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what knowledge to teach a student who makes a bug nor 
about how to teach the knowledge. In a sense, all the tutorial 
knowledge possessed by such systems is ‘compiled”. The 
three step model may be appropriate for tutoring students 
when their bugs do not reflect deep misunderstandings, or 
when one bug always should get the same intervention. 
However, it seems unlikely to be effective in domains such as 
computer programming where students’ bugs are often related 
and may reflect deep misconceptions about how to solve 
problems or about the constructs of the programming 
language. In complex domains such as programming, tutors 
seem to engage in extensive reasoning about how to tutor 
students who make serious bugs. As an example of the kinds 
of issues a tutor reasons about when tutoring students in 
complex domains, consider the ostensibly simple problem of 
&en to deliver tutorial interventions. Two opposite 
strategies been proposed: 

A significant portion of tutorial interactions revolve around 
the bugs a student makes. When a tutor performs an 
intervention to help a student fix a programming bug, the 
problem of deciding which intervention to perform requires 
extensive reasoning. In this paper, we identify five tutorial 
considerations tutors appear to use when they reason 
about how to construct tutorial interventions for students’ 
bugs. Using data collected from human tutors working in 
the domain of introductory computer programming, we 
identify the knowledge tutors use when they reason about 
the five considerations and show that tutors are cottsistent 
in the ways that they use the kinds of knowledge to remon 
about students’ bugs. In this paper we illustrate our 
findings of tutorial consistency by showing that tutors are 
consistent in how they reason about bug criticality and 
bug categories. We suggest some implications of these 
empirical findings for the construction of intelligent 
tutoring systems. 

1 Introduction: The Problem of Tutorial 
Consistency 
A key issue for designers of Intelligent Tutoring Systems is 

how to treat students’ bugs. 
Collins and Stevens (1976)) 

Both the research of others (e.g., 
and our own work (Littman, 

Pinto, and Soloway (1985)) suggest, that bugs play a central 
role in tutoring. In a sense, tutors use bugs to drive the 
tutorial process: bugs help the tutor understand what the 
student does not understand and they provide a ready forum 
for communication with students since all students want to 
fix their bugs. Though most tutors try to help students fix 
bugs, the skill of expert tutors, and therefore effective 
Intelligent Tutoring Systems, lies in how they use bugs in 
their tutorial interven?ions. A simple first-order model for 
using bugs in tutoring would have three steps: 

l ident.ify the bug 

l look up an appropriate response to the bug in a 
database of tutorial responses 

l deliver the appropriate response to the student. 

This three step model of tutorial intervention, which is 
essentially the model used by CA1 systems (Carbonell (1970)), 
does not require the tutoring system to reason either about 

The research reported in this paper was cosponsored by the 
Personnel and Training Division Research Groups, 
Psychological Sciences Division, Office of Naval Research and 
the Army Research Institute for the Behavioral and Social 
Sciences, under Contract No. NOOO14-82-k0714, Contract 
Authority Identification Number 154-492. 

l The LISP tutor of John Anderson’s group (cf. 
Anderson, Boyle, Farrell, and Reiser (1984)) 
provides immediate feedback to the student on all 
bugs the student makes. 

l The WEST tutor of Brown and Burton (1982) 
plays a very conservative “coaching” role with the 
goal of minimizing interruptions of the student’s 
problem solving. WEST takes a ‘<wait-and-see” 
attitude to interrupting the student, trying to 
collect diagnostic information from patterns of 
bugs. 

Since the three step model seems inappropriate for the 
Intelligent Tutoring Systems that will have to be built for 
complex domains, and since there appears to be considerable 
controversy about the generation of tutorial interventions, we 
decided that it would be useful to study human tutors in an 
effort to determine how they reason about tutorial 
interventions for students who make bugs. 

Our general approach to studying how tutors reason about 
bugs was to identify several issues that we believe tutors 
reason about to generate their interventions. From interviews 
with tutors, and videotapes of interactive tutoring sessions, 
we identified five main issues tutors reason about when they 
generate their tutorial interventions. Each of these issues, 
called a tutorial consideration, influences the tutor’s decisions 
about which bugs to tutor, when to tutor them, and how to 
tutor them. The five tutorial considerations are: 

1. How critical the bugs are 

2. What category the bugs fall into 

3. What caused the bugs 

4. What tutorial goals are appropriate for tutoring 
the bugs 
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5. 12’hat tutorial interventions would achieve the 
tutorial goals 

i$*ith this very genera! set of tutorial considerations in mind 
we designed a variant of a protocol study (Newel! and Simon 
(1972)) that was intended to present tutors with situations 
that would lead them to reason about the five tutoria! 
considerations. Tutors were presented with buggy programs 
actually written by students in an introductory PASCAL 
programming class and asked to answer questions designed to 
elicit reasoning about, the five tutorial considerations. For 
example, we asked tutors w-by they thought the student who 
wrote each program made the bugs, what goals they had for 
tutoring the student, and what they would actually do to 
tutor the student. 

During our initial analysis of the data set, we have had the 
goal of simply identifying and describing the kinds of 
knowledge tutors have and the factors that tutors take into 
account when they reasoned about the five tutorial 

considerations. By abstracting the responses of many tutors 
to the same questions, we have begun to identify different 
kinds of knowledge tutors use and the factors that they weigh 
when they make decisions about the tutorial considerations. 
Our initial description of the data, therefore, is in terms of: 

l tutorial considerations 

l kinds of knowledge tutors use in reasoning about 
tutorial considerations 

l factors that comprise the knowledge tutors use 

Though we do not yet have a computer program that 
implements our findings about human tutors, we definitely 
plan to use the information we acquire from this study to 
guide our development of Intelligent Tutoring Systems. Since 
at this point we are trying to develop a descriptive vocabulary 
that permits us to express tutorial knowledge and reasoning, 
and to describe such knowledge and reasoning, our current 
research is more appropriately viewed as theory b&f&g than 
as theory application. Hence, in this paper we present part of 
the vocabulary and use it to show that tutors are consistent 
when reasoning about tutoring students’ bugs. 

One of the major concerns of our research has been the 
problem of consistency of tutorial reasoning. Because tutors 
use so many kinds of information to decide how to tutor a 
student’s bug, it seems plausible to hypothesize that different 
tutors would be inconsistent in the ways they reason about 
either identical bugs or different bugs. The problem of 
tutorial consistency is important to designers of Intelligent 
Tutoring Systems since, if human tutors were entirely 
inconsistent in their generation of tutorial interventions, using 
human tutors as models for machine tutors would not be 
useful. Absence of tutorial consistency would imply that 
there is no reason to prefer any one method of generating 
tutorial interventions over any other method on the grounds 
that human tutors find one method especially effective. 
Fortunately, t,here are at least two sources of evidence for 
tutorial consistency. First, Collins and Stevens (1976), in a 
study of “super-teachers”, identified several Socratic tutorial 
strategies that their teachers used; many of the strategies 
identified by Collins and Stevens (1976) found their way int,o 
the Socratic 1iI!E* tutor (Stevens, Collins, and Goldin (1982)), 
LVoolf’s programming tutor for students in introductory 
programming courses (1Yoolf (1985)), and Clanccy’s GUIDON 
program for teaching the ski!! of medical diagnosis (Clancey 
(1983)). Second, our analyses of the data we gathered from 
human tutors suggest that tutors are consistent in the ways in 
which they reason about how to tutor st,udents who make 
bugs. 

This paper is organized as follows: 

l First, in Section ‘2, we describe the experiment we 
conducted to collect data about tutorial 
consistency. 

l Second, in Section 3, we present an example which 
illustrates how two tutors reason in the same way 
about the same bug. 

l Third, in Sections 4 and 5, we describe bug 
criticality and bug categories and present 
statistical evidence that tutors are consistent in 
reasoning about both. 

l Finally, in Section 0, we draw some conclusions 

and implications of our study. 

Though we do not present analyses of a!! of the five 
considerations tutors take into account in deciding how to 
tutor students’ bugs, the analyses of bug criticality and bug 
categories illustrate our genera! findings which apply equally 
to bug categories, the causes of bugs, tutorial goals, and 
tutorial interventions. A complete analysis of the consistency 
of a!! five types of knowledge is presented in Littman, Pinto, 
and Soloway (1986). 

2 Methods 

2.1 Subjects 
Eleven Yale University graduate and advanced 

undergraduate students participated in this study. Each had 
extensive tutoring experience. The range in tutorial 
experience was from 150 to over 2000 hours. Each subject 
could program competently in PASCAL as we!! as in a 
variety of ot,her languages. 

2.2 Task 
Subjects received five buggy programs actually written by 

introductory programming students along with the same 
questionnaire about each program. The programs were 
written in response to the Rainfall Assignment, which was 
assigned during the fifth week of class. The assignment is 
shown in Figure 1 and a program that correctly solves the 
assignment is shown in Figure 2. To reproduce the typical 
situation a programming tutor faced in introductory PASCAL 
programming courses, the buggy programs contained an 
average of 6 bugs. For each st,udent’s program, tutors were 
asked to imagine themselves tutoring the student who wrote 
the program and to answer each of the questions in the 
quest ionnnire. The questionnaires were displayed side-by-side 
with the buggy programs on an Apollo DN300 multi-window 
workstation. Subjects typed their answers to each question, 
pressed a preassigned key to go to the next question, and 
continued until they were finished. Subjects were allowed to 
work at their own pace. Most subjects needed at least four 
hours to complete a!! the questionnaires. 

The questionnaire was designed to prompt the tutors for 
their thoughts as t,hey considered how they would tutor the 
student who wrote the program. For example, subjects 
decided whether a bug would be tutored alone or in a group 
with other bugs. They also indicated the order in which they 
would tutor the groups of bugs as we!! the goals they had for 
tutoring each bug and the methods they would use to achieve 
the goals. 
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While we realize that our experimental design presented 
subjects with a somewhat artificial situation, we were very 
encouraged by how engaging our subjects found the task. 
Subjects took the task seriously, spending as much as 15 
hours to complete it. Informal debriefing interviews further 
convinced us that the tutors felt their responses were valid 
and would have been essentially the same in a real tutoring 
session. 

The Noah Problem: Noah needs to keep track of the rainfall in the 
New Haven area to determine when to launch his ark. Write a program 
so he can do this. Your program should read the rainfall for each day, 
stopping when Noah type “QQQOO”, which is not a data value, but a 
sentinel indicating the end of input. If the user ty 
the program should reject it, since negative rainfal P- 

en in a negative value 

program should 
IS not possible. Your 

of rainy days, 
rint out the number of valid daya typed InI the number 

t e average rainfall per day over the perrod, and the 52 
maximum amount of rainfall that fell on any one day. 

Figure 1: The Rainfall Assignment 

Program Rainfall in 
Var Dail Rainfa I, 

ut,output ; 

Rainy 6 
If $ otalRain all,MaxRainfall,Average : Real; 

ays,TotalDays : Integer; 
- -0’; Rain 

Max R 
Days:= 0; TotalDays:= 0; 
ainfall:= O- TotalRainfall:= 0;. 

Writeln{~~;~;i~n~~; Amount of Rainfall’); 
Readln 
While ( b ailyRainfall i > 00000) Do 

Be in‘ - 
I? DailvRainfall >= 0 Then 

Rainfall; 

End; 
Else Writeln (‘Rainfall Must Be Greater Than 0’); 

Read(DailyRainfall) 
End; 
If TotalDaysCounter > 0 Then Be in 

Averasze := TotalRainfall/Total 5, avs: 
e: 02); ’ 

w ainfall: 022). 
Number of Days is: ‘, TotaiDays); 
Number of Ramy Days is: ‘, RainyDays) 

End; 
Else Writeln(‘No Valid Days Entered.‘); 

End. 

Figure 2: Sample Correct Rainfall Program 

2.3 Choice of Bugs for Analysis 
For this paper, we analyzed 16 of the 36 bugs in the five 

programs. The 16 bugs represent the range of bugs in the 
experiment. Criteria for including bugs in the analyses were: 

l Each bug represented a type of bug tutors 
frequently encounter. 

l No more than one of each type of bug was 
included unless the same bug appeared in two 
very different contexts. 

l Both mundane bugs and interesting bugs were 
chosen. An example of a mundane bug is failing 
to include an initialization of a counter variable. 
An example of an interesting bug is employing a 
complex IF-THEN construct for what should be a 
simple update of a counter variable. 

l Bugs were included that produce both obvious 
effects on the behavior of the program (e.g., a 
missing READLN of the loop-control variable) and 
bugs that produce subtle effects on the behavior of 
the program (e.g., initialization of a counter 
variable to one more than its correct initial value.) 

2.4 Data Scoring and Reliability of Scoring 
Each response of each tutor was evaluated to identify 

knowledge relevant to each of the five tutorial considerations. 
In tbis section we illustrate the scoring of protocols with an 
example of a tutor’s crit#ica!ity considerations; we also present 
the criteria for protocol scoring reliability. 

Scoring the Data: We illustrate the scoring of the 
protocol data by showing 1) how Tutor l's bug criticality 
rating is derived and 2) h ow we score the factors the tutor 
identified in reasoning about bug criticality. Figure 3 shows a 
bug made by a student who was attempting to solve the 
Rain fa!I Assignment. The st)udent spuriously assigned 0 to 
the variable intended t,o contain the value of rainfall entered 
by the user immediately after the user has entered a value 
for DailyRainfall. Our analysis of each tutor’s reasoning 
about bug criticality is in terms of two measures: 

l The tutor’s criticality rating assigned to the bug 
based on the tutor’s statements and 

l the bug criticality factors the tutor identified in 
reasoning about the bug. 

Figure 4 shows the template used to score each tutor’s 
reasoning about bug criticality. The template consists of two 
parts, a field for the Tutor's Overall Criticality Rating 
and a list of the factors associated with reasoning about bug 
criticality.’ The following quotation shows the statements 

Tutor 1 made that are relevant to the bug criticality 
consideration. 

Tutor 1: “(1,) [This is a] trivia! error . . . that must be 
fixed to get good output. (2.) Simple mistake. (3.) 
Forgetting that Ra i nfa I I was losing its value . . . . n 

The first part of Tutor l's first sentence and the entire second 
sentence show that he does not believe that the spurious 
initialization bug is very critical. As shown in Figure 4, the 
tutor’s response to the bug was coded as LOU CRITICAL, the 
lowest value on the three point scale we used to score tutors’ 
evaluations of bug criticality. Sentence three shows that 
Tutor 1 does not believe a deep problem of the Student's 
Understanding was responsible for the bug; the student 
simply forgot. Thus, the scoring template contains an “X” in 
the column for Student's Understanding to show that the 
tutor identified this factor. Finally, in the second half of the 
first sentence the tutor says that the bug must be fixed to get 
good output. This identifies the factor of Program Behav ior 
Precond it ions since the bug must be fixed for the program 
to output correct values. 

‘A description of the meanings of each of the factors is presented in 
Figure 6 in Section 4. 
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3 Tutorial Consistency: An Illustration 

Program Rainfall(input,output); 
. . . 
TotalRainfall .= 0. 
Wr i teln (‘ENT’ER kOUNT OF RAINFALL’); 
Readln(DailyRainfalI); 
DailyRainfall := 0; BUG: Aneignment 01 Uto DailyRainfall 

In this section, we present an example of two tutors 
reasoning about the same bug. Our intent is to illustrate for 
the reader the kind of data tutors generated in our study and 
to provide some intuitions about how we analyzed our 
protocol dat,a. 

While 
Clobberr Initial Value 

(DailyRainfall < > 00000) Do 
Begin 

Ed; 

Figure 3: Bug: Assignment of 0 to Da i I y Ra i nfa I I 
Clobbers Initial Value 

Reliability of Scoring: The data we analyze in this paper 
are based on subjective interpretation of tutors’ responses. 
They are not, for example, reaction times or numbers of 
errors. Rather, the statements tutors made in response to the 
questionnaires were interpreted in order to produce the data. 
To assess whether the data derived from the prot,ocol 
statements accurately reflect the cognitive processes which 
generated them, such data are normally subjected to 
reliability analysis. If the interpretations of the protocol 
responses are sufficiently reliable, then they are judged to 
reflect cognitive processes of the subjects who produced them. 
Reliability of encodings of t,he protocol responses was assessed 
by two rules: 

l If the coder of a response had any question about 

the correct label for the response, the response 
jointly encoded by more than one coder. 

l A response was eliminated from the analysis if it 
could not be encoded, or two or more coders 
disagreed on the appropriate encoding. 

A random sample of approximately 30% of encodings of 
each kind of knowledge was evaluated by more than one 
coder. The random sampling of mutually evaluated responses 
resulted in less than five percent of the data being shifted 
from one encoding to another. 

3.1 Two Tutors Reason About the Same Bug 
Figure 3 shows the spurious initialization bug we considered 

in Section 2. To illustrate similar reasoning of two tutors 
about the five tutorial considerations, we present and discuss 
quotations from their protocols as they reasoned about how to 
tutor the bug. 

Tutorial Consideration 1: Bug Criticality 
Neither Tutor 2 nor Tutor 3 felt that the bug shown in 
Figure 3 was very critical. The following quotations show 
why both tutors were coded as having the same bug criticality 
rating: 

Tutor 2: 
problem . ..” 

“It’s a small but annoying and pervasive 

Tutor 3: “... this does seem like a relatively trivial bug.” 

Even t.hough the bug interferes seriously with the behavior of 
the student’s program, neither tutor believed it is a “serious” 
bug; we will see why when we discuss the tutors’ reasoning 
about the causes of the bug. 

Tutorial Consideration 2: Bug Category 
Both tutors believed that the student who made the bug 
failed to translate correctly the conceptual object for some 
variable into its correct name in the program. Instead of 
initializing the intended variable to 0, the failure to translate 
the conceptual object into its corresponding code caused the 
student to initialize the wrong variable, Da i I yRa i nfa I I. The 
following quotations were the basis of our encoding of the 
tutors’ categorizations of the bug as a failure to translate 
correctly from conceptual objects to code: 

Tutor 2: “Syntactic similarity of the two variable names 
. . . 

Tutor 3: “Just mixed up variable names . ..” 

The reason the tutors believed the student made the bug 
Tutor's Overall CrltlcalIty Rating LOW CRITICAL identifies the category of bug: namely those bugs that arise 

FACTORS IDENTIFIED BY TUTOR 
from failures to translate conceptual objects correctly to the 
code that instantiates the conceptual objects. 

Name of Factor Factora Present 

Student's UnderstandIng 

Impact on the Tutorial Plan 

Knowledge Precondltlons 

Program Behavior Precondltlons 

@ug Dependencies 

Student's AblIIty to Find 
and FIX Bug Alone 

Student's Motlvatron 

Diagnostic flpportunlttes 

Tutorial Consideration 3: Bug Cause 
Tutor 2 and Tutor 3 identified essentially the same cause for 
the bug. 

Tutor 2: “... mixing up the purpose of the variables . ..” 

Tutor 3: “I think the student 
Tota I Ra i nfa I with Dai I yRainfal I . ..” 

was confusing 

The tutors attributed the cause of the bug to the student’s 
confusing the variable Da i I yRa i nfa I I with another, similarly 
named, variable. Evidently they felt that the student had 
correctly identified the conceptual purpose of the two 
variables, had given them appropriate names, and then 
confused the two names because they were so similar. We 
will see evidence for this view in the next quotations which 
illustrate the tutors’ goals in tutoring the bug. 

Figure 4: Scoring Tutor l’s Bug Criticality Consideration Tutorial Consideration 4: Tutorial Goals 
Both tutors were interested in teaching the student to use 
variables names that prevent confusion when code. The 
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following auotations show that both tutors wanted to teach 
the 

v . 

student the variable-naming heuristic. 

Tutor 2: “I would explain that there seems to be a name 
confusion ...n 

Tutor 3: “Be careful that you name your variables 
distinctly enough so that you do not get confused about 
which role they are serving.” 

Notice that the tutorial goals identified by Tutor 2 and Tutor 
3 are reasonable in light of their explanations of the cause of 
the bug. 

Tutorial Consideration 6: Tutorial Interventions 
The following quotations show that both tutors wanted to 
draw the student’s attention to the mismatch between the 
goal the student had for the variable Tota IRa i nf a I I and 
what actually happens to it. 

Tutor 2: “One could ask a leading 
asking him to justify his coding . ..” 

‘WHY” question . . 

Tutor 3: “I could ask them i/ they meant to be 
initializing Totz I Ra i nf a I I instead of Da i I y Ra i nf a I I n 

Both tutors selected the strategy of juxtaposing for the 
student the student’s intentions, or goals, with the actual 
code in the program. This general kind of tutorial 
intervention was extremely popular with our tutors and 
appears to serve the purpose of forcing the student to identify 
conflicts between intentions and actions.2 

The tutors’ responses to the bug shown in Figure 
3 illustrate how two tutors can have essentially the same 
“perspective” on the same bug. In the next section of the 
paper, we identify the factors that tutors take into account 
when they reason about bug criticality show, statist,ically, 
that tutors are consistent in the ways they reason about bug 
criticality. 

4 Bug Criticality 
In planning tutorial sessions, tutors make decisions about 

which bugs to focus on explicitly and which bugs to tutor 
only as opportunities arise. When our tutors identified bugs 
that they intended to focus on in their tutorial sessions, they 
gave reasons that made it clear that they felt that those bugs 
were more critical than others. As we analyzed tutors’ 
responses to the buggy-program scenario questionnaires, we 

identified several factors that seemed to play a role in their 
decisions about which bugs to focus on. For example, tutors 
focused on bugs that might, have been caused by serious 
misconceptions, bugs that suggested the student lacked 
important knowledge or skills, and bugs that interfered with 
the behavior of the program so much that the student would 
be unable to debug it. 

In this section of the paper we describe the main factors 
that our tutors used to reason about bug criticality. As 
examples of critical and noncritical bugs, suppose a student 
writes a solution to the Rainfall A88ignment in which the 
update for the variable containing the total amount of 
rainfall, Tota I Ra i n, is like the fragment of code labelled as 
BUG 1 in Figure 5. Instead of simply updating the variable 

*This strategy was identified by Collins and Stevens (1976) 
technique of the 

as a central 
“Socratic Method” and formed the basis of the tutorial 

strategies implemented in the WHY tutor. 

Tota I Ra i n by adding in t,he value of Da i I yRa i nfa I I, the 
student has written the update using a very strange, 
malformed, IF-THEN statement to “guard” the update. 
Virtually every one of the tutors in our study judged the 
malformed update bug to be very critical because the bug 
could be symptomatic of a deep misconception about how to 
update variables. On the other hand, most novice 
programmers leave output variables unguarded against the 
case of no valid input: BUG 2 in Figure 5 is an unguarded 
output bug. Our tutors uniformly considered BUG 2 to be 
uncritical because it does not suggest the student who wrote 
the program has any deep misunderstandings about 
programming. The student probably just forgot to test this 

. . . 
WrItelI ('ENTER AMOUYT OF 44INFALL'). 
Read(DallyRa,nfall) 
Whle (il1ljRa1nf311 <> Sentlnell Do 

eeg I n 
WrlteIn('ENTLR Af4OUNT OF R~IYFALL'J 
. . . 

BUG 1: Malformed Update 
If TotalRain = Tot + DailyRainfall Of TotalRain 

Then Tot := TotalRasn; 
. . . 

End 
. . . 

BNG 2: Output of TotalRain 
Unguarded on No Input 

\Vriteln(‘The Total Rainfall is: ‘, TotalRain); 

Figure 5: Critical Bug: Severely Malformed Update 

Figure 6 shows the major factors and subfactors we used to 
score tutors’ reasoning about bug criticality. Our analyses of 
the tutors’ data revealed two major factors tutors take into 
account when reasoning about the bug criticality tutorial 
consideration: 

l What the bug implies about Student’s 

Understanding 

l The bug’s Impact on the Tutorial Plan of the 
bug. 

The major factor of Student’s Understanding includes 
knowledge the student should already have and knowledge 
the student should acquire by doing the current assignment. 
For example, one tutor was scored as using this factor when 
she said the following about a student who did not include a 
Read In statement in the loop to get the new value of 
DailyRainfall: 

“The student doesna understand that the loop is driven 
by input and therefore must contain an instruction to get 
input.” 

The major factor of Impact on the Tutorial Plan, which 
is more complex than Student’s Understanding, is 
comprised of six subfactors. \Ve present quotations to 
illustrate two main subfactors. 

l Knowledge Preconditions: used to justify 
tutoring one bug after another bug 
The following quotation shows the tutor reasoning 
that tutoring one bug was a necessary 
precondition to tutoring some other bugs. 

“These [bugs] make sense to follow that [bug] 
. . we can presume that now the student has 

a full understanding 01 initialization [the 
problem tutored first.]” 
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l Program Behavior Preconditions: used to 
justify tutoring a bug first 
In this quotation the tutor says that he started 
with a particular bug because fixing that bug was 
necessary to get the program to run even 
reasonably well. 

“It’s important in terms of getting the 
program to r?Ln e'n any form, thus grts 
precedence over later bugs.” 

Further discussion of tutors’ reasoning about factors that 
have an impact on the tutorial plan can be found in Lit,tman, 
Pinto, and Soloway (1985). 

4.1 Tutors’ Agreement on Criticality of Bugs 
In this section, we identify two major findings 

illustrate consistency of tutorial reasoning about the 
criticality tutorial consideration. 

l First,, tutors assign consistent criticality ratings to 
bugs. 

l Second, tutors agree on the factors and subfactors 

for why bugs are critical. 

that 

bug 

l Student’s Understanding: Mhat problem solv 
programming concepts does the student knou? 

ing and 

. Impact on the Tutorial Plan: Hou shou Id the tutor i a I 
be formulated? 

Knowledge Preconditiona: Know ledge the student 
must have to learn key material that the tutor 
intends to teach during the tutorial session. 

Program Behavior Preconditionr: Does the 
program's current behavior obstruct the tutor's 
plan for tutoring a bug the tutor uants to address? 

Bug Dependencier: Eugs that, together, Interact 
to produce program behavior. 

Student’s Ability to Find and Fix Bug Alone: The 
student's abilrty handle a bug rithout the tutor's 
assistance. 

Student’s Motivation: The tutor's assessment of 
whether the student needs to be handled vlth “kid 
gloves*. 

Diagnostic Opportunities: Uou Id address i ng th IS 
bug provide the tutor ulth useful lnforratlon about 
the student's programmlng knouledge and programmlng 
skills? 

Figure 6: Factors Affecting Bug Criticality 

If tutors did not agree on the criticality of bugs, then the 
search for consistency of reasoning about bug criticality would 
be compromised. Our analyses show that tutors agreed very 
strongly about which of the 16 bugs were high critical, which 
bugs were medium critical, and which bugs were low critical. 
A Chi-squared analysis showed statistical significant; of 
consistency of tutors reasoning about bug criticality (x- = 
119.6, df = 30, p < .Ol). 

It is possible that tutors would agree about bug criticality, 
yet, would not identify the same factors and subfactors in 
their reasoning. Our data, however, show that tutors agree 
on the factors and subfactors, as shown in Figure 6, for why a 
particular bug is of high, medium, or low criticality. Chi- 
squared analysis of tutors’ consistency in identifying 

pal-t,icular factors and subfactors associated with partic-ulai 
bugs was statistically significant (x2 = 209, df = 140, p < 
-01). 

In summary, we have found that tutors see some bugs as 
being more critical than others. In addition, statistical 
analyses of their reasoning about bug criticality show that 
tutors are consistent both with respect to the criticality of 
bugs and the factors and subfactors that are associated with 
the criticality of bugs. 

5 Bug Categories 
When students attempt to solve the Rainfall Assignment, 

their first syntactically correct programs contain 
approximately six bugs each (Johnson, Soloway, Cutler, and 
Draper, 1983.) Instead of reasoning about each bug 
individually, tutors appear to use knowledge about kindo of 
bugs to help them determine both why the student made the 
bug and what to do to help the student. For example, if a 
student solving the Rain fail Assignment does not protect the 
calculation of the average against division by zero and also 
neglects to protect the output of the average against the case 
of no input data, a tutor might categorize both bugs as 
“missing boundary guards” . Tutors appear to categorize bugs 
according to a coarse model of the program generation 
process and make a gross distinction between bugs that arise 
during program generation and bugs that arise during 
program verification; furthermore, they break the program 
generation phase into three subphases. We now identify the 
three subphases of the generation category and present a 
quotation for each that shows the sort of statement that 
would be scored as referring to the subphase. 

l Decomposition: Figuring out what to do to 
solve problem. 
In the following quotation the tutor shows he 
t,hinks the student failed to decompose correctly 
the problem of getting values of the rainfall 
variable into the two components of getting an 
initial value and getting each new value in the 
loop. 

“I think the student knew they had read in 
Da i IyRa i nfa I I once and thought that would 
be enough.” 

l Mapping: Translating one level of problem 
analysis into another level (e.g., translating 
problem goals into plans to achieve the goals.) 
The next quotation illustrates a tutor responding 
to a student who failed to protect the accumulator 
for Tota I Ra i nf a I I against adding in the sentinel 
value, 99999. To compensate for adding in 99999, 
the student subtracted 99999 from Tota I Ra i nfa I I 
just before calculating Ave rageRa i nf a I I. 

“The student plans to add in the sentinel 
(MXZI) and then remove it later. I think this 
is very bad.” 

l Composition: Coordinating eolutiono for 
different goals. 
This quotation shows that the tutor believed the 
student failed to compose the main loop correctly 
with other actions the student wanted the 

3While tutors did identify some subphases of the Verification category, 
subcategories of Verification were not stable and so we do not report them 
here. 
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program to take. The student’s bug was to place 
below the loop the update of the variable 

Second, when we have identified tutorial patterns that are 

accumulating the total amount of rainfall. 
educationally effective, we can build ITS’s which incorporate 
them and avoid ineffective patterns. We will then be in a 

“Common problem - Things outside the loop 
which should be inside [the loop.)” 

position to provide the same high quality tutorial experiences 
to every student who has access to a computer. 

5.1 Tutors’ Agreement on Bug Categorization 
In this section, we present two main findings for bug 

categorization: 

l First, tut’ors agree in categorizing bugs as 
Generation or Verification bugs. 

l Second, tutors agree in categorizing bugs as either 
Decomposition, Mapping, or Composition 
bugs. 

Tutors were consistent in their categorization of bugs as 
arising during program generation or program verification, 
which constitutes the coarsest distinction of the bug category 
system. The consistency of tutors’ categorizations of bugs as 
generation or verification bugs is demonstrated by- the 
statistically significant Chi-square value for the test (x2 = 
25.9, df = 15, p < .05). 

Our plans for the immediate future focus on identifying the 
patterns of tutorial reasoning that are educationally effective 
and building an Intelligent Tutoring System for programming 
which makes use of them. Our long range plans are directed 
toward empirically evaluating the effectiveness of the ITS for 
programming and using the tutorial principles we discover 
from our studies of human tutors to build ITS’s for other 
domains. 
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