
The Induction of Fault iagnosis Systems from uakitative S*

D.A. Pearce
The Turing Institute

36 North Hanover St, Glasgow, Scotland

Abstract
This paper describes a methodology for the auto-
matic construction of diagnostic expert systems,
and its application for fault diagnosis of a satel-
lite’s electrical power subsystem.
The synthesised knowledge base is compared with
an existing expert system for the same applica-
tion built using a commercial expert system shell.
Both systems have been tested using a real-time
satellite simulator which has the capability to fail
components.
A traditional knowledge-engineering approach in-
volves building a prototype which is refined until
satisfactory results are obtained. This process is
error-ridden, as even in small systems, rules can
conflict, be irrelevant, or missing. It is never clear
when a system is complete and validation is al-
ways difficult.
As an alternative, a fault diagnostic knowledge
base can be automatically synthesised from a
qualitative model of the device. This is achieved
by systematically simulating all component fail-
ures. Individual failures are used as examples. A
learning algorithm is applied to the examples to
output a set of diagnostic rules. The resulting
rules are complete and consistent with the quali-
tative model and diagnose component failures in
the model 100% accurately. Validation becomes a
higher level problem of ensuring that the qualita-
tive simulation accurately models physical device
behaviour.

Introduction
The traditional knowledge engineering approach to build-
ing an application in the fault diagnosis field, is to chose
a suitable expert system development tool and manually
enter rules which cover all the possibilities the domain spe-
cialist can envisage. Even after a number of iterations the
system is unlikely to be complete and consistent. Valida-
tion of the knowledge base can be a major problem if the
system is to be used in a live environment.

For some systems an alternative approach is to use a
qualitative model of a physical device and its possible fail-
ure modes as a specification. It is then possible to generate
a knowledge base which accurately diagnoses failure of any
single component in the model. The problem of validation

*Work has been carried out in collaboration with British
Aerospace with funding from the European Space Agency

becomes the higher level issue of ensuring that the qual-
itative simulation accurately models the behaviour of the
physical device. We have found that this is a task the
domain specialist can accurately perform.

We have developed a methodology for building fault di-
agnosis expert systems, and have tested it in an aerospace
application. The application has driven development of
software tools capable of being adapted to other problem
domains.

The application chosen was fault diagnosis of the electri-
cal power subsystem of an on-station satellite. A real-time
numerical simulator for the satellite had previously been
developed, and used for operator training. This allowed
testing of the knowledge base on real data. In addition, a
rule-based expert system using the commercial shell En-
visage [Systems Designers, 19861 had previously been de-
veloped to analyse the simulator output for faults. Thus
a direct comparison could be made with a separate expert
system designed to perform the same task, but constructed
via the traditional knowledge engineering methodology.

It is our intention to build on the existing tools to de-
velop a general purpose software environment, capable of
automatic generation of diagnostic knowledge bases.

Simulation of the satellite power subsystem has been
achieved through constructing an executable model
[Mozetic et al., 19881. The model is deep as regards the
distinction between deep causal knowledge and shallow, op-
emtional knowledge. We define shallow-level knowledge as
knowledge that is sufficient for performing the task itself,
but typically without any representation of the underly-
ing causal mechanisms. Deep knowledge, on the other
hand, captures an underlying causal structure and facil-
itates reasoning from first principles. When running the
application, explanations and advice can be derived from
the underlying model. Take, as an example, failure of any
relay switch in the network of switches used to route solar
array power to charge the batteries. This will not only be
correctly detected, but advice is given in the form of an al-
ternative (minimum change) relay configuration that will
restore battery charge. This information is taken straight
from the model’s representation.

The model is qualitative in the sense that it does not
deal with electrical components represented numerically as
voltages and currents over time, but with components rep-
resented by symbolic descriptions that specify qualitative
features. For example, in the model a voltage level may be
considered low, normal or high. Such a qualitative mod-
elling approach has several advantages over conventional

Pearce 353

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

numerical modelling:

l The qualitative view is closer to the domain specialists
descriptions of the reasoning about the operation of
the device.

o To execute the model we do not have to know exact
numerical values of the parameters in the model.

o The qualitative simulation is computationally less
complex that the numerical simulation.

* The qualitative simulation can be used as a basis for
constructing understandable explanations.

The model is used for automatic synthesis (through simula-
tion) of a shallow, operational representation of the knowl-
edge. This knowledge is bulky and is compressed using an
inductive learning algorithm. Figure 1 illustrates the vari-
ous levels of knowledge and transformations between their
representations.

Causal Model DEEP
LEVEL

Qualitative Simulation

v

Operational Knowledge SHALLOW

cJ=w LEVEL

I

Learning Program

L5 Compressed Operational
Knowledge SHALLOW

(9W
LEVEL

Figure 1: Deep and shallow levels of knowledge

3 Synthesising the Knowledge
Base

The task of generating a knowledge base is split into the
following sub-tasks:

9 Development of a static, qualitative component model

* Development of heuristic knowledge about behaviour

0 The simulation of all possible component failures to
generate a set of examples

e Compression of the examples to generate a diagnostic
rule base

The first two items jointly constitute the qualitative sim-
ulation. This model can be tested against the behaviour
of the physical device by simulating failure of components
and observing results. Satisfactory model behaviour can
be established before compression takes place.

3.1 The qualitative component model
The component model defines all the basic components,
their initial states and their relationship with each other.
Indicators used in the model are also defined stating under
what circumstances they change value.

In our application, the model of the power subsystem is
based on Figure 2.

Solar power hY Electrical

-Y w Switching llltL?gi3iOXl

wing Regulator Unit

A

power

Batteries 4 charge

PAYLOAD

Figure 2: Block Diagram of Satellite Power Subsystem

Power from the solar arrays is routed through the Ar-
ray Switching Regulator (ASR) to supply power to the
bus when the spacecraft is in sunlight. During eclipse the
power comes from two batteries. The ASR contains a set
of switches used to enable or disable solar array sections.
During operation, a comparator detects a rise or fall in
the bus voltage and automatically opens or closes ASR
switches to restore the bus voltage to normal. The Elec-
trical Integration Unit contains relay switches necessary
for main charging or trickle charging the two batteries.
The Prolog model contains a description of each compo-
nent, and its relationship with upstream and downstream
directly connected components. This is expressed using
the camp predicate. The arguments are used to specify
name, type, controlling device, input connections and out-
put connections.

comp(array2W a, El , Cl ,
[or-switch-2, asr,switch-21) .

camp (comparator, c , Cl ,
[bus] , [asr_switch2, . . . ,asr-switchlO]) .

These two camp clauses are used to define components
array section $A and the comparator. Here, array sec-
tion 3A has no downstream (input) connections, and is
directly connected upstream (output) to both ASR switch
2 and override switch 2. The comparator has direct input
from the bus, and its output is connected to all the ASR
switches.

In order to start the model, initial states for each device
must be specified. This is achieved using the kit-state
predicate. The initial state may be conditional, depending
on the state of some external factor such as the mission
phase or the payload connected to the bus.

354 Common Sense Reasoning

init,state (array,3A, no-power) : -
init,state(mission,phase,eclipse).

init,state (array_3A, power) : -
init-state(mission-phase,post,eclipse);
init,state(mission,phase,solstice).

init-state(comparator,sOOOOOll~l) :-
i&t-state (load, 3) .

3.2 The heuristic behaviour knowledge
Behaviour rules are used to specify the operation of the
static component model. A set of behaviour rules exist for
each component in the model, indicating how a change of
state affects its neighbouring components.

Simulation of faults in the power subsystem can be
achieved through changing the state of the component to
be failed, then firing the behaviour rules repeatedly until
the system reaches a new stable state.

The inference mechanism used is form a queue of active
components, and to fire a behaviour rule for the compo-
nent at the head of the queue. Behaviour rules are tested
until one is found which can successfully fire. This is a
deterministic operation of finding the first rule that can
fire from a linear search of the rule set. The result of a
rule firing will typically be to change the state of another
component, which then joins the active component queue.
The behaviour rules are repeatedly fired for the component
at the head of the queue until the queue empties and the
model reaches a static state.

This complete process for any one component in the
satellite model is typically executed in about a second.

As a result of components changing state, visible indi-
cators may also change. Indicators are observable values
which show the status of the system at various points. In
the satellite application, indicators are the telemetry val-
ues which the spacecraft sends to earth at regular intervals.
Following a simulated failure, a generated example makes
use of the indicators as attributes, with the component
failure as the class or decision. Two of the behaviour rules
from the satellite application are listed:

rule 1 : :
if component bus of-type b is low
and component comparator of-type c is AnyState
then comparator takes-next-up-state.

rule 9 : :
if component comparator of-type c is
s000111111
and component asr,switch-3 of-type s is open
then asr-switch-3 becomes closed.

3.3 Generation of the examples
To generate a set of failure examples, each component in
the model is failed under every possible combination of ex-
ternal factors on the model. This gives a complete example
set covering all possibilities. The example set is reduced by
applying some common sense constraints. An example is
not considered if it is a duplicate of an existing one, or if an
example describing a failure is identical to a normal state
of operation with respect to the observable indicators. The
second constraint is necessary to prevent suggestions that

faults have occurred under normal operation. For example,
failing a solar array during an eclipse will go undetected
until the eclipse is over. It would be unhelpful for the sys-
tem to suggest that during normal operation any one of
the solar arrays could have failed!

In the satellite example, 61 functional components were
failed under 8 payload values 0 through 7, and 3 solar
phases (eclipse, post eclipse and solstice). This resulted in
1464 (61x24) examples, which reduced to 708 under the
above constraints.

3.4 ule Induction
A version of the AQ rule induction algorithm called AQR
has been used [Michalski and Larson, 1983; Clark and
Niblett, 19871. AQR d in uces a single decision rule for each
failure in turn. It is able to deal with conflicting examples
by giving a rule with a disjunction of failures. Two exam-
ples conflict if they contain identical attribute values, but
have a different decision. This can happen in our appli-
cation when identical telemetry indicator values are seen
after failing different components.

Generally the process of rule induction takes a set of
incomplete examples as input, and forms a general rule
which covers the example set. This can best be described
as induction. However, in the mode&g case, the examples
are complete and consistent and we generate performance
rules by data compression. It the satellite application some
75 diagnostic rules are produced from over 700 examples,
with an average of only 3 attribute tests to identify a fault,
where each example contained over 30 attributes.

g software to
The software has been developed on a Sun 3 workstation
using Quintus Prolog. Use has been made of Puneltools II
[Hoff, 19871 an internally developed Prolog graphics pack-
age which provides an interface to Sun windows.

Three separate processes have been developed:

A non-interactive analysis program which systemat-
ically fails every component in the model for every
external factor. The output of this program is a file
of examples.

Rule induction on the set of examples using a version
of the AQ algorithm. Again this is not interactive,
and its output is a file of diagnostic rules.

A graphical, interactive diagnostic program which
uses the output from the induction process to diag-
nose faults introduced in the model. This program
combines simulation of component failure with expert
system diagnosis using the knowledge base.

The user interface consists of a graphical qualitative sim-
ulation of the satellite power subsystem in which compo-
nents such as switches and solar array panels are seen to
change state. Using a mouse the user of the system can
fail components, view the graphical simulation and receive
advice from the diagnostic knowledge base, which detects
invalid patterns in the status indicators. The user may,
in response to a piece of advice, perform the action such
as closing a switch to verify the expert system’s advice is
correct.

Pearce 355

5 Comparison with the o Type checking

hand-crafted system 0 Incompleteness

The two knowledge based systems, both designed to detect
the same set of component failures, are compared in two
different ways. Firstly, the real-time satellite simulator was
used to create telemetry data files covering a range of dif-
ferent failure situations. Each KB was then run using this
data as input. Secondly, the internal integrity of each KB
is checked using the Knowledge Integrity Checker (KIC)
[Pearce, 19871, a tool previously developed at the Turing
Institute.

e Subsumption

The Envisage system contains roughly 110 rules split
fairly evenly between forward chaining, and backward
chaining rules. The forward chaining rules are used to
control the execution from one KB area to another, while
the backward chaining rules are used to assign values to
attributes. Total development time was of the order of 6
man months.

Both knowledge bases required conversion into a Horn
clause format before they could be suitable for input to
the KIC. This was straightforward in both cases. The
rule induced knowledge base was automatically converted
to change the form of each rule, to which manually con-
structed type information was added. The other knowl-
edge base, developed using the Envisage shell from Systems
Designers PLC., had to be manually converted. Again,
type information was added. Although Envisage supports
a fairly rich environment for developing applications, the
underlying logic of the rules mapped easily onto Horn
clause logic.

The rule induced KB contains some 75 rules which for-
ward chain from telemetry indicator values to reach a di-
agnosis. This is the executable set of rules used for com-
parison. However, for maintainability, the behaviour rules
in the model are used. There are 64 high-level behaviour
rules used to describe the operation of the power subsys-
tem. Total development time for the modelling approach
was of the order of 3 to 4 man months.

Running the induced knowledge base through the in-
tegrity checker showed up no errors or inconsistencies. On
the other hand, when the Envisage knowledge base was
checked, the following problems were noted:

1. A type error which would prevent one rule from ever
successfully firing.

2. Two unreachable clauses, which could be removed.

3. Four dead-end clauses, which indicated the definition
of a particular predicate was incomplete.

Figure 3 summarises the results:

5.1 Testing KB on simulator data
At present the satellite has not been launched. Telemetry
data is not available therefore the simulator has been used.
When the induced rules were tested on a small (14) set
of failure situations created using the real-time satellite
simulator, a 100% success rate was achieved in correctly
diagnosing the faulty component.

This compares favourably with the manually con-
structed expert system which managed to detect 10 out
of the 14 as failures, a 72% success rate.

Although the sample size is too small to give accurate
success rates, it is evident that the manually constructed
rules contain omissions, which are not present in the auto-
matically synthesised rule base.

5.2 Checking Ml3 rule integrity
Confidence in the internal integrity of a knowledge based
system can be increased through the use of the Knowledge
Integrity Checker (KIC) which takes the knowledge base as
an input, and produces as output a set of rules which have
been identified as possible errors. The system indicates
possible omissions, contradictions and errors, giving the
system designer a powerful facility to help development
and debugging of a knowledge based application.

The software has been developed in Quintus Prolog on
a Sun workstation. KIC performs validation on knowledge
bases represented in a Horn clause format, through de-
tecting logical, structural and semantic inconsistencies in
the rule base. The following inconsistencies are capable of
being detected:

e Unreachable clauses

* Dead-end clauses

e Cyclic clauses

356 Common Sense Reasoning

Documentation

Figure 3: Comparison of results

6 Conclusion of the study
For fault diagnostic applications, the study has shown that
qualitative modelling techniques can be used to substantial
benefit.

* Synthesised diagnostic rules are 100% accurate with
respect to the model.

o Qualitative models are easily constructed using a logic
programming representation, and are extensible.

8 Applications can be constructed more cheaply, requir-
ing less of the domain specialists valuable time.

8 Explanations during execution are improved through
the ability to refer to the underlying structure of the
device.

o Validation is easy for the domain specialist to perform,
especially if the model simulation is interfaced to a
graphical display.

7 Future Plans
The current plan is to develop and build on the techniques
used to date to produce a general purpose modelling en-
vironment for constructing diagnosis expert system appli-
cations. Research into current developments in qualitative
modelling will be pursued to ensure the process of mapping
the real world to a model can be achieved with elegance
and efficiency.

7.1 Production of a general purpose
environment

Development of the modelling environment will be driven
by one or more significant application. Careful choice of
application will ensure that the modelling environment will
support similar types of application in a different problem
domain. One of the chosen applications will be in the
fault diagnosis field, although it is hoped other types of
application can be identified which will fit the model. For
example, design or planning problems may be possible to
be tackled using the environment.

7.2 ult iple faults
The present modelling software assumes single failure op-
eration, rather than combinations of failures. In the satel-
lite application this is suflicient, as the hardware is de-
signed with single-fault tolerance and all operations are
built around this premise. It is therefore reasonable that
single component failure diagnosis is performed.

However, for many other diagnostic applications, single
failure cannot be assumed. In these cases the model repre-
sentation must be capable of handling double or multiple
combinations of failures. It will be necessary to apply cer-
tain constraints on permissible multiple failures, otherwise
exponential growth will occur in the systematic simulation
and hence the example set. In (Mozetic et al., 19881 a qual-
itative model of the heart is built to interpret ECG signals.
Here multiple combinations of some 30 basic disorders are
dealt with in the model. However, a maximum of seven of
these were medically possible at one time, and further con-
straints such as disregarding logically and physiologically
impossible combinations, and also medically uninteresting
states further reduced the possibilities.

7.3 Hierarchical modelling
Hierarchical modelling could allow the division of a model
into logically separate parts, with the ability to define sub-
parts, and specify a relationship between the various levels
and units on the same level.

This would allow large models to be more easily main-
tained, and would also facilitate a graphical representation
of the model on the screen with an ability to expand and
hide sub-modules.

7.4 Time based reasoning
Implementation of time-based reasoning can open up areas
previously ill-suited to a qualitative modelling approach.
The current system assumes that any component in the
model will only change state as a direct result of some
other component-based action. It could be possible to
model time as a qualitative entity, and allow definitions
of components against time. A timed-based simulation
could be achieved by stepping through time units, where
units are defined according to the particular application.
In the satellite application, this would allow elegant mod-
elling of such functions as a battery losing its charge during
an eclipse etc. QSIM, the qualitative simulation developed
by Kuipers [Kuipers, 19861 allows such time based simula-
tion. In this system components may be defined as mono-
tonically increasing, decreasing or remaining constant over
time.

eferences
[Clark and Niblett, 19871 Peter Clark and Tim Niblett.

Induction in noisy domains. In I. Bratko and N.
Lavrac, editors, Progress in Machine Learning (pro-
ceedings of the 2nd European Working Session on
Learning), Sigma, Wilmslow, UK, 1987.

[Systems Designers, 19861 Systems Designers. Envisage
Reference Manual. Technical Report, Systems De-
signers PLC, Camberly, Surrey, 1986.

[Hoff, 19871 A.A. V an Hoff. Paneltools II Documentation
and Reference Manual. Technical Report, The Turing
Institute, Glasgow, 1987.

[Kuipers, 19861 B. Kuipers. Qualitative simulation. Arti-
ficial Intelligence, 29(3):289-338, 1986.

[Michalski and Larson, 19831 R. S. Michalski and I. Lar-
son. Incremental generation of VL1 hypotheses: the
underlying methodology and the description of pro-
gram A&U. Technical Report IS@ 83-5, The Univer-
sity of of Illinois at Urbana-Champaign, Department
of Computer Science, Urbana, 1983.

[Mozetic et al., 19881 I. Mozetic, I. Bratko, and N. Lavrac.
Automatic synthesis and compression of cardiological
knowledge. Machine Intelligence 11, 1988.

[Mycroft and O’Keefe, 19841 A. Mycroft and R.A.
O’Keefe. A polymorphic type system for PROLOG.
Artificial Intelligence, 23:295-307, 1984.

[Pearce, 19871 D. Pearce. KIC: A Knowledge Integrity
Checker. TIRM 87-025, The Turing Institute, Glas-
gow, 1987.

Pearce 357

