Recovery from Incorrect Knowledge in Soar*

John Laird
Artificial Intelligence Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109-2122

Abstract
Incorrect knowledge can be a problem for any intelligent system. Soar is a proposal for the underlying architecture that supports intelligence. It has a single representation of long-term memory and a single learning mechanism called chunking. This paper investigates the problem of recovery from incorrect knowledge in Soar. Recovery is problematic in Soar because of the simplicity of chunking: it does not modify existing productions, nor does it analyze the long-term memory during learning. In spite of these limitations, we demonstrate a domain-independent approach to recovery from incorrect control knowledge and present extensions to this approach for recovering from all types of incorrect knowledge. The key idea is to correct decisions instead of long-term knowledge. Soar's architecture allows this corrections to occur in parallel with normal processing. This approach does not require any changes to the Soar architecture and because of Soar's uniform representations for tasks and knowledge, this approach can be used for all tasks and subtasks in Soar.

1 Introduction
Incorrect knowledge is a fact of life for any intelligent system, be it natural or artificial. There are many potential origins of incorrect knowledge: mistakes in the original coding of a knowledge-based system; errors in learning [Laird et al., 1986b]; or changes in the state of the world that invalidate prior knowledge. No matter what the reason for the incorrect knowledge, an intelligent system must have the capability to overcome the effects of errors in its long-term knowledge.

The purpose of this paper is to investigate recovery from incorrect knowledge within Soar, an integrated problem solving and learning architecture for building intelligent systems [Laird et al., 1987]. Its learning mechanism, called chunking, acquires productions based on problem solving in subgoals. It is a variant of explanation-based learning (EBL) [DeJong and Mooney, 1986; Mitchell et al., 1986; Rosenbloom and Laird, 1986] and knowledge compilation [Anderson, 1983]. Within explanation-based learning, Rajamoney and DeJong have suggested a general experimentation approach for dealing with imperfect domain theories [Rajamoney and DeJong, 1987], both Chien and Hammond have demonstrated failure-driven schema refinement mechanisms [Chien, 1987; Hammond, 1986], while Doyle has demonstrated recovery using supporting layers of domain theories to refine inconsistent theories [Doyle, 1986]. Our work builds on these efforts, but our goal is to integrate recovery within a general problem solving and learning system so that recovery is possible for all types of incorrect knowledge and all types of tasks.

A secondary motivation for this research is to test the hypothesis that chunking is sufficient for all cognitive learning in Soar [Laird et al., 1986a; Rosenbloom et al., 1988; Rosenbloom et al., 1987; Steier et al., 1987]. The importance of this hypothesis is that it provides a simple but general theory for integrating learning and performance in all tasks. Some of the ramifications of this hypothesis are:

1. There is only a single learning mechanism.
2. All long-term knowledge is represented as productions.
3. Learning is a background process, not under control of the problem solver.
4. Long-term knowledge is only added, never forgotten, modified or replaced.

Demonstrating Soar’s ability or inability to recover from incorrect knowledge is of theoretical interest because architectural assumptions prohibit most traditional correction techniques, such as modifying the conditions of a production [Langley, 1983], deleting a production, lowering the strength of a production [Holland, 1986], or masking an incorrect production through conflict resolution. If recovery from incorrect knowledge is not possible using chunking in Soar, our hypothesis will have to be abandoned.

2 Overview of Soar
In Soar, all tasks and subtasks are cast as searches in problem spaces, where operators generate new states until a desired state is achieved. All knowledge of a task—operators implementations, control knowledge, goal tests—is encoded in productions. Therefore, incorrect knowledge is encoded as an incorrect production.

Productions encode all long-term knowledge, acting as a memory, only adding elements to working. They are not the locus of deliberation or control. In contrast to OPS5 [Forgy, 1981], a typical production system, there is no conflict resolution in Soar and all productions fire in parallel until quiescence. All decisions are made by a fixed procedure based on working-memory elements called preferences. These decisions perform all the basic acts of
problem solving in a problem space: selecting the current problem space, state and operator for a goal.

There are three classes of preferences: acceptability, necessity, and desirability. In the acceptability class, acceptable preferences specify those objects that are candidates for a slot, while reject preferences eliminate a candidate from consideration. Necessity preferences enforce constraints on goal achievement by specifying that an object must be selected (require) or must not be selected (prohibit) in order that the goal be achieved. The priority of these preferences is: (prohibit, require) > reject > accept. Therefore, an object will only be considered if it is acceptable and not rejected and not prohibited, or if it is required and not prohibited.

Desirability preferences also control the selection of candidates, but provide only heuristic information. In other words, the necessity preferences encode knowledge to ensure the correctness of the problem solving, while the desirability preferences encode knowledge to improve the efficiency of the problem solving. Desirability preferences provide either absolute (best, indifferent, worst) or relative (better, indifferent, worse) orderings of the candidates for a slot. The desirability preferences have their own precedence ordering: (better, worse) > best > worst > indifferent. That is, better and worse preferences are considered first, and only those candidates not worse than some other candidate are considered by the remaining preferences. If only a single object is preferred at the end of this procedure, it is selected. If there are multiple objects that are either all indifferent, all best, or all worst, a random selection is made between them. If none of the above hold, then an impasse in problem solving arises. Impasses will be discussed following a short example.

Consider the Missionaries and Cannibals problem. The problem space consists of the different configurations of three missionaries and three cannibals and a boat on the banks of the river. The set of operators is restricted to transporting one or two people at a time because the boat only holds two people. The goal is achieved when all the people have been moved from one side of the river to the other. An additional restriction is that the cannibals can never outnumber the missionaries on one bank of the river because the missionaries will be eaten. In Soar, productions encode all of the necessary knowledge concerning problem selection, operator creation, selection and implementation, state selection and goal achievement. As the first step toward solving this problem in Soar, a production creates an acceptable preference for the Missionaries and Cannibals problem space. Following its selection by the decision procedure, a production fires that creates the initial state. At this point, all relevant operator instances for the current state are created. Assume for the moment that additional productions exist to create preferences so only one operator is clearly best. The decision procedure selects that operator and relevant productions fire, creating a new state with an acceptable preference. This state is selected and the operator slot is cleared because its current value is no longer relevant.

In the above example, we assumed there was sufficient knowledge to select a single operator for each state. When the preferences for a slot do not lead to a clear choice, an impasse in problem solving arises and a subgoal is automatically created. An impasse may arise from a tie (the preferences do not determine a best choice), a conflict (the preferences conflict), a rejection (all candidates are rejected), or a no-change (no changes are suggested for any slots). The purpose of the subgoal is to resolve the impasse, possibly by searching for information that will add new preferences and allow a decision to be made. In the subgoal, search in a problem space is used as in the original goal, allowing the full problem-solving capabilities of Soar to be used. Default problem spaces (encoded as productions) are available to handle impasses whenever domain specific problem spaces are unavailable. A subgoal terminates automatically when new preferences resolve the impasse or lead to a new decision in a higher goal.

Chunking learns by building productions that summarize the processing in a subgoal. The action of a new production is based on a result of a subgoal, while the conditions are based on the pre-impasse working-memory elements that were tested by productions on the path to the generation of the result. Since only the working-memory elements relevant to the results are included, many features of the situation are ignored. When a situation similar to the one that gave rise to the impasse is re-encountered, the chunk will fire, producing the result directly, completely avoiding the impasse and its subgoal.

3 Recovery from Incorrect Knowledge

In this section we describe how recovery from incorrect knowledge is possible in Soar without architectural modification. This will show that the necessary "hooks" already exist in Soar for recovery to take place and that chunking is sufficient to correct errors in long-term knowledge. This section starts with a description of incorrect knowledge in Soar and then proceeds through the five phases of correction: detecting an incorrect decision; forcing reconsideration of the decision; reconsidering the decision; determining the correction; and saving the correction with chunking.

As part of this presentation, a general, domain-independent framework for correcting invalid control knowledge is demonstrated. This approach has been implemented within Soar and it will be demonstrated on the Missionaries and Cannibals problem.

3.1 Incorrect Knowledge

Although productions encode all knowledge in Soar, errors only arise through incorrect decisions, that is, because the wrong problem space, state or operator is selected. This leads to an important observation:

- Incorrect knowledge can be corrected by modifying the decisions in which the knowledge is used instead of modifying the productions that encode the knowledge.

Therefore, in Soar we can shift the emphasis in recovery from correcting long-term memory to correcting performance. If Soar learns productions that correct decisions, it will have recovered from incorrect knowledge.

An incorrect decision is caused by an inappropriate preference. We can classify incorrect knowledge based on the types of incorrect preferences: acceptability, necessity, and
Incorrect acceptable preferences correspond to incorrect task knowledge. That is, either the wrong problem spaces, states or operators are created. For example, if an operator is incorrectly implemented, it will produce an acceptable preference for an inappropriate state. This corresponds to having errors in a domain theory in EBL [Mitchell et al., 1986; Rajamoney and DeJong, 1987]. Incorrect necessity preferences correspond to incorrect goal knowledge. Some aspect of the goal is incorrectly encoded so that objects are either required or prohibited inappropriately.

Incorrect desirability and reject preferences correspond to incorrect control knowledge. A simple example of incorrect control knowledge comes from the Missionaries and Cannibals problem. An obvious bit of means-ends control knowledge is to prefer operators that maximize progress toward the goal and minimize movement away from the goal. In states of Missionaries and Cannibals where the boat is on the original side of the river, this leads to a preference for operators that move two people, while if the boat is on the desired side, then preference would be for operators that move one person from the desired side back to the original. Although usually helpful, this knowledge is incorrect in the middle of the problem when two missionaries, two cannibals and the boat are on the desired bank. The means-ends knowledge would prefer sending either one missionary or one cannibal back across the river. In either case, the resulting state would violate the rule that cannibals can not outnumber missionaries. The correct move consists of moving one missionary and one cannibal together across the river.

To recover from this incorrect knowledge, Soar should learn productions that can overcome the preference for moving only one person. This is different than merely learning from failure [Gupta, 1987; Mostow and Bhatnagar, 1987] which in Soar involves learning productions that avoid operators leading to illegal states. If incorrect knowledge is not present, Soar will learn such productions from look-ahead searches [Laird et al., 1984]. But once the incorrect knowledge is present, Soar assumes it is correct and makes decisions without subgoals. To do otherwise would involve questioning every piece of knowledge and negate the advantages of learning.

### 3.2 Detecting an Incorrect Decision

In Soar, the first step in recovering from incorrect knowledge is to detect that an incorrect decision has been made. This simplifies the credit assignment problem by allowing Soar to detect only incorrect behavior instead of incorrect knowledge. In the Missionaries and Cannibals example, it is easy to detect an incorrect decision because an illegal state is encountered on the path to solution. In this example, general productions test for the invalid state, backtrack to the prior state and force the reconsideration of that decision.

For other tasks, expectation failures, direct feedback from another agent, exhaustion of resources, or other general features of the task may signal that a decision was incorrect. In all cases, productions must detect that an incorrect decision has been made. If the feedback is specific to a previous decision, the situation in which the error occurred can be recreated and reconsidered. If the feedback is not decision-specific, all decisions within a goal can be reconsidered. Decisions likely to be correct can be avoided using domain-specific knowledge or techniques such as dependency-directed backtracking. General mechanisms for determining which of several decisions is in error have not been implemented except for chronological backtracking and the reconsideration of all decisions in a goal. Soar's ability to exhibit a wide variety of methods suggests that using additional techniques should not be problematic [Laird, 1984; Laird and Newell, 1983].

### 3.3 Forcing Reconsideration

Once an incorrect decision is detected, it is necessary to reconsider the decision and possibly correct it. A decision can be reconsidered by forcing an impasse so that a subgoal arises in which the decision can be made explicitly. Impasses can be forced by adding preferences that cause conflicts. If an acceptable preference or any desirability preferences are suspect, an impasse can be forced by creating a new dummy object with conflicting preferences between it and the suspected object. If desirability preferences are suspect, additional necessity preferences will force an impasse. In the Missionaries and Cannibals example, an impasse is forced by creating conflicting preferences between the available operators and a dummy operator named deliberate-impasse.

### 3.4 Reconsidering the Incorrect Decision

Once the forced impasse arises, its subgoal provides a context for reconsidering the possibly incorrect decision. It is at this point that other sources of knowledge can be accessed to verify the decision or determine an alternative selection. Other sources of knowledge could be experimentation in the external world [Rajamoney and DeJong, 1987], feedback from another agent, or an appeal to an underlying domain theory [Doyle, 1986] encoded as a problem space. If any of these sources of knowledge is suspect, the same approach can be applied recursively to correct it.

We have not implemented a general approach for obtaining the correct knowledge for task or goal errors. However, for incorrect control decisions, we have implemented a domain-independent approach for correcting decisions based on look-ahead search. This approach is built upon the selection problem space, a domain independent problem space that is used as a default whenever impasses arise because of inadequate control knowledge.

The unextended selection space contains operators, called evaluate-object, which evaluate the tied or conflicting alternatives. If an evaluation is available via a production, it will be used. If no evaluation is directly available, an impasse arises and a look-ahead search is performed in the resulting subgoal to obtain an evaluation. The resulting evaluations are compared and appropriate preferences are created, thus resolving the impasse.

In those cases where incorrect preferences do exist, the correct choice may not be considered because it is either rejected or dominated by the other objects. To gather information about the rejected and dominated objects, two new operators are added to the selection space: evaluate-alternatives and evaluate-reject. Evaluate-alternatives, evaluates the alternatives that are not being considered because of possibly incorrect desirability preferences, while
Figure 1: Recovery from incorrect knowledge in Missionaries and Cannibals.

evaluate-reject evaluates the objects that have rejection preferences.

Figure 1 shows a simplified trace of recovery in the Missionaries and Cannibals problem. In this example, the goal is to move all people to the right bank. The current state has one missionary and one cannibal on the left bank, while the boat and the remaining people are on the right bank. The overgeneral knowledge incorrectly prefers moving either one missionary (move-M) or one cannibal (move-C). An impasse is forced using deliberate-impasse. Once in the subgoal, evaluate-alternatives is selected. In the resulting look-ahead search, move-C and move-M are prohibited from being selected so that the best alternative to them will be selected. Although this eliminates two of the operators for the search, the three two-person operators are all available and a tie impasse arises. A look-ahead search is performed for these in a lower selection space (not shown) and the the winner is move-MC. Clunks learned for this selection apply immediately to the top state, so that move-MC is preferred over the other two person operators. Following evaluate-alternatives, moving one cannibal (move-C) as well as moving one missionary (move-M) are evaluated using evaluate-object. These both return a failure evaluation because they generate illegal states in the subgoal. These evaluations are compared to those created for evaluate-alternatives and both move-M and move-C are rejected so that their dominance over the other operators is eliminated. Finally, when all of the evaluation operators are finished, deliberate-impasse is rejected and the impasse is resolved with move-MC being correctly selected.

3.5 Correcting the Decision

If the object preferred by the preferences for a decision is found to be correct, no correction is made. However, if the preferred object is incorrect, then the decision must be corrected. In Soar, a preference can be corrected, either at the decision where the error occurs, or at a decision in a higher goal, (unless the error occurs at the top goal). By changing a higher decision, the preferences for the current decision become irrelevant. This second case is related to the first, because if a decision in a higher goal is changed, then it is as if its prior decision was actually incorrect. However, by correcting a decision in a higher goal, a lower level decision can be avoided that is itself uncorrectable. In either case, the only way to correct a decision is by creating new preferences. Luckily this is sufficient.

The correction of decisions can be divided into three cases based on the type of the incorrect preference. In the first case, an incorrect desirability or acceptable preference leads to an incorrect selection. It may be that an incorrect object is made best, better than, or indifferent to the correct object. Or it may be that the correct object is made worst or worse. In our example from the Missionaries and Cannibals, the incorrect operator is better than the correct operator. All these cases can be corrected by rejecting the incorrect choices. This is done in the selection space when the evaluation created for the not-tied objects (by evaluate-alternatives) is better than the evaluation created for an object about to be selected (by evaluate-object). In this case, a reject preference is created for the incorrectly preferred object. In our example, it is this process that leads to the rejection of the incorrect operators. Once the wrongly preferred object is rejected, other preferences will lead to the selection of the correct object. (These preferences will have been learned in the evaluate-alternatives subgoal.)

In the second case, the correct object is incorrectly rejected or prohibited. This case is important enough to consider with an example. Let's modify our example so that instead of creating better preferences for moving one person back across the river, all operators that move two people are rejected. On the surface this appears to have the same effect, but it makes recovery more difficult. How can we select an operator that has already been rejected? The situation is detected in the selection space when the evaluation produced by evaluate-rejected is better than the evaluation produced for the operator that would have been selected if an impasse had not been forced. The appropriate response, encoded in productions, is to create a new operator with an indirect pointer to the rejected operator. This new operator is made better than the incorrect operator and therefore it is select. This new operator can not be an exact copy of the rejected operator, otherwise the production that rejected the original would also reject it.

The obvious problem is that there must be a general way to apply these new operators, whose only structure is an indirect pointer to another operator. The solution is to select the new operator, fall into a subgoal when no productions fire to apply it, and in the subgoal apply the original, mistakenly reject operator. The original operator can be applied by forcing its selection using a require preference which overrides the rejection. Following its selection, the productions that implement the original operator apply and create a new state that becomes the result of the new operator. Chunking captures this processing, and future applications of the new operator are performed directly by the chunk.

In the third case, an incorrect object is inappropriately required. Neither reject nor prohibit override a require preference because it is encodes knowledge about the validity of the path toward the goal. The only general correction is to modify a higher decision. For example, if an inappropriate operator is required for a state, a new
state can be created, using the indirect pointer method described above so that the offending production no longer applies. Modifying a higher decision can also correct the errors described earlier. Flynn and Newell have implemented a scheme where incorrect operators are avoided by creating a new problem space, displacing the old and then using those elements of the old problem space that were still valid [Newell, 1987]. This approach demonstrates the variety of approaches that are possible for recovery from incorrect knowledge.

In summary, incorrect desirability and acceptable preferences are corrected by rejecting the incorrect alternative. Incorrect reject and prohibit preferences are corrected by creating acceptable preferences for new objects that have indirect pointers to the rejected objects. Since all the preferences used in recovery are themselves correctable, any correction can itself be corrected.

3.6 Saving the correction as a permanent repair

Up to this point, we have described how Soar can correct decisions using its problem solving, but we have ignored the process by which a correction can be saved in long-term memory for later use. The solution is simple: once a decision is corrected through the creation of new preferences in a subgoal, chunking learns a new production that will fire under similar circumstances in the future, leading to the correct choice. Most of these productions will fire in parallel with the existing productions. However, when recovery includes creating new objects, the new productions must test for the existence of the rejected objects that they point to. This possibly extends the elaboration phase by one production firing. Interestingly, repeated corrections need not extend it further because all productions that create rejections will fire in parallel, and a second correction need only test for the existence of the original rejected object.

One possible issue is whether the new chunk will be applicable even when an error has not been detected and no attempt is being made to force an impasse. In the implementation of recovery from incorrect control knowledge, the chunks are sufficiently general because the underlying problem solving is independent of the detection of error. All operators in the selection space, such as evaluate-alternatives and evaluate-rejects, are created for every tie or conflict impasse. They are only selected when the evaluations created by evaluate-object operators are insufficient to resolve the impasse.

The other result of the impasse is the rejecting of deliberate-impasse. However, the creation of the reject preference is based on a test of exhaustion, that is, that no more operators are available in the selection space. Tests such as these inherently lead to overgeneralization during chunking [Laird et al., 1986b] so Soar does not create chunks for these results.

Additional chunks are learned for the evaluations computed in the subgoal. These chunks will be available in the future so that the evaluations are computed directly without problem solving. One potential weakness in this approach is that the chunk learned for evaluating alternatives may be overgeneral in that it could apply even if additional alternatives are available. Overgenerality arises because there is an implicit test for exhaustion: the best of all the alternatives was evaluated. Either no chunk should be built or there should be a test that there are no other alternatives available.

4 Results

This section reports the results of using recovery from incorrect knowledge. In Missionaries and Cannibals, without the incorrect knowledge or chunking, the problem is solved in between 178 and 198 decisions, depending on the search. Following learning, the minimum is 22 decisions—a straight line path. Soar learns control knowledge to avoid operators that produce illegal states, as well as learning to select operators that are on the path to solution.

Adding the incorrect control knowledge, but not the recovery knowledge, decreases the number of operators considered at each state, thereby decreasing the search to between 124 and 149 decisions, but an illegal state is always selected at the top-level. After learning, the minimum number of decisions is 25 because the illegal state is created, selected and then rejected. By introducing the recovery knowledge, search before learning is between 159 and 179 decisions. This is less than without the incorrect knowledge, but more than without the recovery code. The important point is that following learning, the minimum is once again 22 decisions. Another test of recovery is to use it after learning has been applied to the incorrect control knowledge. In this case, the problem solving goes up from 25 to 54 decisions, however, after learning the problem solving goes back down to 22. Such a reduction was not possible without recovery.

The productions for controlling recovery from incorrect control knowledge are completely task-independent and they have been used for other simple tasks such as the Eight Puzzle and multi-column subtraction. In the Eight Puzzle, we have added a production that incorrectly prefers to move tiles out of their desired position. This makes it impossible to solve the problem without recovery. In multi-column subtraction, the system incorrectly skips columns as a result of an overgeneral chunk. If it receives negative feedback when it has skipped a column, it backs up and correctly finishes the problem.

Table 1 is a summary of example results for these tasks as well as Missionaries and Cannibals. For the Eight Puzzle, it solved a relatively simple problem that requires 12 decisions. For subtraction, the system solves 44-33. The column following the task name contains the number of decisions required to solve the problem if incorrect knowledge is included but the recovery knowledge is not. The next column shows the number of decisions required when the recovery knowledge is added. This usually increases the total time required to solve the problem, however it leads to improved performance after recovery as shown in the final column.

5 Conclusion

We have demonstrated an alternative approach to recovery from incorrect knowledge that does not require deletions or corrections to long-term memory. Instead of modifying long-term memory, the corrections are made during the decisions that arise during the normal course of problem solving.
solving. The corrections are first determined by problem solving, and then saved as productions by chunking so that the corrections will be available in the future, even before an error in behavior is detected. In addition to demonstrating the feasibility of this approach, we have presented a domain-independent implementation that corrects errors in control knowledge. Within this framework, future research should concentrate on expanding the class of situations in which incorrect decisions can be detected and expanding the sources of knowledge used to verify a decision.

Acknowledgments

Many of the ideas in the paper originated in discussions with Allen Newell, Rex Flynn, Paul Rosenbloom and Olin Shivers. Thanks to Pat Langley and Mark Wiesmeyer for comments on an earlier draft of this paper, and Rob McCarl for his Soar implementations of multi-column subtraction.

References


