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Abstract 
In this paper, we propose a solution to McCarthy’s 
qualification problem [lo] based on the notion of pos- 
sible worlds [3, 61. We begin by noting that existing 
formal solutions to qualification seem to us to suffer 
from serious epistemological and computational dif- 
ficulties. We present a formalization of action based 
on the notion of possible worlds, and show that our 
solution to the qualification problem avoids the dif- 
ficulties encountered by earlier ones by associating 
to each action a set of domain constraints that can 
potentially block it. We also compare the computa- 
tional resources needed by our approach with those 
required by other formulations. 

0 Introduction 

A. The problem 

An important requirement for many intelligent systems is 
the ability to reason about actions and their effects on the 
world. There are several difficult problems involved in au- 
tomating reasoning about actions. The first is the frame 
problem, first recognized by McCarthy [ll]. The difficulty 
is that of indicating all those things that do not change as 
actions are performed and time passes. The second is the 
rumiJication problem (so named by Finger 123); the dif%- 
culty here is that it is unreasonable to explicitly record all 
those things that do change as actions are performed and 
time passes. The third problem is called the qualificaZion 
problem.. The difficulty is that the number of precondi- 
tions for each action is immense. In a previous paper [4], 
we presented a computationally effective means for solv- 
ing the frame and ramification problems. In this paper we 
extend this method to deal with the qualification problem. 

A familiar example of the qualification problem, due 
to McCa.rthy, is the “pota.to in the tailpipe” problem. One 
precondition to being able to start a car involves having the 
key turned in the ignition, but there are many others. For 
example, there must be gas in the tank, the battery must 
be connected, the wiring must be intact, and there can’t 
he a potato in the tailpipe. It would hardly be pra.&cal to 
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check all of these unlikely qualifications each time we were 
interested in using the car. 

To describe the qualification problem more formally, 
we will use a simple situation calculus to talk about the 
world. Let the predicate holds(p, s) indicate that the 
proposition p holds in the state s. We also denote by p(u) 
the preconditions of an action a, and by c(u) the conse- 
quences of the action a given that the preconditions hold. 
An action can now be characterized by an axiom or axioms 
of the following form: 

holds(p(a), s) ---f holds(c(u), do@, s)), 

where do(u, s) refers to the new situation that arises af- 
ter the action a has been performed. The qualification 
problem is that there are a great many preconditions and 
qualifications appearing in the complete precondition p(u). 
It is difficult to enumerate them all, and comput,ationally 
intractable to check them all explicitly. 

This overall problem consists of three distinct difficul- 
ties: 

1. The language or ontology may not be adequate for 
expressing all possible qualifications on the action u, 

2. It may be infeasible to write down all of the qualifica- 
tions for a even if the ontology is adequate, and 

3. It may be computationa.lly intractable to check all of 
the qualifications for every a&ion that is considered. 

In this paper we will be concerned only with the second 
and third of these issues - how to conveniently express 
qualifications and how to reason with them in a computa- 
tionally tractable way. We will not consider the problem 
of recognizing or recovering from qualifications that can- 
not be described within the existing ontology or language 
of a system. 

. The default approach 

There hcas been a recent resurgence of interest, in nroblems 
of commonsense reasoning about actions and their conse- 
quences. Several authors [‘i, 8, 9, 133 have suggested that, 
the qualification problem can be effectively addressed by 
grouping together all of the qualifications for an action un- 
der a disabled predicate. This predicate is then a.ssumed 
false by default in any particular situation. For example, 
given an action a wit,h explicit preconditions p(a), explicit, 
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Figure 1: Move A to B’s location Figure 3: The blocked dumbbell problem 

Figure 2: The dumbbell problem 

consequences c(a) and additional qualifications q(a), we 
could write 

holds@(a), s) A ldisabled(a, s) 

- holds(c(a), do@, s)) 

holds(q(u), s) -+ disabled(u, s), 

together with the default rule 

Mldisabled(u, s) 
ldisabled(u, s) ’ 

In other words, if the action’s preconditions hold in state 
s, and the action is not provably disabled, then the conse- 
quences will hold in the state resulting from the execution 
of the action. The advantage of this approach is that a 
system does not need to reason about all of the obscure 
qualifications that might prevent each action. They can be 
assumed to be false, unless the contrary has been shown 
by some form of forward inference. 

Unfortunately, there are some serious difficulties with 
this approach. Consider a simple blocks world consisting 
of a floor with two blocks on it, as shown in Figure 1, 
and a single operation move(b, I) that moves the block b 
to location 1. One qualification on this action is that the 
intended destination for a move operation must be vacant. 
We might express this as: 

holds(on(z, I), s) -+ disabled(move(y, I), s). (1) 

If P is in some location 1, the action of moving y to that 
location is disabled. 

Now suppose that we complicate ma.tters by allowing 
blocks to be connected together as shown in Figure 2. (We 
will henceforth refer to this as the dumbbell problem.) If 
we try to move the block A to the location occupied by B, 
B moves also, and will therefore not be in the way when 
A arrives. In this case, the fact that B is in the way is not 
a qualificat.ion on the action. So we need to modify (1) to 
Income: 

on( r. 1) A lconnected(z, y) 3 disabled(move(y, I)), (2) 

intlicating that an object. at. the destination of an intended 
11101 ion disables t.hat, act.ion unless it. is coll0ect ~(1 to the 

object being moved. (We have dropped the situation vari- 
able in (2) in the interests of simplicity.) 

The “blocked dumbbell” problem shown in Figure 3 
requires that we introduce still more qualifications on t,he 
move operator. Now the presence of C blocks the action, 
since B is unable to move to its new location. We have to 
modify (2) to produce something like: 

on(t, r’) A connected(z, y) A lconnected(y, z) 

Ainduced-position(y, I’, move(z, 1)) - 

disabled(move(z, i)). (3) 

This axiom states that a move action will be disabled if an 
object connected to the object being moved is prevented 
from reaching its new location. 

The increased complexity is a consequence of the fact 
that the disabling rules (2) and (3) need to anticipate the 
ramifications of the move action, but the possible ramifi- 
cations become increasingly numerous and complicated as 
the complexity of the domain increases. 

In addition to epistemological problems, this complex- 
ity leads to computational difficulties. As the number 
of ramifications grows, it becomes impractical to forward 
chain on the direct results of an action in order to deter- 
mine all of the subsequent actions that may be disabled. 
We will see in Section IV-A that a backward chaining ap- 
proach to this problem is also intractable. 

c. Appsoach 

In the examples above, the move operation always failed 
because there was something in the way. It would therefore 
seem that we should be able to derive the above qualifi- 
cations from more general constraints on the world. In 
the blocks world, one of the domain constraints is that an 
object cannot be in two places at once; another domain 
constraint is that no two objects can ever be in the same 
place at the same time. We could state these formally as: 

on(z,J)AZ# 1’ - lon(z,1’) 

on(z, I) A z # x ----f Ton@, /), (4) 

If we try to move a block to a location that is already 
occupied, the resulting world will be in contradiction with 
the domain constraint (4). We conclude that the action 
cannot be performed. 

A similar argument can be made for the potato in 
the tailpipe problem. In this case, it is inconsistent for an 
engine to be running with a blocked exhaust. It follows 
tha.t a. car with a blocked exhaust cannot be started. 
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Unfortunately, there is a serious flaw in these argu- 
ments. The trouble is that we have not distinguished be- 
tween things that an action can change (ramifications) and 
things tha.t prevent it from being carried out (qualifica.- 
tions). In our blocks world example, it may very well be 
tl1a.t a block in the way will defeat a move operation. On 
the other hand, it might be the case that the robot arm is 
sufficiently powerful that any block in its way simply gets 
knocked aside. Given only the domain constraint, we have 
no way of knowing which is the case. 

The same is true for the potato in the ta.ilpipe prob- 
lem. Given a car with a potato in its tailpipe, how are 
we to know whether turning the key in the ignition will 
have no effect, or will blow the potato out of the tailpipe? 
Surely a potato in an exhaust nozzle of the space shuttle 
would not prevent it from taking off, but nowhere have we 
provided any information distinguishing the two cases. 

The problem is essentially this: given that the re- 
sults of an action may include arbitrary inferential con- 
sequences of the stated results, we need to distinguish le- 
gitimate qualifications for an action from possible ramifi- 
cations of the action. One solution to this problem is to 
explicitly identify, for each potential ramification of an ac- 
tion, whether or not it can act to qualify the action in ques- 
tion. Unfortunately, the number of potential ramifications 
to an actions grows exponentially with the complexity of 
the domain [4], so that any approach to the formalization 
of action that requires the exhaustive enumeration of all 
of an action’s ramifications will become computatiopally 
intractable when dealing with complex domains. 

The approach we will take to this problem is to indi- 
cate, for each possible action, which subset of the domain 
constraints can potentially block the action. In our blocks 
world example, the domain constraint that no two things 
can be in the same place at the same time qualified the 
failing move operations. In the car example, the constraint 
about exhaust blockages leads to the qualification. 

D. Organization 

In t#he next two sections, we present a formalization of 
the informa.l approach discussed in Section I-C, and go on 
t#o show that this approach does indeed give intuitively 
correct answers when dealing with a va.riety of qualified 
and unqualified actions. 

In Section IV we briefly compare the computational 
requirements of the possible worlds approach with those 
of existing descriptions, such a QA-3 type planner using 
monotonic situation calculus [S] or a system using a default 
approach such as tha.t described in Section I-B. 

II. Possible worlds 

nearest possible world 
of the action hold. 

in which the explicit 

To formalize this, suppose that we have some set S of 
facts describing the condition of our world before taking 
an action a with consequences C(u). Now after the action 
a is taken, we need to add the facts in C(a) to our world 
description S; the difficulty is that the simple union S U 
C(a) may be inconsistent. 

In order to avoid this difficulty, we consider consistent, 
subsets of S U C. In other words, we define a possible 
world for C in S to be any consistent subset of S U C. 
Now note that the nearness of a particular subset to the 
original situation described by S is reflected by how large 
the subset is: if C 2 Tl E T2 C SUC, Tz is at least as close 
to S as Tl is. This leads us to define the nearest possible 
world for C in S to be a mazimul consistent subset of SW. 
Note that maximal here refers to set inclusion, as opposed 
to cardinality, so that a subset of S U C is maximal if it 
has no consistent superset in S U C.2 

There is one additional subtlety that we need to con- 
sider. Specifically, there will often be facts that will ulwuys 
hold, so that we want to only consider subsets of SUC that 
contain them. Domain constraints such as (4) often have 
this property; we can expect (4) to hold independent of the 
modifieations we might make to our world description. We 
cater to this formally by supposing that we have identified 
some set P containing these protected facts. 

Definition 1 Assume given a set S of logicul formulue, 
a set P of the protected sentences in our lunguuge, und 
an additional set C. A nearest possible world for C in S 
is defined to be any subset T E S U C such thut C C T, 
P fl S c T, T is consistent, and such that T is muzimul 
under set inclusion subject to these constraints. 

In general, we will have no use for possible worlds 
other than the nearest ones, and will therefore refer to the 
nearest possible worlds for C in S simply as possible worlds 
for C in S. 

ification and possible 

A. Manipulating domain constraints 

To describe qualification in t,his framework, we will de- 
scribe an action a using a precondition p(n), a consequence 
set C(u), and a qualification set Q(u). The qualification 
set contains those domain constraints that can qualify the 
success of the action. 

As an 
as follows: 

example, we can characterize the move operat,or 

The approach t,o qualification tl1a.t we are proposing builds 
upon our earlier work on the frame and raniification proh- 
lems [4]. \2:e will review that work very briefly here; the 
t5s;ent ial idea is to take the result. of an action t.0 he t.he 

p(move(b, 1)) = clear(b) 

“This definition originally appeals in [l]. It is shown in [:3] to be 
equivalent. t.o ideas appearing earlier in Reit,er’s default logic [I 21. 
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Move A to B’s location 

Move A onto B with C in the way 

;A; B I I 
I , I ” 

Domain constraint violated 

Figure 4: A qualified action 

C(move(b, 1)) = {on(b) I)} 

Q(move) = {on(z) I) A z # 2 -+ Ton(z) I)}. (5) 

The precondition is simply that the block being moved be 
clear, and the consequence is to reloca.te the block at the 
destination of the move operation. The qualification set 
consists of the single domain constraint stating that only 
one block can be in any particular location at any given 
time. In other words, move actions will be qualified if 
something gets in their way. 

To determine whether or not an action will succeed, 
we first remove the domain constraints in Q from our world 
description, and only then do we construct the nearest pos- 
sible world in which the consequences of the action hold. If 
the domain constraints are violated in all of the worlds so 
constructed, the action is qualified; if there is some world 
in which none of the domain constraints is violated, the 
action succeeds (and the corresponding world is the result 
of the action). 

For move actions, this involves computing the conse- 
quences of the action assuming that any number of blocks 
can occupy the same location. If no two objects coincide 
in the resulting world, the action succeeds: nothing got in 
the way. 

B. Examples 

We now examine a series of potentially qualified ac- 
t,ions, and show that this definition does indeed give us 
t,he desired result in all cases. Consider first the simple 
example shown in Figure 4a. The initial state is given by: 

* on(A) floor) 

on( B, floor) 

on(C) B). 

Domain constraint intact 

Figure 5: An unqualified action 

To construct the possible world for on(A) B), we must 
remove the fact that A is on the floor, since the domain 
constraint indicating that A can be in only one place at 
a time is not in the qualification set Q(move). But we do 
not need to remove the fact that B is also on top of C, 
since the domain constraint that A and B cannot coincide 
is not being considered. The resulting world is shown in 
Figure 4b, where the * labelling (6) indicates that it has 
been removed from our world description. The domain 
constraint (4) is violated in this world, and the action is 
therefore qualified. 

As a second example, consider the dumbbell problem, 
which is repeated in Figure 5a. The initial state is given 
aS: 

* 4% 4) 

* 4% 12) 
connect ed( A, B) . 

We also need axioms describing the connected predicate. 
We might have3: 

connected(z) y) A on(z) !I) + on(y) 12) (7) 
connected(z, y) A on(z) r,) + on(y, /3). (8) 

We assume that the axioms describing connection and the 
fact connected(A) B) are all protected. 

Even in the absence of the domain constraint saying 
that A and B cannot both be located a.t 12, on(B, 22) is 
inconsistent with the consequence on( A, /2) because of the 
domain constraint (8) d escribing the effect of the connec- 
tion between A and B. Thus (4) continues to hold, and the 
action is not qualified. The result is given by: 

on(A k4 
connected(A) B). 

Using (8)) we can now derive on(B) /,) from these t,wo facts, 
so that B’s new location is a ramification of the move ac- 
tion. See Figure 5. 

3An alternative formulation would describe the connected predi- 
cate arithmetically, assigning a numeric position to objects in our 
domain. We are using the description given only for reasons of 
simplicity. 
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A B C 

?vlove A to B’s location 

Domain constraint violated 

Figure 6: The blocked dumbbell 

In the blocked dumbbell problem (Figure 6a), the ini- 
tial description is: 

* on(A,h) 

* on(W2) 

on(C, J3> 

connected(A, B). 

As a.bove, B must move when A does, since the two blocks 
a.re connected. But C need not be dislodged if we ignore 
the domain constraint in Q(a): the only reason it has to 
move is that it cannot remain at B’s implied destination. 
Thus the domain constraint is violated in the resulting 
world and, as depicted in Figure 6, the action fails. 

The pulley problem shown in Figure 7a is somewhat 
different. Here, moving A toward B causes B to move 
toward A, and a ramification of the action is to introduce 
a qualification. The action should fail.4 

The initial state is given by: 

* on(U) 

* on(M2) 

pulley(A, B). 

If we denote by 14 the location halfway between II and Z2, 
the axioms describing the pulley system are: 

pulley(z, Y) A on(x, Id - 049, /2) (9) 

pulW(z, Y> A on(ql4) --+ on(y) j4). (10) 

Ignoring the domain constraint stating the blocks can- 
not coincide, the possible world relocating A halfway be- 
tween 11 and 12 removes the facts marked with a * above; 
the domain constraint (4) is violated in this world, since 
the physics of the pulley system implies that both blocks 
must be located at Id. 

4 As with the “self-fulfilling” dumbbell problem, this sort of “self- 
clc4eat ing” act ioIl posts severe problems for earlier descriptions of 
qrlalificatio~~. 

Move A ha1fwa.y to B 

l2+q 

Domain constraint violated 

Figure 7: The pulley 

IV. Comparison wit 
approaches 

Existing approaches to qualification proceed by explicitly 
indicating under what circumstances the action is quali- 
fied; if none of these circumstances can be proven to have 
arisen, the action is assumed to be unqualified. We will 
refer to this as the “exhaustive” approach to qualification 
because of the need to list all of the qualifications explic- 
itly. If any of the listed qualifications is present, the action 
is blocked. The non-exhaustive, or inferential approach 
that we proposed in Section III takes a more relaxed view, 
enabling us to determine inferentially which domain facts 
potentially qualify the action in question. 

In this section, we compare these two a.pproaches. We 
are interested in the additional computational resources 
needed by the various methods in order to both describe 
the qualifications on an action, and to determine whether 
or not any particular action is in fact qualified. We begin 
by considering the exhaustive approach. 

A. Exhawtive approaches 

In a domain with a distinct action types, we showed in [4] 
that any of these actions can have up to 2”” distinct rami- 
fications, where K 5 1 is a number that can be expected to 
be fairly small for la.rge domains, although the product &a 
will increase as the domain becomes more complex. As we 
have seen, it is theoretically possible for any or all of these 
ramifications to qualify any particular action, although we 
would expect in general that only some fraction X2’“” of 
them will. 

Suppose now that the investigation of any particu- 
lar domain fact is done by backward inference and takes 
an amount of time t. Assuming that most actions are not 
qualified, so that the examination of each of the X2”” qual- 
ifications is a necessary overhead to the investigation of the 
successful action, it, follows that,: 
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Theorem 
exhaustive 

2 The computational overhead required by an 
approach to qualification is given by: 

B. The inferential approach 

The approach to qualification presented in Section III de- 
scribes qualifications not in terms of disabling conditions, 
but by using a “qualification set”. In principle, it might be 
as difficult to describe the qualification set as to list all of 
the disabling conditions; in practice, however, it appears 
that a simple qualification set (such as that in (5)) will 
often correspond to all of the disabling conditions. The 
power of our approach to qualification is that it enables 
us to take advantage of this simplicity of description.5 We 
will say that a domain is uniform if a single qualification 
set for each action generates all of the disabling conditions 
for it. 

In a uniform domain, we address the qualification 
problem by identifying, for each action a, which of the 
Kur domain constraints6 are in Q(a). This will require us 
to list as many as Ka2r domain constraints in the various 
Q(u)‘s, although it is likely that a domain constraint will 
only be in Q(u) if it involves a relation symbol appearing 
in u’s consequence set C(u). In general, therefore, we can 
expect to need to list at most ZKUT domain constraints in 
order to describe Q(u) for each action, where z is the num- 
ber of consequences in a typical C(a) (i.e., the number of 
“direct” consequences of the action). 

The additional time needed to investigate the action 
is that needed to check whether or not the domain con- 
straints in &(a) are violated in the possible world con- 
structed. We demonstrated in [4] that this is given by 
nm(t -t-t,), where t, M t and n is the number of constraints 
in Q(u). This gives us: 

Theorem 3 In a uniform domain, the computational re- 
quirements of the inferential approach to qualification are 
given by: 

Comparing this with theorem 2, we see that it is the 
inferential approach that does not suffer from an exponen- 
tial deterioration in performance as the domain becomes 
increasingly complex. 

5%ollam has argued that our method also takes its power from L 

a partial order on possible worlds, but this is not the case. As can 
be seen from the examples in Section III-B, the met.hod remains 
romput at ionally effective if the partial order used is simply that given 
by set inclusion. 

‘Lye are using T here to represent the number of relation sylubols 
in our domain. See [d]. 
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