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Abstract 

Reasoning about change requires predicting how 
long a proposition, having become true, will con- 
tinue to be so. Lacking perfect knowledge, an 
agent may be constrained to believe that a propo- 
sition persists indefinitely simply because there 
is no way for the agent to infer a contravening 
proposition with certainty. In this paper, we de- 
scribe a theory of causal reasoning under uncer- 
tainty. Our theory uses easily obtainable statisti- 
cal data to provide expectations concerning how 
long propositions are likely to persist in the ab- 
sence of specific knowledge to the contrary. We 
consider a number of issues that arise in combin- 
ing evidence, and describe an approach to com- 
puting probabilistic assessments of the sort li- 
censed by our theory. 

The common-sense law of inertia [McCarthy, 19861 states 
that a proposition once made true remains so until some- 
thing makes it false. Given perfect knowledge of initial 
conditions and a complete predictive model, the law of in- 
ertia is sufficient for accurately inferring the persistence 
of effects. In most circumstances, however, our predictive 
models and our knowledge of initial conditions are less than 
perfect. The law of inertia requires that, in order to in- 
fer that a proposition ceases to be true, we must predict 
an event, with a contravening effect. Such predictions are 
often difficult to make. Consider the following examples: 

o a cat is sleeping on the couch in your living room 
e you leave your umbrella on the 8:15 commuter train 
o a client on the telephone is asked to hold 

In each case, there is some proposition initially observed 
to be true, and the task is to determine if it will be true 
at, some later time. The cat may sleep undisturbed for an 
hour or more, but is extremely unlikely to remain in the 
same spot for more than six hours. Your umbrella will 
probably not be sitting on the seat when you catch the 
train the next morning. The client will probably hold for 
a few minutes, but only the most determined of clients will 
be on the line after 15 minutes. Sometimes we can make 
more accurate predictions (e.g., a large barking dog runs 
into the living room), but, lacking specific evidence, we 
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would like past experience to provide an estimate of how 
long certain propositions are likely to persist. 

Figure 1: Precipitating events 

Events precipitate change in the world, and it is our 
knowledge of events that enables us to make useful pre- 
dictions about the future. For any proposition P that can 
hold in a situation, there are some number of general sorts 
of events (referred to as event types) that can affect P (i.e., 
make P true or false). For any particular situation, there 
are some number of specific events (referred to as event in- 
stances) that occur. Let 0 correspond to the set, of events 
that occur at time t, A correspond to that subset of 0 that 
affect P, K(0) that subset of 0 known to occur at time t, 
and K(A) that subset of A whose type is known to affect P. 
Figure 1 illustrates how these sets might relate to one an- 
other in a specific situation. In many cases, K(0) n K(A) 
will be empty while A is not, and it may still be possible 
to provide a reasonable assessment of whether or not, P is 
true at t. In this paper, we provide a probabilistic account 
of how such assessments can be made. 

2 Prediction an Persistence 
In the following, we distinguish between two kinds of 
propositions: propositions, traditionally referred to as flu- 
ents, which, if they become true, tend to persist, without 
additional effort, and propositions, corresponding to the 
occurrence of events, which, if true at, a point,, tend to pre- 
cipitate or trigger change in the world. Let (P, t) indicate 
that the fluent, P is true at time t, and (E, t) indicate that 
an event of type E occurs at time t. We use the nota- 
tion Ep to indicate an event corresponding to the fluent 
P becoming true. 

Given our characterization of fluents as propositions that 
tend to persist, whether or not P is true at some time t 
may depend upon whether or not it, was true at some t-A, 
where A > 0. We can represent, this dependency as follows: 

Pm m=P((R t> I (P, t - WP((P, t - A>> + (1) 
P((P7 t> I +p> t - m+(P, t - A>) 

The conditional probability p( (P, t) 1 (P, t - A)) is re- 
ferred to as a survivor function in classical queuing theory 
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[Syski, 19791. S urvivor functions capture the tendency of 
propositions to become false as a consequence of events 
with contravening effects; one needn’t be aware of a spe- 
cific instance of an event with a contravening effect in order 
to predict that P will cease being true. As an example of 
a survivor function, 

p((P, t) 1 (P, t - A)) = em’* (2) 
indicates that the probability that P persists drops off as 
a function of the time since P was last observed to be true 
at an exponential rate determined by X. It is possible to 
efficiently construct an appropriate survivor function by 
tracking P over many instances of P becoming true [Dean 
and Kanazawa, 19871. R e f erring back to Figure 1, survivor 
functions account for that subset of A corresponding to 
events that make P false, assuming that K(A) = (1. 

If we have evidence concerning specific events known to 
affect P (i.e., K(A)nK(O) # {}), (1) is inadequate. As an 
interesting special case of how to deal with events known 
to affect P, suppose that we know about all events that 
make P true (i.e., we know p( (Ep , t)) for any value of t), 
and none of the events that make P false. In particular, 
suppose that P corresponds to John being at the airport, 
and Ep corresponds to the arrival of John’s flight. We’re 
interested in whether or not John will still be waiting at the 
airport when we arrive to pick him up. Let esxA represent 
John’s tendency to hang around airports, where A is a 
measure of his impatience. If f(t) = p( (Ep, t)), then 

J 
t P((PYG) = --oo f(z)e-x(t-z)dz (3) 

A problem with (3) is that it fails to account for infor- 
mation concerning specific events known to make P false. 
Suppose, for instance, that E-p corresponds to Fred meet- 
ing John at the airport and giving him a ride to his hotel. 
If g(t) = P((J%P, t)), then 

PUP&) = 
J 

t 
--oo 

f(z)e-x(t-8) [l - l g(x)&r] dz (4) 

is a good approximation in certain cases. Figure 2 illus- 
trates the sort of inference licensed by (4). 
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Figure 2: Probabilistic predictions 

Equation (4) has problems also; in some cases, it counts 
certain events twice leading to significant errors. To com- 
bine the available evidence correctly, it will help if we 
distinguish the different sorts of knowledge that might 
be brought to bear on estimating whether or not P is 
true. The equation shown in Figure 3 makes the neces- 
sary distinctions and indicates how the evidence should be 
combinedl. 

‘In order to justify our use of the generalized 
in (51, we assume that p((EIJ, t> A (E-e, t)) = 0. 

addition law 

Consider the contribution of the individual terms cor- 
responding to the conditional probabilities labeled Nl 
through N6 in (5). Nl accounts for natural attrition: the 
tendency for propositions to become false given no direct 
evidence of events known to affect P. N2 and N5 account 
for causaZ accretion: accumulating evidence for P due to 
events known to make P true. N2 and N5 are generally 
1. N3 and N6, on the other hand, are generally 0, since 
evidence of 1P becoming true does little to convince us 
that P is true. Finally, N4 accounts for spontaneous cuu- 
sution: the tendency for propositions to suddenly become 
true with no direct evidence of events known to affect P. 

PUPJ)) = (5) 
p((P, t) 1 (P, t - A) A -((EP, t> V (E,P,~))) (Nl) 
* p((P,t - A> A~(@‘P,~) V (E-P>~))) 

+p((P,t) I (P,t - A> A Ubt)) W2) 
* p((P,t - A> A (EP>~)) 

+p((P, t> I (P, t - A> A (E-P, t)> m 
* p((P,t - A> A (E-4)) 

+p((P,t) I +‘,t - A> A ~((EPJ) V (E,P,~))) (N4) 
* p(+‘,t - A) Al((Ep,t) V (E-r~d))) 

+p((P,t) I l(P,t - A> A @PJ)) W) 
* P(-(P,t - A> A (EP,~)) 

+p((P,t) I +‘,t - A> A (E,P,~)) W) 
* p(+ t - A) A (KP, t)) 

Figure 3: Combining evidence about persistence 

By using a discrete approximation of time and fixing A, 
it is possible both to acquire the necessary values for some 
of the terms Nl through N6 and to use them in making 
useful predictions [Dean and Kanazawa, 19871. If time is 
represented as the integers, and A = 1, we note that the 
law of inertia applies in those situations in which the terms 
Nl, N2, and N5 are always 1 and the other terms are always 
0. In the rest of this paper, we assume that time is discrete 
and linear and that the time separating any two consec- 
utive time points is A. Only evidence concerning events 
known to make P true is brought to bear on p( (Ep, t)). If 
p( (Ep, t)) were used to summarize all evidence concerning 
events known to make P true, then Nl would be 1. 

Before we consider the issues involved in making predic- 
tions using knowledge concerning Nl through N6, we need 
to add to our theory some means of predicting additional 
events. We consider the case of one event causing another 
event. The conditional probability 

p((&,t+c) 1 (PlAP2-APn,t) A (Ed)) =* (6) 
indicates that, if an event of type El occurs at time t, and 
PI through P, are true at t, then an event of type E2 will 
occur following t by some 6 > 0 with probability R. If the 
caused event is of a type Ep, this is often referred to as 
persistence causation [McDermott, 19821. 

rejection Problem 
The projection problem [Dean and McDermott, 19871 in- 
volves computing the consequences of a set of conditions 
(observations) given a set of cause-and-effect relations re- 
ferred to as cuusul rules. In [Dean and Kanazawa, 19871, 
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we describe a probabilistic projection problem that natu- 
rally extends the deterministic version. The task in prob- 
abilistic projection is to assign each propositional variable 
of the form (P, t) a certainty measure consistent with the 
constraints specified in the problem. In this section, we 
provide examples drawn from a simple factory domain that 
illustrate the sort of inference required in probabilistic pro- 
jection. We begin by introducing some new event types: 

El= “The mechanic on duty cleans up the shop” 
E2= “Fred tries to assemble Widget17 in RoomlOl” 

and fluents: 
PI = “The location of Wrench14 is RoomlOl” 
P2 = “The location of Screwdriver31 is RoomlOl” 
P3 = “Widget 17 is completely assembled” 

We assume that tools are occasionally displaced in a 
busy shop, and that PI and P2 are both subject to an 
exponential persistence decay with a half life of one day; 
this determines Nl in equation (5). For i = 1 and i = 2: 

p((Pi,t) 1 (F&t - A)A~(Epi,t)A~(E,pi,t)) = esXA (7) 

The other terms in (5), N2, N3, N4, N5, and N6, we will 
assume to be, respectively, 1, 0, 0, 1, and 0. When the 
mechanic on duty cleans up the shop, he is supposed to put 
all of the tools in their appropriate places. In particular, 
Wrench14 and Screwdriver31 are supposed to be returned 
to RoomlOl. In the first example, henceforth Example 1, 
we assume that the mechanic is very diligent: 

P&Q+ + 6) A (EP,,~ + e> I (El,t)) = 1.0 (8) 
Fred’s competence in assembling widgets depends upon 
his tools being in the right place. In particular, if Screw- 
driver31 and Wrench14 are in RoomlOl, then it is certain 
that Fred will successfully assemble Widget 17. 

p((EpJ+ f) 1 (ht)A(P2,t) A (Ed)) = 1.0 (9) 
Let TO correspond to 12:00 PM 2/29/88, and T.2 corre- 
spond to 12:00 PM on the following day. Assume that E is 
negligible given the events we are concerned with (i.e., we 
will add or subtract c in order to simplify the analysis). 

P&%J'O)) = 0.7 (10) 
P((E~,T~)) = 1.0 (11) 

Let BELL(A) d enote an estimate of the likelihood of A 
given all of the evidence available. We are interested in 
assigning A a certainty measure consistent with the ax- 
ioms of probability theory. We will sketch a method for 
deriving such a measure noting some, but not all, of the 
assumptions required to make the derivations follow from 
the problem specification and the axioms of probability. 
What can we say about BEL((P~, Tl + E))? In this par- 
ticular example, we can begin with 

J=L((P3,T1 + e)) 

= PWP,, ~'1 + 4) 

= p((-G,,TJ + E) 1 (PI A J'2rTl) A(E2,TJ)) 

* P((PI AP2,TJ)A(E2,T-Z)) 

= P((& A P2, TJ)A(E2,Tl)) 

= P((PI AP2, T1)) 

The last step depends on the assumption that the ev- 
idence supporting (PI A P2, T1) and (E2, Tl) are inde- 
pendent. The assumption is warranted in this case given 
that the particular instance of E2 occurring at Tl does 
not affect PI A P2 at T1, and the evidence for E:! at TI 
is independent of any events prior to Tl. Note that, if 
the evidence for E2 at T1 involved events prior to Tl, 
then the analysis would be more involved. It is clear that 
P((& TJ)) 2 0.35, and that p((P2, Tl)) > 0.35; unfortu- 
nately, we can’t simply combine this information to obtain 
an estimate of p((Pl A P2, T.Z)), since the evidence sup- 
porting these two claims is dependent. We can, however, 
determine that 

P((PI A P2, T1)) 
p((Pl A P2, T1) 1 (PI A P2, TU))p((Pl A Pa TU)) 
p((Pl A P2, TO)) * 0.5 * 0.5 

p((l+,, TO) A (EP,, TO)) * 0.5 * 0.5 

p((Epl, TO + 6) A (EP,, TO + E) 1 (El, TO)) 
* p((El, TO)) * 0.5 * 0.5 

0.7 * 0.5 * 0.5 

assuming that there is no evidence concerning events that 
are known to affect either PI or P2 in the interval from TO 
to Tl. 

To see how knowledge of events that provide evidence 
against certain propositions persisting is factored in, sup- 
pose that TO < T2 < T1, and that there is a 0.1 chance 
that someone removed Wrench14 from Room101 at T2 
( i.e., P((&P,,~~)) = 0.1). In this example, henceforth 
Example 2, p((Pl, Tl) 1 (PI, TO)) = 0.5 * 0.9, and, hence, 
BEL((P3, T1 + E)) = 0.7 * 0.5 * 0.5 * 0.9. 

Another problem we have to address concerns events 
with consequences that are known to covary in a particular 
manner. In the next example, henceforth Example 3, we 
replace (8) in Example 1 with 

P((EP,,~+ 6) 1 (ElJ)) = 0.7 (12) 
P((EP& + 6) I (-%,t)) = 0.7 (13) 

and (10) with p((El, TO)) = 1.0. Given the sort of analysis 
described above, we would calculate BEL( (P3, Tl + E)) = 
0.35 * 0.35 which is correct only assuming that the con- 
sequences of El are independent. Suppose that we are 
explicitly told how the consequences of El depend upon 
one another. For instance, if we are told in addition to 
(12) and (13) that 

P((EP,,~+E)A(EP,,~+E) I (El,t))=O.4 
then an analysis similar to the one for Example 1 yields 
BEL((P3,t + E)) = 0.25 * 0.4. In general, we assume that 
the consequences of any two events are independent unless 
we are explicitly told otherwise. 

In the previous examples, there was at most one source 
of additional evidence that had to be considered at each 
step in combining all of the evidence concerning (P3, t + E). 
In Example 4, we introduce two new fluents 

PLj = “Jack is on duty” 
Ps = “Mary is on duty” 

replace (8) in Example 1 with 

p((Ep,,t+e)A(Ep,,t+e) 1 (JW)A(El,t)) = 0.7 

p((-%,t + E) A (EP& + E) I (f&t) A (-f&t)) = 0.9 
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add that only one of Jack and Mary are ever on duty 

p((P4J) A (P5,t)) = 0.0 

and provide information concerning who is likely to be on 
duty at TO 

p((P4, To)) = 0.4 

p((P5, TO)) = 0.3 

In Example 4, we have BEL((P3, t + 6)) = (0.3 * 0.45 * 
0.45) + (0.4 * 0.35 * 0.35). 

Throughout our analysis, we were forced to make as- 
sumptions of independence. In many cases, such assump- 
tions are unwarranted or introduce inconsistencies. The 
inference process is further complicated by the fact that 
probabilistic constraints tend to propagate both forward 
and backward in time. This bi-directional flow of evidence 
can render the analysis described above useless. I 

In [Dean and Kanazawa, 19871, we present a discrete ap- 
proximation method for computing probabilistic projec- 
tions using equations (3) and (4). Our method handles 
problems involving partially ordered events, but depends 
upon strong conditional independence assumptions. In 
this paper, we restrict our attention to totally ordered 
events, but consider a much wider class of constraints. 
We describe a method for computing a belief function for 
problems involving constraints of the form p(AIB) = ?r 
corresponding to causal rules and the terms Nl-6 in (5). 
Given that our method relies upon deriving a specific dis- 
tribution, we begin by defining the underlying probability 
space. 

Equations such as (7)) (8), and (9) correspond to con- 
straint schemata in which the temporal parameters are al- 
lowed to vary. For instance, in Example I we would have 
the following instance of (9) 

P(@P,, T1 + 6) I (PI, T1) A (P2, TJ) A (~732, TJ)) = 1.0 

(14) 
In the following, when we refer to the constraints in the 

problem specification, we mean to include all such instanti- 
ations of constraint schemata given all time points, plus ad- 
ditional marginals such as (10) and (11). The constraints 
in the problem specification define a set of propositional 
variables-infinite if the set of time points is isomorphic 
to the integers. We will assume that there are only a fi- 
nite number of time points. For Example 1, some of the 
propositional variables are: 

x1 E (El, TO) z2r(Epl,TU+~)z3~(Ep,,TU+~) 
x4 E (Pl,TU+c) x5 f (P,,TU+c) 26 E (Pl,Tl) 
x7 E (P2, Tl) xs E (E2, Tl) xg=(E~,,T1+~) 

Using the complete set of propositional variables and 
constraints, we can construct an appropriate causal depen- 
dency graph [Pearl, 19861 that serves to indicate exactly 
how the variables depend on one another. The graph for 
Example 1 is illustrated in Figure 4 with the propositional 
variables indicated on a grid (e.g., the variable (PI, TI) 
corresponds to the intersection of the horizontal line la- 
beled PI and the vertical line labeled TI). 

Let Xl7 227 . . . I Xn correspond to the propositional vari- 
ables appearing in the causal dependency graph. We 

Tl The 

Figure 4: Causal dependency graph 

allow a set C of boundary conditions corresponding to 
boolean equations involving the xi’s (e.g., the constraint 
-((EP, TJ) A (E-P, T1)) might be represented as (514 = 
false V x15 = false)). The probability space R is defined 
as the set of all assignments to the xi’s consistent with C 
t *- (Xl = 211,x2 = oz,... 
(lie*& $rte,Talse]) A ( 

,Xk = vk) such that 
consistent(w) C))). Each constraint 

specified in a problem can be expressed in terms of con- 
ditional probabilities involving the xi’s (e.g., (14) might 
be encoded as p(zg = true I 26 = true,x7 = true, x8 = 
true) = 1.0). Given 

,!?I = {w 1 (w E Cl) A (consistent(w, A))} 

Sz= {w 1 (w E C?) A (consistent(w, B)) 

we can rewrite p(AIB) = 
using Bayes rule, we have 

E Sl 1 w E S2) = 7r or, 

P(W E Sl r--l S2) - rp(w E S2) = 0 

from which we get 

E( J&-&(w) - 7a&J)) P(W) = 0 
WEn 

where Xs is the indicator function for S (i.e., Xs(w) = 1 
if w E S, and 0 otherwise). Using the above transfor- 
mations, we encode the problem constraints in terms of 
Ql,~2,*-*,%7I where each ai is a function of the form 

q(w) = Ts;ns; (4 - wy&J) 

where the Sj are derived following the example above. We 
now make use of the calculus of variations to derive a dis- 
tribution p maximizing the entropy function 

- c PC4 1% I+> 

over all distributions satisfying 

c 4.+(w) = 0 l<i<m 
WESZ 
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Using techniques described in [Lippman, 19861, we re- 
duce the problem to finding the global minimum of the 
partition function, 2, defined as 

Z(X) = C exp (- g&ai(w)) 
\ i=l 

where X = (Xl,...,&) and the Xi’s correspond to the 
Lagrange multipliers in the Lagrangian for finding the ex- 
trema of the entropy function subject to the conditions 
specified in the constraints 2. Given certain reasonable re- 
strictions on the ui’s3, there exists exactly one x, corre- 
sponding to the global minimum of 2, at which 2 has 
an extremal point. Given that 2 is convex, we can use 
gradient-descent search to find x. Starting with some ini- 
tial X, gradient descent proceeds by moving small steps in 
the direction opposite the gradient as defined by 

where 

VZ(A) = 1 E E . . . g- 1 na 

If Ilw-PII g oes below a certain threshold, the algo- 
rithm halts and the current A is used to approximate 
x= (Xl,... , j,). We define a belief function BEL’ as 

B&Y(A) = c p(w) 
WESlA 

where QA is that subset of s1 satisfying A, and 

P(W) = 
exp (- CEl Jiai(w)) 

c 
cjc:st exp (-- X2.1 U&J) 

VW E i-2 

‘ZL’((Ps, Tl)) Example ] BEL( (P3, T-2)) I B1 

2 0.1575 0.1908 
3 0.1000 0.1078 
4 0.1080 0.1417 

Table 1: Comparing BEL and BEL’ 

Table 1 compares the results computed by BEL, the 
belief function discussed in Section 3, and the results 
computed by BEL’. Simplifying somewhat, BEL com- 
putes a certainty measure that corresponds to the greatest 
lower bound over all distributions consistent with the con- 
straints, and, hence, BEL(A) 2 BEL’(A). The certainty 
measure computed by BEL’ is generally higher since the 
problems we are dealing with are underconstrained. 

We should note that while the size of R is exponen- 
tial in the number of propositions, Geman [Geman and 
Geman, 19841 claims to compute useful approximations 

2Solving the Lagrangian directly, as in [Cheeseman, 19831, is 
made difficult by the fact that the equations obtained from the 
Lagrangian are nonlinear for constraints involving conditional 
probabilities. 

3The most important restriction for our purposes being that 
the ai’s correspond to a set of linearly independent vectors. 

using a method called stochastic relaxation that does not 
require quantifying over s1. The results of Pearl [Pearl, 
19861, Geman [Geman and Geman, 19841, and others seem 
to indicate that, in many real applications, there is suffi- 
cient structure available to support efficient inference. The 
structure imposed by time in causal reasoning presents an 
obvious candidate to exploit in applying stochastic tech- 
niques . 

5 Conclusions 
We have presented a representational framework suited 
to temporal reasoning in situations involving incomplete 
knowledge. By expressing knowledge of cause-and-effect 
relations in terms of conditional probabilities, we were 
able to make appropriate judgements concerning the per- 
sistence of propositions. We have provided an inference 
procedure that handles a wide range of probabilistic con- 
straints. Our procedure provides a basis to compare other 
methods, and also suggests stochastic inference techniques 
that might serve to compute useful approximations in prac- 
tical applications. A more detailed analysis is provided 
in a longer version of this paper available upon request. 
In particular, we describe how observations that provide 
evidence concerning the occurrence of events and knowl- 
edge concerning prior expectations are incorporated into 
our framework. 
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