
Distributed Tree Searc and its Application to Alpha-Beta Pruning* 

Chris Ferguson and Richard E. Korf 
Computer Science Department 

University of California, Los Angeles 
Los Angeles, Ca. 90024 

Abstract 

We propose a parallel tree search algorithm based 
on the idea of tree-decomposition in which differ- 
ent processors search different parts of the tree. 
This generic algorithm effectively searches irreg- 
ular trees using an arbitrary number of proces- 
sors without shared memory or centralized con- 
trol. The algorithm is independent of the par- 
ticular type of tree search, such as single-agent 
or two-player game, and independent of any par- 
ticular processor allocation strategy. Uniproces- 
sor depth-first and breadth-first search are special 
cases of this generic algorithm. The algorithm 
has been implemented for alpha-beta search in 
the game of Othello on a 32-node Hypercube 
multiprocessor. The number of node evaluations 
grows approximately linearly with the number 
of processors P, resulting in an overall speedup 
for alpha-beta with random node ordering of 
p.75 . Furthermore we present a novel proces- 
sor allocation strategy, called Bound-and-Branch, 
for parallel alpha-beta search that achieves lin- 
ear speedup in the case of perfect node ordering. 
Using this strategy, an actual speedup of 12 is 
obtained with 32 processors. 

by the degree of parallelism available in move generation 
and evaluation. In addition, this approach is inherently 
domain-specific and unlikely to lead to general techniques 
for using parallel processors to speedup search. 

Another approach, called parallel window search, was 
pioneered by Gerard Baudet [l] in the context of two- 
player games. In this algorithm, different processors are 
assigned non-overlapping ranges for alpha and beta, with 
one processor having the true minimax value within its 
window, and finding it faster by virtue of starting with 
narrow bounds. Unfortunately, this approach is severely 
limited in speedup since even if alpha and beta both equal 
the minimax value for some processor, verifying that it 
is indeed the minimax value is fairly expensive. In experi- 
ments, its speedup is limited to about five or six, regardless 
of the number of processors. 

1 arallel Search Algorithms 

The third, and most promising approach for large num- 
bers of processors, is tree decomposition, in which different 
processors are assigned different parts of the tree to search. 
In principle, tree decomposition allows the effective use of 
an arbitrary number of processors. The most recent ex- 
perimental work on this paradigm is that of Kumar et. 
al. [S] in parallelizing IDA* [5], a linear-space variant of 
A*. They have been able to achieve approximately linear 
speedups on a 30 processor Sequent, and a 128 processor 
BBN Butterfly and Intel Hypercube. In IDA*, however, 
the total amount of work that must be done is indepen- 
dent of the order in which the tree is searched. 

Heuristic search is a fundamental problem-solving method 
in artificial intelligence. The main limitation of search is its 
computational complexity. Parallel processing can signif- 
icantly increase the number of nodes evaluated in a given 
amount of time. This can either result in the ability to 
find optimal solutions to larger problems, or in significant 
improvements in decision quality for very large problems. 
While there is a significant body of literature on heuris- 
tic search algorithms, work on parallel search algorithms 
is relatively sparse. 

There are essentially three different approaches to par- 
allelizing search algorithms. One is to parallelize the 
processing of individual nodes, such as move generation 
and heuristic evaluation. This is the approach taken by 
HITECH, a chess machine that uses 64 processors in an 
eight by eight array to compute moves and evaluations [2]. 
The speedup achievable in this scheme is limited, however, 

This is not true of branch-and-bound algorithms such 
as alpha-beta pruning, since whether or not a node must 
be evaluated depends upon values found elsewhere in the 
tree. The main issue in a parallel branch-and-bound search 
is how to keep processors from wasting effort searching 
parts of the tree that will eventually be pruned. Finkel 
and Manber [4] present a generalized tree search algorithm 
similar to ours, however, they do not allow explicit control 
over the allocation of work among processors, and hence 
they do not achieve high speedup for branch-and-bound 
algorithms. The best work to date on the specific problem 
of parallel alpha-beta search has been presented by Oliver 
Vornberger [9]. H e achieves a relatively large speedup of 8 
on 16 processors for evaluating chess positions. 

2 istribute ee Search 
Given a tree with non-uniform branching factor and depth, 
the problem is to search it in parallel with an arbitrary 
number of processors as fast as possible. We have devel- 
oped an algorithm, called Distributed Tree Search (DTS), 
to solve this problem. At the top level, the algorithm 
makes no commitment to a particular type of tree search, 

*This research was supported by an NSF Presidential Young 
Investigator Award to the second author, Jet Propulsion Labo- 
ratory contract number 957523, and by the Defense Advanced 
Research Projects Agency under contract MDA 903-8’7-C0663, 
Parallel Systems Laboratory. 

128 Automated Reasoning 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



but can easily be specialized to IDA*, minimax with alpha- 
beta pruning, etc. It can also be specialized to perform 
most tasks that can be expressed as tree recursive pro- 
cedures such as sorting and parsing. We make no as- 
sumptions about the number of processors, and reject al- 
gorithms based on centralized control or shared memory, 
since they do not scale up to very large numbers of pro- 
cessors. 

DTS consists of multiple copies of a single process that 
combines both searching and coordination functions. Each 
process is associated with a node of the tree being searched, 
and has a set of processors assigned to it. Its task is to 
search the subtree rooted at its node with its set of pro- 
cessors. DTS is initialized by creating a process, the root 
process, and assigning the root node and all available pro- 
cessors to it. The process expands its node, generating 
its children, and allocates all of its processors among its 
children according to some processor allocation strategy. 
For example, in a breadth-first allocation scheme, it would 
deal out the processors one at a time to the children un- 
til the processors are exhausted. It then spawns a process 
for each child that is assigned at least one processor. The 
parent process then blocks, awaiting a message. If a pro- 
cess is given a terminal node, it returns the value of that 
node and the processors it was assigned immediately to its 
parent, and terminates. 

As soon as the first child process completes the search of 
its subtree, it terminates, sending a message to its parent 
with its results, plus the set of processors it was assigned. 
Those results may consist of success or failure, a minimax 
value, values for alpha or beta, etc., depending on the ap- 
plication. This message wakes up the parent process to 
reallocate the freed processors to the remaining children, 
and possibly send them new values for alpha or beta, for 
example. Thus, when a set of processors completes its 
work, the processors are reassigned to help evaluate other 
parts of the tree. This results in efficient load balancing 
in irregular trees. A process may also be awakened by 
its parent with new processors or bounds to be sent to 
its children. Once the reallocation is completed, the par- 
ent process blocks once again, awaiting another message. 
Once all child processes have completed, the parent pro- 
cess returns its results and processors to its parent and 
terminates. DTS completes when the original root process 
terminates. 

In practice, the blocked processes, corresponding to high 
level nodes in the tree, exist on one of the processors as- 
signed to the children. When such a process is awakened, it 
receives priority over lower level processes for the resources 
of its processor. Once the processors get down to the level 
in the tree where there is only one processor per node, the 
corresponding processor executes a depth-first search. 

In fact, uniprocessor depth-first search is simply a spe- 
cial case of DTS when it is given only one processor. Given 
a node with one processor, the processor is allocated to 
the first child, and then the parent process blocks, wait- 
ing for the child to complete. The child then allocates its 
processor to its leftmost child and blocks, awaiting its re- 
turn. When the grandchild returns, the child allocates the 
processor to the next grandchild, etc. This is identical to 
depth-first search where the blocked processes correspond 
to suspended frames in the recursion stack. 

Conversely, if DTS is given as many processors as there 
are leaves in the tree, and the allocation scheme is breadth- 
first as described above, it simulates breadth-first search. 
In effect, each of the children of each node are searched 
in parallel by their own processor. With an interme- 
diate number of processors, DTS executes a hybrid be- 
tween depth-first and breadth-first search, depending on 
the number of processors and the-allocation scheme. 

sute-Force Searc 
DTS has been implemented to search Othello game trees 
using a static evaluation function we developed. It runs 
on a 32 node Intel Hypercube multiprocessor. When the 
algorithm is applied to brute-force minimax search without 
alpha-beta pruning, perfect speedup is obtained to within 
less than 2%. This 2% difference is due to communication 
and idle processor overhead. This demonstrates that even 
though the branching factor is irregular, the reallocation of 
processors performs effective load balancing. As a result, 
we expect near-optimal speedup for most forms of brute- 
force search. 

4 
Achieving linear speedup for branch-and-bound algo- 
rithms, such as alpha-beta search, is much more chal- 
lenging. There are two sources of inefficiency in parallel 
branch-and-bound algorithms. One is the communication 
overhead associated with message passing and idle pro- 
cessor time. This also occurs in brute-force search but 
is negligible for DTS, as shown above. The other source 
of inefficiency derives from the additional nodes that are 
evaluated by a parallel algorithm but avoided by the serial 
version. In branch-and-bound algorithms, the information 
obtained in searching one branch of the tree may cause 
other branches to be pruned. Thus, if the children are 
searched in parallel, one cannot take advantage of all the 
information that is available to a serial search, resulting in 
wasted work, which we call the search overhead. 

5 
Consider a parallel branch-and-bound algorithm on a uni- 
form tree with brute force branching factor B and depth 
D. The e$ective branching f&orb is a measure of the effi- 
ciency of the pruning and is defined as the Dth root of the 
total number of leaf nodes that are actually generated by 
a serial branch-and-bound algorithm searching to a depth 
D. While the brute-force branching factor B is constant, 
the effective branching factor b depends on the order in 
which the tree is searched. In the worst case, when chil- 
dren are searched in order from worst to best, no pruning 
takes place and thus b = B. In the best case of alpha-beta 
pruning, in which the best child at each node is searched 
first, b = B1j2. If a tree is searched in random order, then 
alpha-beta produces an effective branching factor of about 
b = B.75 [7]. I n t erestingly, for breadth-first allocation, the 
more effective the pruning, the smaller the speedup over 
uniprocessor search. 

Theorem 1: If b = BX on a uniform tree then 
DTS using breadth-first allocution will achieve a speedup 
of O(PX). 

Ferguson and Korf 129 



256 

128 

64 

A: Optimal 

B: Analytical for breadth-fist 

C: Breadth-first 

D: Bound-and-Branch 

E: B&B without communication overhead 

I I I I I I I 
1 2 4 8 16 32 

Processors (log scale) 
64 128 256 

Figure 1 

Graph of Speedup Versus Number of Processors 

130 Automated Reasoning 



Proof: The speedup of a parallel algorithm is the time 
taken by a serial algorithm, divided by the time taken by 
thegarallel algorithm. The serial algorithm will evaluate 
BX leaf nodes, resulting in a running time proportional 
to BXD. The parallel algorithm uses P processors allo- 
cated in a breadth-first manner. Processors will be passed 
down the tree until there is one processor assigned per 
node. This occurs at a depth of logB P. Each one of these 
processors will evaluate O(BX(D-‘ogB p)) nodes even if no 
new bounds are passed to it since each is searching a tree of 
depth D - logB P by itself. Thus, this simple parallel algo- 
rithm takes time proportional to BxcD-‘OgB p). Therefore, 
the speedup is on the order of BX log, p, or O(Px). 

6 readth-First Allocation 
We have searched 40 mid-game Othello positions to a 
depth of 6 using the breadth-first allocation scheme on 
1, 2, 4, 8, 16 and 32 processors on a X&node Intel Hyper- 
cube. Results were also obtained for 64, 128, and 256 pro- 
cessors by simulating multiple virtual processors on each 
of the 32 actual processors available. With one proces- 
sor the algorithm performs serial alpha-beta search. The 
communication overhead for the parallel versions is always 
less than 5%, leading to an almost linear relation between 
the number of processors and number of node evaluations 
per unit time. This is expected due to the near perfect 
speedup obtained for brute-force search. This also allows 
us to estimate speedup by counting the total number of 
node evaluations in serial, and dividing that by the num- 
ber of evaluations per processor performed in parallel. On 
32 processors, the parallel alpha-beta algorithm evaluates 
about 3 times as many leaf nodes as the serial version. This 
results in a speedup of only 10 over uniprocessor alpha-beta 
search. Our program uses a very primitive, but reasonably 
effective, form of node ordering. From previous research, 
this ordering was found to produce an effective branching 
factor of b M B.66 for serial alpha-beta with our Othello 
heuristic function. This predicts a parallel speedup of ap- 
proximately P .66. Figure 1 is a graph on a log-log scale of 
speedup verses number of processors. The analytical and 
actual speedup results for breadth-first allocation are rep- 
resented by curves B and C. From these curves it can be 
seen that the results for breadth-first allocation fit the an- 
alytical curve very closely, thus supporting our analytical 
results. 

If the node ordering is improved, however, even though 
the parallel algorithm will run faster, the relative speedup 
over uniprocessor alpha-beta search will decrease. In par- 
ticular, if the best move from a position is always searched 
first (perfect move ordering), serial alpha-beta will eval- 
uate only Bd12 leaf nodes, and our formula predicts a 
speedup of only P li2. This is also the lower bound speedup 
predicted by Finkel and Fishburn for their algorithm in [3]. 
While one may think that perfect or near-perfect node or- 
dering is impossible to achieve in practice, state-of-the-art 
chess programs such as HITECH [2] only search about 1.5 
times the number of nodes searched under perfect ordering. 
In this case our algorithm would have a predicted speedup 
very close to its lower bound of P1i2. Thus the perfor- 
mance of the breadth-first allocation scheme is relatively 
poor under good node ordering, and a better allocation 

strategy is required. 

ocation 
We have developed another processor allocation strategy 
for alpha-beta search that we call Bound-and-Branch. To 
explain this strategy, we introduce the idea of a cutoff 
bound. A cutoff bound is an alpha (lower) bound at a 
max node or a beta (upper) bound at a min node. A 
cutoff bound allows each child of a node to possibly be 
pruned by searching only one grandchild under each child. 
If no cutoff bound exists at a node, then the processors 
are assigned depth first, i.e. all processors are assigned to 
the leftmost child. This is the fastest way of establishing 
a cutoff bound at a node. If a cutoff bound is initially 
passed to a node, or has been established by searching its 
first child, then the processors are assigned in the usual 
breadth-first manner. This algorithm first establishes a 
bound, and then, once this bound is established, branches 
its processors off to its children, thus the name Bound-and- 
Branch. The underlying idea is to establish useful bounds 
before searching children in parallel, thus hopefully avoid- 
ing evaluating extra nodes that would be pruned by the 
serial version because of better available bounds. 

Lines D and E in figure 1 represent real speedup for 
the Bound-and-Branch allocation scheme (D), and the 
speedup not counting communication overhead for the 
Bound-and-Branch allocation strategy (E). The commu- 
nication overhead for the Bound-and-Branch allocation 
strategy is about 25%. This is caused by the added idle 
processor time and the added communications associated 
with splitting up processors lower in the tree as opposed 
to splitting them up as soon as possible. Despite this, 
the Bound-And-Branch allocation strategy outperforms 
breadth-first allocation even without good node ordering. 
Thus this strategy is also useful for the general case of 
imperfect node ordering. Furthermore, we will show that 
its speedup over serial alpha-beta actually improves with 
better node ordering. 

Theorem 2: In the case of perfect node ordering, 
the Bound-and-Branch allocation strategy will evaluate the 
same nodes as serial alpha-beta. 

Proof: In perfect node ordering, the first move searched 
under a node is the best move from that position. Further- 
more, once a bound is established for a node, it can never 
be improved upon without refuting a first child as the best 
possible move. For a node whose initial bound is a cutoff 
bound, this bound renders the children of that node inde- 
pendent from one another in the sense that searching any 
first will never improve the bounds at their parent, and 
thus cannot cause more cutoffs to occur when searching 
the others. This implies that these nodes can be searched 
in parallel without causing any extra evaluations to occur. 
Thus, since the Bound-and-Branch allocation strategy only 
branches out in parallel when a cutoff bound is available, 
no extra node evaluations can occur. 

How well does this strategy work in the case of no node 
ordering, good node ordering, and near-perfect node or- 
dering? To obtain better node ordering, the Othello pro- 
gram was modified to perform iterative-deepening alpha- 
beta search [8]. I n an iterative-deepening search, the game 
tree is successively searched to depths of 1, 2, 3, 4 . . . D. 

Ferguson and Korf 13 1 



gies. The algorithm produces near perfect speedup in 
brute-force searches of irregular trees without relying on 
centralized control or shared memory. We have shown 
that under a breadth-first processor allocation strategy, 
the speedup achievable with parallel branch-and-bound is 
proportional to Px, where P is the number of processors, 
and X is a measure of how effective the the pruning is. 
We also introduced a novel processor allocation strategy 
for parallel alpha-beta called Bound-and-Branch that does 
no more work than serial alpha-beta in the case of perfect 
node ordering and in general increases in speedup as the 
ordering technique improves. These algorithms have been 
implemented to perform alpha-beta search on a Hypercube 
and currently produce speedups of 12 on a 32-node Hyper- 
cube. 

PI 

PI 

PI 

PI 

Fl 

PI 

PI 

PI 

PI 

G. Baudet, “The design and analysis of algorithms 
for asynchronous multiprocessors”, Ph.D. dissertation, 
Dept. Computer Science, Carnegie Mellon University, 
Pittsburgh, PA., Apr. 1978. 

Carl Ebeling, All The Right Moves, MIT Press, Cam- 
bridge, Mass., 1987. 

R. Finkel and J. Fishburn, “Parallelism in Alpha-Beta 
Search”, Artificial Intelligence, Vol. 19, No. 1, Sept. 
1982. 

R. Finkel, U. Manber, “DIB - A Distributed Implemen- 
tation of Backtracking”, ACM Transactions on Pro- 
gramming Languages and Systems, Vol. 9, No. 2, Apr. 
1987. 

R. E. Korf, “Depth-first iterative-deepening: An opti- 
mal admissible tree search”, Artificial Intelligence, Vol. 
27, No. 1, 1985, pp. 97-109. 

V. Nageshwara Rao, V. Kumar, K. Ramesh, “A Par- 
allel Implementation of Iterative-Deepening A*“, Pro- 
ceedings of the National Conference on Artificial In- 
telligence (AAAI-87), Seattle, Wash., July 1987, pp. 
133-138. 

Judea Pearl, Heuristics, Addison-Wesley, Reading, 
Mass., 1984. 

D. J. Slate, L. R. Atkin, “CHESS 4.5 - The Northwest- 
ern University Chess Program”, Springer-Verlag, New 
York, 1977. 

0. Vornberger, “Parallel Alpha-Beta versus Parallel 
SSS*“, Proceedings of the IFIP Conference on Dis- 
tributed Processing, Amsterdam, Oct. 1987. 

8 Conclusions 
We have presented a generic distributed tree search algo- 
rithm that can be easily specialized to different types of 
search problems and different processor allocation strate- 

132 Automated Reasoning 


