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Abstract 
This paper describes a methodology for the auto- 
matic construction of diagnostic expert systems, 
and its application for fault diagnosis of a satel- 
lite’s electrical power subsystem. 
The synthesised knowledge base is compared with 
an existing expert system for the same applica- 
tion built using a commercial expert system shell. 
Both systems have been tested using a real-time 
satellite simulator which has the capability to fail 
components. 
A traditional knowledge-engineering approach in- 
volves building a prototype which is refined until 
satisfactory results are obtained. This process is 
error-ridden, as even in small systems, rules can 
conflict, be irrelevant, or missing. It is never clear 
when a system is complete and validation is al- 
ways difficult. 
As an alternative, a fault diagnostic knowledge 
base can be automatically synthesised from a 
qualitative model of the device. This is achieved 
by systematically simulating all component fail- 
ures. Individual failures are used as examples. A 
learning algorithm is applied to the examples to 
output a set of diagnostic rules. The resulting 
rules are complete and consistent with the quali- 
tative model and diagnose component failures in 
the model 100% accurately. Validation becomes a 
higher level problem of ensuring that the qualita- 
tive simulation accurately models physical device 
behaviour. 

Introduction 
The traditional knowledge engineering approach to build- 
ing an application in the fault diagnosis field, is to chose 
a suitable expert system development tool and manually 
enter rules which cover all the possibilities the domain spe- 
cialist can envisage. Even after a number of iterations the 
system is unlikely to be complete and consistent. Valida- 
tion of the knowledge base can be a major problem if the 
system is to be used in a live environment. 

For some systems an alternative approach is to use a 
qualitative model of a physical device and its possible fail- 
ure modes as a specification. It is then possible to generate 
a knowledge base which accurately diagnoses failure of any 
single component in the model. The problem of validation 

*Work has been carried out in collaboration with British 
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becomes the higher level issue of ensuring that the qual- 
itative simulation accurately models the behaviour of the 
physical device. We have found that this is a task the 
domain specialist can accurately perform. 

We have developed a methodology for building fault di- 
agnosis expert systems, and have tested it in an aerospace 
application. The application has driven development of 
software tools capable of being adapted to other problem 
domains. 

The application chosen was fault diagnosis of the electri- 
cal power subsystem of an on-station satellite. A real-time 
numerical simulator for the satellite had previously been 
developed, and used for operator training. This allowed 
testing of the knowledge base on real data. In addition, a 
rule-based expert system using the commercial shell En- 
visage [Systems Designers, 19861 had previously been de- 
veloped to analyse the simulator output for faults. Thus 
a direct comparison could be made with a separate expert 
system designed to perform the same task, but constructed 
via the traditional knowledge engineering methodology. 

It is our intention to build on the existing tools to de- 
velop a general purpose software environment, capable of 
automatic generation of diagnostic knowledge bases. 

Simulation of the satellite power subsystem has been 
achieved through constructing an executable model 
[Mozetic et al., 19881. The model is deep as regards the 
distinction between deep causal knowledge and shallow, op- 
emtional knowledge. We define shallow-level knowledge as 
knowledge that is sufficient for performing the task itself, 
but typically without any representation of the underly- 
ing causal mechanisms. Deep knowledge, on the other 
hand, captures an underlying causal structure and facil- 
itates reasoning from first principles. When running the 
application, explanations and advice can be derived from 
the underlying model. Take, as an example, failure of any 
relay switch in the network of switches used to route solar 
array power to charge the batteries. This will not only be 
correctly detected, but advice is given in the form of an al- 
ternative (minimum change) relay configuration that will 
restore battery charge. This information is taken straight 
from the model’s representation. 

The model is qualitative in the sense that it does not 
deal with electrical components represented numerically as 
voltages and currents over time, but with components rep- 
resented by symbolic descriptions that specify qualitative 
features. For example, in the model a voltage level may be 
considered low, normal or high. Such a qualitative mod- 
elling approach has several advantages over conventional 
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numerical modelling: 

l The qualitative view is closer to the domain specialists 
descriptions of the reasoning about the operation of 
the device. 

o To execute the model we do not have to know exact 
numerical values of the parameters in the model. 

o The qualitative simulation is computationally less 
complex that the numerical simulation. 

* The qualitative simulation can be used as a basis for 
constructing understandable explanations. 

The model is used for automatic synthesis (through simula- 
tion) of a shallow, operational representation of the knowl- 
edge. This knowledge is bulky and is compressed using an 
inductive learning algorithm. Figure 1 illustrates the vari- 
ous levels of knowledge and transformations between their 
representations. 
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Figure 1: Deep and shallow levels of knowledge 

3 Synthesising the Knowledge 
Base 

The task of generating a knowledge base is split into the 
following sub-tasks: 

9 Development of a static, qualitative component model 

* Development of heuristic knowledge about behaviour 

0 The simulation of all possible component failures to 
generate a set of examples 

e Compression of the examples to generate a diagnostic 
rule base 

The first two items jointly constitute the qualitative sim- 
ulation. This model can be tested against the behaviour 
of the physical device by simulating failure of components 
and observing results. Satisfactory model behaviour can 
be established before compression takes place. 

3.1 The qualitative component model 
The component model defines all the basic components, 
their initial states and their relationship with each other. 
Indicators used in the model are also defined stating under 
what circumstances they change value. 

In our application, the model of the power subsystem is 
based on Figure 2. 

Solar power hY Electrical 

-Y w Switching llltL?gi3iOXl 

wing Regulator Unit 

A 

power 

Batteries 4 charge 

PAYLOAD 

Figure 2: Block Diagram of Satellite Power Subsystem 

Power from the solar arrays is routed through the Ar- 
ray Switching Regulator (ASR) to supply power to the 
bus when the spacecraft is in sunlight. During eclipse the 
power comes from two batteries. The ASR contains a set 
of switches used to enable or disable solar array sections. 
During operation, a comparator detects a rise or fall in 
the bus voltage and automatically opens or closes ASR 
switches to restore the bus voltage to normal. The Elec- 
trical Integration Unit contains relay switches necessary 
for main charging or trickle charging the two batteries. 
The Prolog model contains a description of each compo- 
nent, and its relationship with upstream and downstream 
directly connected components. This is expressed using 
the camp predicate. The arguments are used to specify 
name, type, controlling device, input connections and out- 
put connections. 

comp(array2W a, El , Cl , 
[or-switch-2, asr,switch-21) . 

camp (comparator, c , Cl , 
[bus] , [asr_switch2, . . . ,asr-switchlO]) . 

These two camp clauses are used to define components 
array section $A and the comparator. Here, array sec- 
tion 3A has no downstream (input) connections, and is 
directly connected upstream (output) to both ASR switch 
2 and override switch 2. The comparator has direct input 
from the bus, and its output is connected to all the ASR 
switches. 

In order to start the model, initial states for each device 
must be specified. This is achieved using the kit-state 
predicate. The initial state may be conditional, depending 
on the state of some external factor such as the mission 
phase or the payload connected to the bus. 
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init,state (array,3A, no-power) : - 
init,state(mission,phase,eclipse). 

init,state (array_3A, power) : - 
init-state(mission-phase,post,eclipse); 
init,state(mission,phase,solstice). 

init-state(comparator,sOOOOOll~l) :- 
i&t-state (load, 3) . 

3.2 The heuristic behaviour knowledge 
Behaviour rules are used to specify the operation of the 
static component model. A set of behaviour rules exist for 
each component in the model, indicating how a change of 
state affects its neighbouring components. 

Simulation of faults in the power subsystem can be 
achieved through changing the state of the component to 
be failed, then firing the behaviour rules repeatedly until 
the system reaches a new stable state. 

The inference mechanism used is form a queue of active 
components, and to fire a behaviour rule for the compo- 
nent at the head of the queue. Behaviour rules are tested 
until one is found which can successfully fire. This is a 
deterministic operation of finding the first rule that can 
fire from a linear search of the rule set. The result of a 
rule firing will typically be to change the state of another 
component, which then joins the active component queue. 
The behaviour rules are repeatedly fired for the component 
at the head of the queue until the queue empties and the 
model reaches a static state. 

This complete process for any one component in the 
satellite model is typically executed in about a second. 

As a result of components changing state, visible indi- 
cators may also change. Indicators are observable values 
which show the status of the system at various points. In 
the satellite application, indicators are the telemetry val- 
ues which the spacecraft sends to earth at regular intervals. 
Following a simulated failure, a generated example makes 
use of the indicators as attributes, with the component 
failure as the class or decision. Two of the behaviour rules 
from the satellite application are listed: 

rule 1 : : 
if component bus of-type b is low 
and component comparator of-type c is AnyState 
then comparator takes-next-up-state. 

rule 9 : : 
if component comparator of-type c is 
s000111111 
and component asr,switch-3 of-type s is open 
then asr-switch-3 becomes closed. 

3.3 Generation of the examples 
To generate a set of failure examples, each component in 
the model is failed under every possible combination of ex- 
ternal factors on the model. This gives a complete example 
set covering all possibilities. The example set is reduced by 
applying some common sense constraints. An example is 
not considered if it is a duplicate of an existing one, or if an 
example describing a failure is identical to a normal state 
of operation with respect to the observable indicators. The 
second constraint is necessary to prevent suggestions that 

faults have occurred under normal operation. For example, 
failing a solar array during an eclipse will go undetected 
until the eclipse is over. It would be unhelpful for the sys- 
tem to suggest that during normal operation any one of 
the solar arrays could have failed! 

In the satellite example, 61 functional components were 
failed under 8 payload values 0 through 7, and 3 solar 
phases (eclipse, post eclipse and solstice). This resulted in 
1464 (61x24) examples, which reduced to 708 under the 
above constraints. 

3.4 ule Induction 
A version of the AQ rule induction algorithm called AQR 
has been used [Michalski and Larson, 1983; Clark and 
Niblett, 19871. AQR d in uces a single decision rule for each 
failure in turn. It is able to deal with conflicting examples 
by giving a rule with a disjunction of failures. Two exam- 
ples conflict if they contain identical attribute values, but 
have a different decision. This can happen in our appli- 
cation when identical telemetry indicator values are seen 
after failing different components. 

Generally the process of rule induction takes a set of 
incomplete examples as input, and forms a general rule 
which covers the example set. This can best be described 
as induction. However, in the mode&g case, the examples 
are complete and consistent and we generate performance 
rules by data compression. It the satellite application some 
75 diagnostic rules are produced from over 700 examples, 
with an average of only 3 attribute tests to identify a fault, 
where each example contained over 30 attributes. 

g software to 
The software has been developed on a Sun 3 workstation 
using Quintus Prolog. Use has been made of Puneltools II 
[Hoff, 19871 an internally developed Prolog graphics pack- 
age which provides an interface to Sun windows. 

Three separate processes have been developed: 

A non-interactive analysis program which systemat- 
ically fails every component in the model for every 
external factor. The output of this program is a file 
of examples. 

Rule induction on the set of examples using a version 
of the AQ algorithm. Again this is not interactive, 
and its output is a file of diagnostic rules. 

A graphical, interactive diagnostic program which 
uses the output from the induction process to diag- 
nose faults introduced in the model. This program 
combines simulation of component failure with expert 
system diagnosis using the knowledge base. 

The user interface consists of a graphical qualitative sim- 
ulation of the satellite power subsystem in which compo- 
nents such as switches and solar array panels are seen to 
change state. Using a mouse the user of the system can 
fail components, view the graphical simulation and receive 
advice from the diagnostic knowledge base, which detects 
invalid patterns in the status indicators. The user may, 
in response to a piece of advice, perform the action such 
as closing a switch to verify the expert system’s advice is 
correct. 
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5 Comparison with the o Type checking 

hand-crafted system 0 Incompleteness 

The two knowledge based systems, both designed to detect 
the same set of component failures, are compared in two 
different ways. Firstly, the real-time satellite simulator was 
used to create telemetry data files covering a range of dif- 
ferent failure situations. Each KB was then run using this 
data as input. Secondly, the internal integrity of each KB 
is checked using the Knowledge Integrity Checker (KIC) 
[Pearce, 19871, a tool previously developed at the Turing 
Institute. 

e Subsumption 

The Envisage system contains roughly 110 rules split 
fairly evenly between forward chaining, and backward 
chaining rules. The forward chaining rules are used to 
control the execution from one KB area to another, while 
the backward chaining rules are used to assign values to 
attributes. Total development time was of the order of 6 
man months. 

Both knowledge bases required conversion into a Horn 
clause format before they could be suitable for input to 
the KIC. This was straightforward in both cases. The 
rule induced knowledge base was automatically converted 
to change the form of each rule, to which manually con- 
structed type information was added. The other knowl- 
edge base, developed using the Envisage shell from Systems 
Designers PLC., had to be manually converted. Again, 
type information was added. Although Envisage supports 
a fairly rich environment for developing applications, the 
underlying logic of the rules mapped easily onto Horn 
clause logic. 

The rule induced KB contains some 75 rules which for- 
ward chain from telemetry indicator values to reach a di- 
agnosis. This is the executable set of rules used for com- 
parison. However, for maintainability, the behaviour rules 
in the model are used. There are 64 high-level behaviour 
rules used to describe the operation of the power subsys- 
tem. Total development time for the modelling approach 
was of the order of 3 to 4 man months. 

Running the induced knowledge base through the in- 
tegrity checker showed up no errors or inconsistencies. On 
the other hand, when the Envisage knowledge base was 
checked, the following problems were noted: 

1. A type error which would prevent one rule from ever 
successfully firing. 

2. Two unreachable clauses, which could be removed. 

3. Four dead-end clauses, which indicated the definition 
of a particular predicate was incomplete. 

Figure 3 summarises the results: 

5.1 Testing KB on simulator data 
At present the satellite has not been launched. Telemetry 
data is not available therefore the simulator has been used. 
When the induced rules were tested on a small (14) set 
of failure situations created using the real-time satellite 
simulator, a 100% success rate was achieved in correctly 
diagnosing the faulty component. 

This compares favourably with the manually con- 
structed expert system which managed to detect 10 out 
of the 14 as failures, a 72% success rate. 

Although the sample size is too small to give accurate 
success rates, it is evident that the manually constructed 
rules contain omissions, which are not present in the auto- 
matically synthesised rule base. 

5.2 Checking Ml3 rule integrity 
Confidence in the internal integrity of a knowledge based 
system can be increased through the use of the Knowledge 
Integrity Checker (KIC) which takes the knowledge base as 
an input, and produces as output a set of rules which have 
been identified as possible errors. The system indicates 
possible omissions, contradictions and errors, giving the 
system designer a powerful facility to help development 
and debugging of a knowledge based application. 

The software has been developed in Quintus Prolog on 
a Sun workstation. KIC performs validation on knowledge 
bases represented in a Horn clause format, through de- 
tecting logical, structural and semantic inconsistencies in 
the rule base. The following inconsistencies are capable of 
being detected: 

e Unreachable clauses 

* Dead-end clauses 

e Cyclic clauses 
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Figure 3: Comparison of results 

6 Conclusion of the study 
For fault diagnostic applications, the study has shown that 
qualitative modelling techniques can be used to substantial 
benefit. 

* Synthesised diagnostic rules are 100% accurate with 
respect to the model. 



o Qualitative models are easily constructed using a logic 
programming representation, and are extensible. 

8 Applications can be constructed more cheaply, requir- 
ing less of the domain specialists valuable time. 

8 Explanations during execution are improved through 
the ability to refer to the underlying structure of the 
device. 

o Validation is easy for the domain specialist to perform, 
especially if the model simulation is interfaced to a 
graphical display. 

7 Future Plans 
The current plan is to develop and build on the techniques 
used to date to produce a general purpose modelling en- 
vironment for constructing diagnosis expert system appli- 
cations. Research into current developments in qualitative 
modelling will be pursued to ensure the process of mapping 
the real world to a model can be achieved with elegance 
and efficiency. 

7.1 Production of a general purpose 
environment 

Development of the modelling environment will be driven 
by one or more significant application. Careful choice of 
application will ensure that the modelling environment will 
support similar types of application in a different problem 
domain. One of the chosen applications will be in the 
fault diagnosis field, although it is hoped other types of 
application can be identified which will fit the model. For 
example, design or planning problems may be possible to 
be tackled using the environment. 

7.2 ult iple faults 
The present modelling software assumes single failure op- 
eration, rather than combinations of failures. In the satel- 
lite application this is suflicient, as the hardware is de- 
signed with single-fault tolerance and all operations are 
built around this premise. It is therefore reasonable that 
single component failure diagnosis is performed. 

However, for many other diagnostic applications, single 
failure cannot be assumed. In these cases the model repre- 
sentation must be capable of handling double or multiple 
combinations of failures. It will be necessary to apply cer- 
tain constraints on permissible multiple failures, otherwise 
exponential growth will occur in the systematic simulation 
and hence the example set. In (Mozetic et al., 19881 a qual- 
itative model of the heart is built to interpret ECG signals. 
Here multiple combinations of some 30 basic disorders are 
dealt with in the model. However, a maximum of seven of 
these were medically possible at one time, and further con- 
straints such as disregarding logically and physiologically 
impossible combinations, and also medically uninteresting 
states further reduced the possibilities. 

7.3 Hierarchical modelling 
Hierarchical modelling could allow the division of a model 
into logically separate parts, with the ability to define sub- 
parts, and specify a relationship between the various levels 
and units on the same level. 

This would allow large models to be more easily main- 
tained, and would also facilitate a graphical representation 
of the model on the screen with an ability to expand and 
hide sub-modules. 

7.4 Time based reasoning 
Implementation of time-based reasoning can open up areas 
previously ill-suited to a qualitative modelling approach. 
The current system assumes that any component in the 
model will only change state as a direct result of some 
other component-based action. It could be possible to 
model time as a qualitative entity, and allow definitions 
of components against time. A timed-based simulation 
could be achieved by stepping through time units, where 
units are defined according to the particular application. 
In the satellite application, this would allow elegant mod- 
elling of such functions as a battery losing its charge during 
an eclipse etc. QSIM, the qualitative simulation developed 
by Kuipers [Kuipers, 19861 allows such time based simula- 
tion. In this system components may be defined as mono- 
tonically increasing, decreasing or remaining constant over 
time. 
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