct allows
more sharing of pattern tests in the RETE. The sorted memory nodes
trade algorithms of complexity O(n log n) for O(n ** k+ l), for the
operations of selecting the best k elements from a set of alternatives,
an often used function. The procedural matching, done on demand
instead of included in the RETE match and updated at every change
of the data, reduces the number of patterns that are active to just
those that are required to trigger the actions. And, finally, the internal

structure of the RETE representation and the algorithms were timed
and tuned carefully.

Summary
These ideas have been implemented in an experimental production
system language, YES/OPS [SCHl], built using LISP/VM [IBMl].
The guiding principles in the design of YES/OPS include

0 the development of clean semantics, designed for data-driven
production system applications,

l full integration with the underlying procedural language(s) (e.g.,
LISP/VM), including communication with other languages and
environments (for example, GDDM (Graphical Data Display
Manager) and the XEDIT editor),

l generality in rule expression, and
0 efficiency of space and time, especially for large production sys-

tems.

Other features of YES/OPS include

0 When-no-longer-true, which triggers actions when an
instantiation, having once matched working memory, later ceases
to match. This is useful for catching conditions that have no
other explicit means to determine when they happen.

a Rule priorities, which allow ordering of rules to fire, in addition
to conflict resolution. Rule priorities can be numeric, or ex-
pressions involving working memory attribute values in the
instantiation being considered in conflict resolution.

Some of these ideas have also been incorporated into another exper-
imental production system language extension on top of PL/ 1,
YES/L1 [MILl].

Many people at the IBM Yorktown Research Center participated in
the discussions that evolved into these extensions. The ideas, support,
and encouragement of Dr. Se June Hong are gratefully acknowledged.

References
ART1

Bruce Clayton
ART Programming Tutorial
Inference Corporation, March 15, 1985

BROl
Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin
Programming Expert Systems in OPS5: An Introduction to
Rule-Based Programming
Addison-Wesley, 1985

DATl
C. J. Date
An Introduction to Database Systems
Second Edition, Addison-Wesley, 1977

FOR1
Charles Forgy
OPS5 User’s Manual
Department of Computer Science, Carnegie-Mellon University,
1981

FOR2
Charles Forgy
“RETE: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”
Artificial Intelligence, Volume 19, pp. 17-37, 1982

FOR3
Charles Forgy
“The OPS83 Report”
Technical Report CMU-CS-84- 133, Department of Computer
Science, Carnegie-Mellon University
May 1984

Uncertainty and Expert Systems: AUTOMATED REASONING / 23 1

IBM1
Cyril Alberga, Martin Mikelson and Mark Wegman
LISP/VM User’s Guide
IBM SH20-6477, October 1985

MILl
K.R. Milliken, A.V. Cruise, R.L. Ermis, J.L. Hellerstein, M.J.
Masullo, M. Rosenbloom, and H.M. Van Woerkom,
YES/L1 : A Language for Implementing Real-Time Expert
Systems,
Technical Report RC-11500, IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598, 1986

SCHl
Marshall I. Schor, Timothy P. Daly, Ho Soo Lee, and
Beth R. Tibbitts
“YES/OPS Extensions to OPS5: Language and Environment”
Technical Report RC-11900, IBM T. J. Watson Research
Center, Yorktown Heights, NY 10598, 1986

YAP1
L. Allen
“YAPS: Yet Another Production System”
Technical Report TR-1146, Department of Computer Science,
University of Maryland, Feb. 1982

232 / SCIENCE

