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Abstract II. The Butterfly Architecture 

This paper describes recent enhancements to the 
Common Lisp system that BBN is developing’ for its 
Butterfly multiprocessor. The BBN Butterfly is a shared 
memory multiprocessor that contains up to 256 
processor nodes. The system provides a shared heap, 
parallel garbage collector, and window based I/Q 
system. The ‘future’ construct is used to specify 
parallelism. 

Introduction 

BBN has been actively involved in the development of shared- 
memory multiprocessor computing systems since the early 
1970s. The first such machine was the Pluribus, a bus-based 
architecture employing commercially-available minicomputers. 
The ButterflyTM system is BBN’s second generation parallel 
processor and builds on BBN’s experience with the Pluribus. 
In 1986, BBN formed a wholly-owned subsidiary, BBN 
Advanced Computers Inc., to further develop the Butterfly 
architecture. More than 70 Butterfly systems are currently used 
for applications such as complex simulation,. symbolic 
processing, image understanding, speech recognmon, signal 
processing and data communications. 

For approximately two years, we have undertaken (with 
DARPA support) the development of a Lisp programming 
environment for the Butterfly. At AAAI ‘86 [Steinberg et al., 
19861 we reported on the basic design of the system. In this 
paper, we discuss a variety of developments resulting from the 
work of the past year. 

Figure 1: The Butterfly Multiprocessor 

IThe work described herein was done at BBN Advanced 
Computers, Inc. under contract to the Defense Advanced 
Research Projects Agency of the Department of Defense 

The Butterfly parallel processor includes from one to 256 
processor nodes interconnected by a high performance 
logarithmic switching network (figure 1). Each processor node 
contains a Motorola 16-M& MC68020 microprocessor; a 
Motorola MC68881 floating point coprocessor; up to four 
megabytes of memory; a general I/O port; and an interface to the 
Butterfly switch (see figure 2). Each node also contains a 
microcoded coprocessor, called the Processor Node Controller 
(PNC), that performs switch and memory management 
functions, as well as providing extensions to the 68020 
instrnction set in support of multiprocessing. 

The memory management hardware, combined with the 
small latency of the Butterfly switch, permit the memories of the 
individual processor nodes to be treated as a pool of shared 
memory that is directly accessible by all processors. Remote 
memory references are made through the Butterfly switch and 
take approximately four microseconds to complete regardless of 
configuration size. This shared-memory capability is crucial to 
the implementation of Butterfly Lisp. 

The Butterfly is designed to maintain a balance of 
processing power, memory capacity, and switch bandwidth over 
a wide range of configurations. The largest Butterfly system 
consists of 256-processor nodes and executes 250 million 
instructions per second, has a gigabyte of memory and provides 
eight gigabits per second of switch bandwidth. 

The Butterfly system’s expandability is due predominantly 
to the design of the Butterfly switch network. The switch is 
built from intelligent four-by-four crossbars configured in a 
serial decision network. The cost of the switch and switch 
bandwidth grow almost linearly, preserving price-performance 
from the smallest to the largest con@uration. 

III. utter isp verview 

Butterfly Lisp is a shared-memory, multiple-interpreter system. 
Rather than implementing a loosely coupled set of separate Lisps 
that communicate via some external message-passing protocol, 
we have chosen to capitalize on the Butterfly’s ability to support 
memory-sharing by providing a single Lisp heap, mapped 
identically by all interpreters. This approach preserves the 
shared-memory quality that has always been characteristic of the 
Lisp language: data structures of arbitrary complexity are easily 
communicated from one context to another by simply 
transmitting a pointer, rather than by copying. We believe this 
approach has significant ease-of-programming and efficiency 
advantages. 

Butterfly Lisp uses the “future” mechanism (first 
implemented at MIT by Professor Robert Malstead and students 
in Evaluating the form 

(future <lisp-expression>) 
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causes the system to record that a request has been made 
for the evaluation of <lisp-expression> andto commit resources 
to that evaluation when they -become available. Control returns 
immediately to the caller, returning a new type of Lisp object 
called an “undetermined future”. The “undetermined future” 
object serves as a placeholder for the value that the evaluation of 
<lisp-expression> will ultimately produce. An “undetermined 
future” may be manipulated as if it were an ordinary Lisp object: 
it may be stored as the value of a svmbol. consed into a list. 
passed as an argument to a function, etc.. If, however, it& 
subjected to an operation that requires the value of clisp- 
expression> prior to its arrival, that operation will automatically 
be suspended until the value becomes available. The “future” 
mechanism provides an elegant abstraction for the 
synchronization required between the producer and consumer of 
a value. This preserves and encourages the applicative 
programming style so integral to Lisp programming and so 
important in a parallel machine, where carelessness with side- 
effecting operations can result in (difficult to diagnose) 
probabilistic bugs. 

The Butterfly Lisp implementation is based on MIT 
CScheme, modified to support the future construct and other 
multiprocessing primitives (e.g., primitives for mutual 
exclusion). The system also includes a parallel stop-and-copy 
garbage collector. In addition to the Scheme dialect of Lisp, 
Butterfly Lisp also provides Common Lisp language support, 
implemented largely on top of Scheme. This implementation, 
which we discuss in detail below, uses significant portions of 
CMU’s Spice Lisp. 

The Butterfly Lisp compiler will be based on LIAR (LIAR 
Imitates Apply Recursively), a Scheme compiler recently 
developed at MIT by members of the Scheme Team. 

The Butterfly Lisp User Interface (which leads to the rather 
unfortunate acronym BLUI) is implemented on a Symbolics 
3600-series Lisp Machine and communicates with the Butterflv 
using Internet protocols. This system provides a means f& 
controlling and communicating with tasks running on the 
Butterfly, as well as providing a continuously updated display of 

the overall system status and performance. Special Butterfly 
Lisp interaction windows, associated with tasks running on the 
Butterfly, may be easily selected, moved, resized, or folded up 
into task icons. 

There is also a Butterfly Lisp mode provided for the 
ZMACS editor, which connects the various evaluation 
commands (e.g., evaluate region) to an evaluation service task 
running in the Butterfly Lisp system. 

Each task is created with the potential to create an 
interaction window on the Lisp machine. The first time an 
operation is performed on one of the standard input or output 
streams a message is sent to the Lisp machine and the associated 
window is created. Output is directed to this window and any 
input typed while the window is selected may be read by the 
task. This multiple window approach makes it possible to use 
standard system utilities like the trace package and the debugger. 

A pane at the top of the screen is used to display the 
system state. The system state information is collected by a 
Butterfly process that is separate from the Butterfly Lisp system, 
but has shared-memory access to important interpreter data 
structures. The major feature of this pane is a horizontal 
rectangle broken vertically into slices. Each slice shows the state 
of a particular processor. If the top half of the slice is black, 
then the processor is running, if gray, it is garbage collecting, 
and if white, it is idle. The bottom half of each slice is a bar 
graph that shows how much of each processor’s portion of the 
heap is in use. The status pane also shows, in graphical form, 
the number of tasks awaiting execution. This display makes 
such performance problems as task starvation easy to recognize. 

A recently developed User Interface facility provides a 
display of a combined spawning and data-dependency, graph, 
which is created from metering data collected during the running 
of a Lisp program on the Butterfly. This facility is described in 
detail below. 

IV. aging Executio 
Programs 

A. Introduction 

Computer software execution is both invisible and complex and 
thus it has always been a challenge to present an image of how 
programs are executing. Many tools have been developed to 
perform this function in uniprocessor programming 
environments. For example, debuggers present a picture of 
processor state frozen in time, while profilers provide a 
summary distribution of program execution time. Useful as 
these may be, the added dimension of concurrency renders the 
typical suite of such tools insufficient. This realization led us to 
the development of the capability described in this section. 

. Metering and Presentation Facillities 

The Butterfly Lisp User Interface uses a transaction-oriented 
protocol that carries the various logical I/Q streams between the 
Butterfly and the 3600. To support our new imaging facility, 
the protocol was extended so that the tasting system could 
transmit a packet for each major scheduling operation. When 
metering is enabled, a packet is sent when a task 

- is created, 

- begins executing on a processor, 

- requires the final 
been computed, 

Figure 2: The Butterfly Processor Node 

value of another task which has not yet 

- finishes executing, 
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- terminates, enabling another task to resume execution. 
Each packet contains the time, the unique identifiers of the 

relevant tasks and the processor number. 
These packets allow the User Interface to construct a 

complete lifetime history of each task, reconstruct the task 
creation tree, and partially reconstruct the data dependency 
graph. For efficiency reasons, if the value of a future has been 
determined before it is needed, the reference is not recorded. The 
User Interface presents this information in a special window. 
The top pane of the window contains the task histories in depth- 
first order of their creation. The bottom pane contains a derived 
chart of aggregate information about the tasks in the system. In 
both panes, the horizontal axis is the time axis and the two charts 
are presented in the same time scale. 

The history of each task is displayed as a horizontal 
rectangle ranging along the time axis from task creation time to 
task termination time. When vertical spacing permits, the gray 
level indicates the state of the task that may be running (black), 
on the scheduler queue (gray) or idle (white). The uppermost 
task history rectangle in figure 3 shows a task that is created and 
placed on the scheduler queue (gray). It then runs (black), 
creating subtasks (see arrows), until it needs the value computed 
by another task (see arrow). At this point it goes idle (white). 
When the subtask has determined that value, this task is 
requeued (gray) and then runs (black) to completion. 

An arrow drawn from one task history to another indicates 
that either: 

- a task has created another task, or I 

- a task needs the result of another task, or 

- a terminating task has restarted another task 

-- -- 
-------~------ 

I II 

mi 

I 

Figure 3: Execution image of BBNACI function 

Since the arrows are always associated with task state 
changes, the actual meaning of a particular arrow can easily be 
derived from the context. When a task is created, the creating 
task continues running so the history rectangle is black to the 
right of the creation arrow. When a task needs the result of 
another task it will go idle so the history rectangle will go from 
black to white. When a task terminates, the history rectangle 
ends, and any waiting tasks are restarted. 

As the number of task histories to be shown increases, the 
history rectangles will be made smaller. If necessary, the black- 
gray-white shadings will not be shown. If still more data is 
available it will not be drawn, but can be displayed by using the 
mouse to scroll the window. The mouse can also be used to 
zoom in on the task histories by selecting a rectangular region, 
which will be expanded to fill the entire window. This zooming 
can be done repeatedly, and the image can be returned to its 
original scale by pressing the middle mouse button. As an 
additional aid to deciphering the task structure, pointing the 
mouse at a particular task history will “pop up” the text 
description of the task being computed. 

The more conventional graph in the lower pane displays 
the number of tasks in a particular state plotted against time. 
Ordinarily, this graph shows the total number of tasks in the 
system. There is a menu of graphing options that allows the 
user to select a plot of any combination of running, queued, or 
idling tasks. 

The images in this paper were produced using an 
interpreted version of Butterfly Lisp running on a 16 processor 
Butterfly (with one node used for network communications). 
Figure 3 was produced by the execution of the following 
recursive Fibonacci algorithm: 

(define (bbnaci n); Pronounced bi-bin- 
; acci 

(if (< n 2) 
n 
(+ (future (bbnaci (-1+ n))) 

(future (bbnaci (- n 2)))))) 

C. Example: Bayer-Moore Theorem Prover 

The Boyer-Moore theorem prover (a classic early AI 
program and part of the Gabriel Lisp benchmark suite [Gabriel, 
19851) works by transforming the list structure representing the 
theorem into a canonical form using a series of rewrite rules 
called lemmas. The final form, which resembles a tree 
stmctured truth table, is scanned by a simple tautology checker. 
The algorithm starts rewriting at the top level of the theorem and 
recursively applies the rewriter to its results. Parallelism is 
introduced by creating a subtask for each subtree that might need 
to be transformed. 

Figure 4 shows the proof of modus-ponens: 

(implies (and (implies a b) a) b) 

The proof performs 13 transformations that appear as the 
13 clusters in the execution image. Two levels of parallelism are 
visible. At the finer level, various tasks attempt to apply rewrite 
rules, usually unsuccessfully. Many short lived tasks are 
created, but parallelism is limited by the small size of the 
associated list stmcture. This limited parallelism appears within 
each cluster of tasks. At the coarser level, the various lemmas 
are applied and their dependencies are preserved. The first set of 
transformations must be performed serially because each 
depends on the results of the previous one. Later 
transformations can be performed in parallel on isolated 
subbranches of the expanded list structure. This parallelism 
appears in the arrangement of the clusters. 

The rectangle drawn around cluster 6 is a region that has 
been selected for enlargement. Clicking the left mouse button 
changes the cursor from an arrow to the upper left hand comer 
of a rectangle. When this is clicked into place, the mouse allows 
the user to “rubber band” a rectangle by moving the lower right 
hand corner. The next click enlarges the region within the 
rectangle, filling the entire screen as shown in figure 5. 
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D. Summary 

The illustrations in this paper demonstrate the utility of this 
new parallel program execution imaging technique. In the future, 
we will add a variety of viewing modes to provide alternate 
images of execution and we plan to allow the user to explicitly 
annotate the diagram by sending appropriate data packets. It 
should also be possible to use the metering data to detect circular 
dependencies, unused task subtrees, task starvation, and other 
common pitfalls on the path to parallelism. 

utterfly Common Lisp 

A key aspect of the Butterfly Lisp effort is the support of a 
concurrent variant of Common Lisp. In this section we discuss 
some of the issues that arise in building a Common Lisp on a 
Scheme base. 

A. Scheme 

Scheme is a dialect of Lisp developed at MIT by Gerald J. 
Sussman and Guy Steele in 1975. While the language has 
evolved during the past 12 years [Rees et aE.., 19861, it has, 
from the beginning, featured lexical-scoping, tail-recursion, and 
first-class procedural objects, which unify the operator and 
operand name spaces (the first element of a form is evaluated in 
exactly the same manner as the rest). Scheme is in an excellent 
base on which to build a Common Lisp, having simple, 
powerful and well-defined semantics. For example, Scheme 
provides a very general facility for creating advanced control 
structures, i.e., the ability to create and manipulate 
‘continuations’ (the future course of a computation) as first-class 
objects. This capability is critical to, and greatly simplifies, our 
implementations of Common Lisp tagbodies, block/return-from, 
and catch/throw. In addition to the language features described 
in the Scheme report [Rees et al.., 19861, Butterfly Common 
Lisp makes significant use of extensions to the language 
provided by MIT CScheme: 

- Environments are first-class objects, i.e., environment 
objects, and operations on them, are directly accessible to the 
user. 

- The Eva1 function exists, accepting an environment as a 
required second argument. 

- CScheme provides many of the arithmetic types required by 
Common Lisp, including an efficient bignum 
implementation. 

- Lambda lists that support rest and optional arguments: 
sufficient power on which to construct Common Lisp’s 
more complex lambda lists. 

- A macro facility of sufficient power to construct Defmacro. 

- A simple protocol for adding new primitives, written in C, to 
support some of the more esoteric Common Lisp operations. 

- Fluid-let, a dynamic-binding construct that is used in the 
implementation of Common Lisp special variables 

- Dynamic-wind, a generalization of Common Lisp unwind- 
protect 

B. Mapping from Common Lisp to Scheme 

It was decided early in the evolution of our Common Lisp that 
we would avoid modifications to the Scheme interpreter and 
compiler, unless semantic or performance considerations 
dictated otherwise. In addition, we decided that we would 

Figure 4: Execution image of Boyer-Moore Theorem Prover 

capitalize as much as possible on CMU’s excellent Common 
Lisp, Spice. 

Our task then became one of identifying and implementing 
enough of the basic Common Lisp semantics to be able employ 
the CMU Common Lisp-in-Common Lisp code. Happily, in 
many cases, Scheme and Common Lisp were identical or nearly 
so. In others, language differences required resolution; Common 
Lisp’s separate operator/operand name spaces are an example. 
Here, an obvious solution would have been to add a function 
definition cell to the symbol data structures, necessitating a non- 
trivial interpreter and compiler modification in the treatment of 
the evaluation of the frst element of function-application forms. 
We chose a less invasive solution: when the Scheme syntaxer 
(which converts reader-produced list structure into S-code, the 
input to both the interpreter and the compiler) senses any form 
with a symbol in the function position, it substitutes a new, 
unintemed symbol having a pname that is derived from the 
pname of the original. Function-defining constructs, e.g., 
defun, (setf (symbol-function)), place the functional objects in 
the value cell of the corresponding mutated symbol. The symbol 
block has been expanded so that the pairs can point to each 
other. 
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Figure 5: Execution image of Boyer-Moore 

Theorem Prover -- close-up view 
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Common Lisp packages are another example of the gulf 
between the two languages; Scheme relies exclusively on lexical 
scoping to solve name-conflict problems. ‘The solution was 
simply a matter of extending the symbol table system of Scheme 
to accommodate the needs of the Spice Lisp package system and 
reader. This has amounted to little more that porting the Spice 
Lisp package system, and viewing Scheme symbols as 
belonging to Be ‘Lisp’ package. To do this, the package 
operations are multiplexed between the Scheme and Spice data 
structures via a simple object-oriented tool. 

Common Lisp provides a large set of control mechanisms, 
including looping and branching. Scheme has no inherent 
looping or branching, and instead relies on tail-recursion 
optimization for efficient iteration and on continuations for other 
types of control structures. 

The simpler looping forms of Common Lisp are easy to 
implement in Scheme. For example, examine the following 
simple use of dotimes, in which no go’s appear: 

(dotimes (i n) (print (factorial i))) 

transforms to the Scheme: 

(let 0 
(define (dotimes-loop-1234 i) 
(if (= i n) 

nil 
(begin 
(print (factorial i)) 
(dotimes-loop-1234 (l+ i))))) 

(dcjtims-loop-1234 0)) 

The more complicated branching implied by tagbody is 
implemented using continuations. In essence, the sections of a 
tagbody between labels become zero-argument procedures that 
are applied in sequence, calling each other tail-recursively to 
perform a go. 

Mechanisms for paraIlelism extant in Butterfly Lisp are 
inherited by Common Lisp. These include future, the locking 
primitives, and all metering and user-interface facilities, such as 
the imaging system described in section 4. 

c. Implementation Status 

Currently, almost all of Common Lisp is implemented and 
runs in interpreted mode. Much of Portable Common Loops, a 
severe test of any Common Lisp implementation, has been 
ported. 

VI. The Butterfly I&p Compiler 

The Butterfly Lisp compiler will be based on a new Scheme 
compiler, LIAR, recently developed at MIT. LIAR performs 
extensive analysis of the source program in order to produce 
highly optimized code. In particular, it does a careful 
examination of program structure in order to distinguish 
functions whose environment frames have dynamic extent, and 
are thus stack-allocatable, from those requiring frames of 
indefinite extent, whose storage must be allocated from the Lisp 
heap. This is an extremely important efficiency measure, 
dramatically reducing garbage collection time. 

LIAR also deals efficiently with an interaction between 
lexical scoping and tail-recursion: a procedure called tail 
recursively may make a free reference to a binding in the caller’s 
frame, thus it is not always possible for the caller to pop his own 
frame prior to a tail-recursive call; the callee must do it. 

Furthermore, the compiler cannot always know how the called 
procedure will be called (tail-recursively or otherwise), and thus 
cannot statically emit code to clean up the stack, since the 
requirements are different in the two cases. This is a problem 
that requires a runtime decision about how to deal with the stack. 
LIAR handles this with an extremely efficient technique that 
preserves the semantics of lexical scoping and the constant-space 
attribute of tail-recursion. 

At the time of this writing, LIAR is undergoing extensive 
testing both at MIT (on the HP Bobcat) and at BBN on the Sun 
3. The port to the Butterfly computer will begin shortly and is 
expected to take a matter of weeks. In addition, the compiler will 
continue to be refined (certain basic optimizations, such as user 
control over in-lining of primitives -- the compiler presently in- 
lines only car, cdr, and cons -- have been omitted for the 
present, the strategy being to get a relatively unadorned version 
working first). We will also be modifying the compiler in behalf 
of Common Lisp. In particular, processing of Common Lisp’s 
optional type, ‘inline’, and ‘optimize’ declarations can be critical 
in achieving acceptable Common Lisp performance on a 
processor such as the MC68020. 

It is hoped that we will be able to report results obtained 
from running compiled Lisp on the Butterfly at the time of the 
conference. 
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