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ABSTRACT 

When formulating a theory based on observations 
influenced by noise or other sources of uncertainty, 
it becomes necessary to decide whether the pro- 
posed theory agrees with the data “well enough.” 
This paper presents a criterion for making this 
judgement. The criterion is based on a gambling 
scenario involving an infinite sequence of observa- 
tions. In addition, a rule derived from the idea of 
minimal-length representations is presented for se- 
lecting an appropriate theory based on a finite set 
of observations. A proof is briefly outlined demon- 
strating that the theories selected by the rule obey 
the success criterion given a sufficient number of 
observations. 

1. INTRODUCTION 

Much of the work in inductive inference has considered the 
problem of formulating deterministic theories from error- 
free observations (e.g., see review articles by Angluin and 
Smith [1983], Dietterich and Michalski [1983], and Kearns 
et ad. [1987]). H owever, the real world often presents us 
with data influenced by noise or other sources of uncer- 
tainty, or with situations for which a deterministic model 
is inappropriate. In the deterministic case, any theory 
that does not absolutely agree with the observations can 
be ruled out. In the presence of uncertainty, on the other 
hand, one must consider the degree to which a theory ac- 
counts for the observations. This complicates the induc- 
tive inference problem, since one cannot simply choose 
the theory that best fits the data. For a finite set of data, 
it is possible to select a theory that fits “too well.” An 
example would be selecting a polynomial of high enough 
degree so that it passes through every point in a set of 
data points. This amounts to fitting the theory to the 
noise rather than to the underlying relationships, thereby 
producing a rather poor model of the data [e.g., Tukey 
19771. If we extend the selection problem to an infinite 
set of data, an exact fit is impossible, since otherwise the 
model would be deterministic. In that case, no matter 
what theory we might propose, there exists another that 
more closely agrees with the observations. The problem is 
to judge when the fit is “good enough” and an appropriate 
theory has been obtained. 

This paper considers the problem of devising .a crite- 
rion for judging whether a proposed theory is an appro- 
priate model for a set of data. The analysis assumes that 
one is dealing with theories for predicting future events 
based on past observations, and that the “best” theory is 

the one with the greatest predictive power. A gambling 
scenario is used to measure predictive power. Given a 
predictive theory, one can imagine using it to place bets 
on future events. If the predictions are accurate, the bets 
will be won and money will be made. The more accu- 
rate the predictions, the greater the return. The relative 
predictive power of two or more theories can therefore be 
assessed by comparing the amounts that each wins. The 
theory that wins the most money in the long run and 
to within a constant factor is deemed to have a suitable 
level of predictive power and, hence, is an appropriate 
model for the observations. The qualification of consid- 
ering the long term is important, since greater predictive 
power implies less hedging of bets. By comparing the 
long-term winnings, we avoid the possibility of highly un- 
likely events from eliminating a theory with greater pre- 
dictive power. Predictive power is therefore treated as an 
asymptotic property (i.e., it is measured with respect to 
an infinite set of observations). The constant factor takes 
into account the ability to find increasingly better fits to 
an infinite set of observations. 

Complementing this asymptotic analysis, a rule is pre- 
sented for selecting an appropriate theory based on a finite 
set of observations. In addition, a proof is briefly outlined 
demonstrating that the theories thus selected obey the 
success criterion described above given a sufficient number 
of observations. The selection rule is based on the mini- 
mum description length principle that has been suggested 
by several authors [Rissanen 1978,1983; Segen 1980,1985; 
Barron and Cover 1983, 1985; Sorkin 19831. According to 
the latter, the theory one should select given observations 
Xl ** * zn is the one that minimizes the following sum: 

e(T) + &(X1 a ” Xn 1 T) (1) 

where e(T) is the length in bits of a machine-readable rep- 
resentation of theory T and !?(z:, . . . xn 1 T) is the number 
of bits needed to encode the observations with respect to 
T. The quantity e(T) ff t e ec ively measures the complexity 
of T, while e(z:, . . . xn ] T) measures the degree to which 
T accounts for the observations, with fewer bits indicat- 
ing a better fit. The sum of these two quantities defines 
the number of bits needed to represent the observations. 
When minimizing this sum, the e(T) term counterbal- 
ances the degree-of-fit term to prevent one from select- 
ing theories that agree with the available data too closely. 
Rissanen [1978, 19831 h as shown that this selection rule 
converges when the appropriate theory is a member of a 
known parametric family of probabilistic models. Barron 
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[1985] has generalized this result to include stationary, er- 
godic probabilistic models. Convergence in the general 
case, however, remains an open problem. 

This paper presents a slightly different selection rule 
for which a general convergence proof has been obtained. 
The rule is to select theory T if it minimizes 

where 

d(Xl - - - x, 11 T) dAf l(T) + qx:, - * * 2, 1 T) (3) 

- mp[e(S) + e(xi . . . Z, I S)] . 

The quantity d(xi . . . x, ]I T) is the number of extra bits 
needed to represent the observations using theory T as 
opposed to the theory that yields the minimal represen- 
tation. It essentially measures the degree to which the- 
ory 2’ accounts for the observations relative to all other 
theories. This relative measure avoids certain stumbling 
blocks encountered when attempting to prove the general 
convergence of the minimum description-length rule. Due 
to space limitations, only a brief outline of the conver- 
gence proof is presented in this paper. 

2. JUDGING PREDICTIVE THEORIES 

The gambling scenario for judging the success of a theory 
assumes that an infinite stream of observations is available 
in machine-readable form. The stream need only be infi- 
nite in the sense that additional observations can always 
be obtained if so desired. Machine readability is necessary 
for machine learning. 

Bets are made on the binary representation of the 
observation stream. The bits in the observation stream 
are revealed one at a time. Bets are placed on each 
bit immediately before it is revealed. Once revealed, the 
winners are paid double the amount bet on that outcome. 

Without loss of generality, we can assume that each 
bet consists of a certain amount placed on an outcome of 
0 with the rest placed on 1. With 2-to-1 odds, no money 
need ever be kept aside. Betting an amount a on 0 and an 
amount b on 1, with an amount c kept aside, is equivalent 
to betting (a + ic) on 0 and (b + fc) on 1, with nothing 
kept aside. In both cases, one is paid an amount 2a + c if 
the outcome is 0, and 2b + c if the outcome is 1. 

Assuming that no money is kept aside, a betting strat- 
egy can be described in terms of a gambling function. A 
gambling function defines the fractional amounts of one’s 
current assets to place on the possible values of the next 
bit in the observation stream. If p is such a function, then 
p(xi) is the fraction to bet on the first bit having the value 
x1, while p(xn I x1. “xn- 1) is the fraction to bet on the 
n’th bit having the value xn given that the first (n - 1) 
bits were x1 . ..x.-r. Notice that gambling functions are 
subject to the following constraints: 

p(x1) > 0, p(0) +p(1) = 1, P(Xn I Xl * “%-1) L 0 

p(0 I Xl - * ~x,~l)+p(l~~l~~~~,-l)= 1. (4 

For the purposes of machine learning, we must restrict 
our attention to computable gambling functions. Since 
gambling functions define real numbers in the interval 
[O,l], a computable gambling function is one for which 
a computer program exists that can approximate these 
real numbers to arbitrary accuracy: 

Definition 1. A gambling function p is said to 
be computable to arbitrary accuracy if and only if 
there is a computer program fi that takes as input 
an integer cx and a finite binary sequence xi . . . xn 
and produces as output a rational number written as 
&(xn I x1 . .. x,-i) such that 

The integer 0 corresponds to the number 
racy to which p is to be computed. Thus, 

p(xn 1 Xl * * ‘X,-l) - f&(x:n I x1 * *. X,-l) 5 2-” . 

of bits of accu- 

Jmrn h(x, I XI . . * xn-1) = p(xn 1 Xl * * *x+1) . 

As a notational convenience when dealing with a pro- 
gram fi for estimating a gambling function, we will write 
p(xn I x1 ... x,-i) to mean Jlr$,(x, I x1 . - .x,-r). 
Also, as a terminological convenience, we will refer to 
programs for estimating gambling functions as computable 
gambling functions, if this can be done without ambiguity 
(keeping in mind that a program may define a gambling 
function, but is not itself one). 

The results presented in this paper assume that pro- 
grams for estimating gambling functions represent the- 
ories about the observation stream. The representation 
may either be direct (i.e., the program is the theory) or 
indirect (i.e., the theory is compiled into a program). In 
either case, theories are compared in terms of their corre- 
sponding gambling functions. 

Let {bi}gl = bl bzb3 . . . be the observed sequence of 
bits. Using gambling functions, the capital that remains 
after gambling on the first n bits of this sequence is given 
by 

C, = C02np(bl . . . b,J 

where Cs is the amount of initial capital, and where 

p(h . . . bn) = p(bl)p(ba I bl) . a. p(bn I h... bn-1) . 

By convention, we will assume that Cc = 1, so that 
C, = 2np(bl . . . b,). 

Ideally, we would like to construct a gambling function 
p* capable of predicting the observed sequence exactly; 
that is, p* should satisfy 

p*(bl) = p*(b, I bl . - .b,-1) = 1 (5) 

Such a p* would maximizes our earnings (i.e., C, = 2n). 
However, because we are restricted to computable gam- 
bling functions, and because the set of computer programs 
can be placed into one-to-one correspondence with the 
set of natural numbers, there are only countably many 
gambling functions to choose from. On the other hand, 
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there are uncountably many observation streams {bi}gl, 
since these sequences can be placed into one-to-one cor- 
respondence with the set of real numbers. Consequently, 
there are observation streams for which no computable 
ideal gambling function exists. In fact, there are uncount- 
ably many such streams! For most observation streams we 
must resort to computable gambling functions that con- 
verge to values between 0 and 1. 

In those cases in which the ideal gambling function is 
not computable, we might hope to construct a computable 
gambling function jY that always wins at least as much 
money as any other computable gambling function; i.e., 

Vg Vn 2 1 p*(bi...b,) 2 q(bl...b,) . (6) 

However, no such gambling function exists. To see why, 
first note that for any fl we might propose, it is possible 
to construct a series of programs {@}& such that a^” 
predicts the first k: bits of the observation sequence exactly 
and then places the same bets as 1;* on all subsequent bits. 
By construction, 

p*(h - - -bn) = qk(bl’..b,) .p*(bl 4~) for n > k. 

Furthermore, since we are considering the case in which 
p* is not ideal, there must be a value for k such that 

.. . bh) < 1. For this value of k, it will be the case 

Vn >_ k p*(bl . . . b,) < q’(bl . . . bn) 

which contradicts Condition 6. Hence, there is no ~5 
that always wins at least as much money as any other 
computable gambling function when the ideal gambling 
function is not computable. 

In general, the best we can do is to find a computable 
gambling function 1;* that wins at least as much money 
as any other computable gambling function to within a 
constant factor; i.e., 

V$ 3C,- > 0 Vn 2 1 p*(bl ...bn) 2 C’i. q(bl .. .bn) (7) 

For example, if @ = 4’” as defined above, a suitable value 
for C’tk would be cjk = p(bl . . . bk). The factor CG can 
be interpreted as the initial capital available to bettors 
using i. A value of Cg that is less than 1 thus represents 
a handicap placed on 4. 

Although Condition 7 provides us with a definition of 
a suitable gambling function, it cannot be used for select- 
ing one. The reason is that the criterion requires knowl- 
edge of the complete (i.e., infinite) observation stream. In 
practice, we have no choice but to converge asymptoti- 
cally on an appropriate jY+. As each bit in the observation 
stream is revealed, a guess must be made as to what 6 
should be. If $” is the guess made after seeing the first 
k bits, this process results in a sequence of computable 
gambling functions {$k}~?l. To converge asymptotically 
on an optimal j?+ (or a set of optimal 1;* ‘s) is to produce 
a sequence {$k}p?, for which all guesses beyond a cer- 
tain point in the sequence are optimal gambling functions 
according to Condition 7. This is analogous to identifi- 
cation in the limit and behaviorally correct identification 

in the case of deterministic theories [e.g., see review arti- 
cle by Angluin and Smith 19831. Notice that Condition 
7 provides no guidance as to how to select each lj”. For 
example, restricting the criterion to a finite segment of 
the observation stream does not help, since this produces 

V$ 3C,- > 0 Vl 5 k 5 n p*(bl . . . bk) 2 Cg.q(bl . . . bk) 

which is satisfied by all F’s for which p*(bl . . . bk) is 
nonzero. Some other criterion must be employed, such 
as the selection rules discussed in the introduction. 

3. ENCODING OBSERVATIONS 

To employ the selection rules discussed in the introduc- 
tion, it is necessary to devise a way of encoding a se- 
quence of observations relative to a gambling function. 
This can be done by noticing that gambling functions, as 
defined by Equation 4, satisfy the definition of a probabil- 
ity mass function for binary sequences. We can therefore 
employ information-theoretic techniques such as Shannon 
coding [e.g., Gallager 19681 to encode an observed se- 
quence. Shannon coding minimizes the average length of 
the codeword, assuming a random binary sequence drawn 
according to the probability mass function implied by the 
gambling function. The length in bits of the codeword for 
an observed sequence bl . . + b, is given by 

bog, (p(bl elsebnj)l = -Llog2p(bl~~~b,)J 

where [xl is the smallest integer greater than or equal to z 
and Lx] is the largest integer less than or equal to x. Thus, 
the likeliest sequences have the shortest coding lengths, 
while the least likely have the longest. The number of 
bits needed to encode bl. . . b, using fi is therefore given 
by 

t(@) - [log2 p(h - . - bra>] (8) 

where e(5) is the length (in bits) of program @. For con- 
venience, all coding lengths will be measured in bits and, 
hence, all logarithms will be in base two. Equation 8 thus 
corresponds to Equation 1 given in the introduction. The 
minimum description length rule is to find the gambling 
function fi that minimizes this sum. 

To arrive at the modified selection rule discussed in 
the introduction, d(xl . . . xn ]I fi) will be defined as fol- 
lows: 

d(x1 * * ‘2, II@) dzf e(@)-logp(xl...x,) (9) 

- rnjn [e(i) - logp(xi . . .x~)] . 

d(x1 * * * xn I] fi) is essentially the number of extra bits 
needed to encode xi . . . x, using j? instead of the com- 
putable gambling function @ that yields the shortest en- 
coding. The floor brackets are removed for mathematical 
convenience; consequently, this function actually approx- 
imates the number of extra bits to within an error of 9~1. 

The function d(xl . . . x, I] $) has the interesting prop- 
erty that, for any given sequence {~i}~ci and any given 

626 Learning and Knowledge Acquisition 



computable gambling function lj, either d(xi . . . xn I] 9) 
has an upper bound or it increases without bound as 
n300: 

Theorem 1. For any binary sequence {xa}gl and 
any computable gambling function $, either 

(1) 3p Vn 2 1 d(xl ...xn ]I 6) 5 p, or 

(2) VP 3N Vn 2 N d(xl . . +x, ]I @) > /3. 

Thus, d(xl . . . xn ]I ~3) cannot become arbitrarily large 
and then arbitrarily small again (i.e., behavior as exhib- 
ited by Insin nl is excluded). The proof centers upon a 
demonstration that the value of cZ(xl . .. xta ]I 8) estab- 
lishes a lower bound on cl(xr . . . x~+~ ]I ~3) for m 2 1. 
This lower bound is a monotonically increasing function of 
d(x1 * - . xn I] $), which implies that either d(xi . ..x~ I] lj) 
has an upper bound or it increases without bound. 

Another interesting property of d(zl . . . xn I] 6) is 
that, if d(zl . . . xra ]I JY) has an upper bound, then @ 
satisfies Condition 7. This can be seen by first noticing 
that 

3p Vn> 1 d(bl...b, IIIj*)sP (10) 

is equivalent to 

3p Vn 2 1 Vi 
l(fP) - logp*@i * * * bn) 

--l(G) + log q(bI . . . b,) 
33. 

This latter condition implies 

Vi 3p Vn 2 1 p*(bl . a. bn) > 2e(~*)-e(i)-Pq(bl +. . bn) 

which can be shown to be equivalent to Condition 7 by 
equating C,J in Condition 7 with 2e(P^*)-e(i)-P. Condition 
10 above can therefore be used as an alternative criterion 
for selecting optimal gambling functions. 

4. CONVERGING TO AN OPTIMAE k* 

As discussed earlier, an optimal gambling function must 
be arrived at asymptotically by making guesses as to what 
the function should be as each bit in the observation 
stream is revealed. If 2jk is the guess made after seeing 
the first k bits, this process results in a sequence of com- 
putable gambling functions {fi”~~=, . To converge asymp- 
totically on an optimal $Y (or a set of optimal y’s) is 
to produce a sequence {J.?“}~!, for which all guesses be- 
yond a certain point in the sequence are optimal gambling 
functions. Using Condition 10 as the optimality criterion, 
we therefore want to construct a sequence of gambling 
functions such that 

3K Vk > I< 3/? Vn >_ 1 d(bl...b, IIljk) 5 /?. (11) 

The problem of selecting an appropriate @* is thus reduced 
to the problem of choosing an appropriate Sk at each step. 

One rule for choosing @” that immediately comes to 
mind is to select the gambling function that minimizes 
d(bl . . .bk II @“). As it t urns out, this is equivalent to 

minimizing the description length, since d(bl -. . bk II 6”) 
achieves a minimum of zero when fik minimizes 

t’(@“) - logpk(bl * *. bk) . 

Unfortunately, it is not clear whether this rule always 
converges on a set of optimal gambling functions in the 
sense of Condition 11. If there exists a fi for which 
d(bl . . . b, I] @) is bounded and it happens to be the case 
that the number of distinct programs in the sequence 
{@“}& is finite, then it is relatively easy to show using 
Theorem 1 that the sequence does indeed converge. For 
example, it can be shown using Barron’s analysis [Barron 
19851 that this will occur if we restrict our attention to 
stationary ergodic processes. To generalize this result to 
the case in which the number of distinct 6”s is infinite, it 
is necessary to rule out the case in which each distinct 2jk 
appears only a finite number of times and d(bl . . . b, II ~3”) 
diverges for every p -k. A proof that this case can be ruled 
out has not yet been found, however. 

A somewhat different rule can be obtained by mod- 
ifying the minimum description-length rule so as to en- 
sure that the number of distinct programs in the sequence 
{J~“}T?~ is finite whenever an optimal gambling function 
exists. This is accomplished by choosing the ~3” that min- 
imizes 

l(fi’) + d(bl - - * bk II@“) . (12) 

For this selection rule, the following theorem holds: 

Theorem 2. Suppose that there exists a computable 
gambling function @* satisfying Condition 10. Let lj” 
be chosen so as to minimize Equation 12. Then the 
following statements are true: 

(1) There are a finite number of distinct programs 
in the sequence {$“}p==,. 

(2) Every fi” is optimal for k sufficiently large (i.e., 
{@k}r?l satisfies Condition 11). 

The existence of an optimal p places an upper bound 
on the length of each ck, thus ensuring that the num- 
ber of distinct fik’s is finite. $+ also places an upper 
bound on d(bl . . . bk ]I gk). Since the number of distinct 
~3~‘s that can possibly diverge is finite, it follows from 
Theorem 1 that there will be a value of n after which 
d(h - e. bn 11 z-j”> exceeds this bound for all $“s that di- 
verge. All ~3~‘s beyond this point must therefore satisfy 
Condition 11. Minimizing Equation 12 thus produces a 
sequence of computable gambling functions {@“}r=, that 
converges asymptotically to a finite set of optimal gam- 
bling functions if an optimal gambling function exists. 

5. SUMMARY AND DISCUSSION 

A criterion has been presented for judging whether a pro- 
posed predictive theory is an appropriate model for an 
infinite set of data. In addition, a rule was presented for 
selecting an appropriate theory based on a finite set of 
observations. A proof was briefly outlined demonstrating 
that the theories thus selected obey the appropriateness 
criterion given a sufficient number of observations. 
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While the convergence of this rule is a pleasing result, 
there are barriers to its practical implementation. If the 
language for describing theories permits one to define the 
notion of a Turing machine, then the selection rule will 
be undecidable, owing to the halting problem of Turing 
machines. Even if this is not the case, the number of the- 
ories that must be compared when applying the rule may 
be impractically large. To apply the rule in practice, one 
must therefore introduce restrictions and/or approxima- 
tions. It would be a worthwhile enterprise, for example, 
to characterize the kinds of models that can be learned 
in polynomial time, much as is being done by Valiant 
and others in concept learning [e.g., see review article by 
Kearns et al. 19871. Nonetheless, from the standpoint of 
uncovering the fundamental principles of inductive infer- 
ence, the rule presented in this paper and its accompa- 
nying analysis provide a mathematical basis for exploring 
the theoretical limits of what can be learned independent 
of the amount of computation involved. 

From this theoretical standpoint, the analysis raises 
an intriguing philosophical issue. Although it was as- 
sumed in the introduction that we would be considering 
noisy data, at no point was this assumption made in the 
analysis. The need to consider nondeterministic models 
arose due to the fact that not all observation sequences 
have computable generating functions. There are count- 
ably many computer programs (i.e., they may be placed 
in one-to-one correspondence with the natural numbers) 
but uncountably many infinite binary sequences (i.e., they 
may be placed in one-to-one correspondence with the real 
numbers). Consequently, it is impossible to associate each 
binary sequence with a computable generating function 
that predicts the sequence exactly. One of three possibil- 
ities therefore exist for any given observation sequence: 

(1) The sequence has a computable generating 
tion and, hence, can be predicted exactly. 

func- 

(2) A computable generating function does not exist; 
however, a computable probabilistic model can 
be constructed that predicts the sequence as well 
as any other computable model. 

(3) A computable generating function does not exist 
and, for every computable probabilistic model, 
there exists another that is asymptotically more 
accurate in its predictions. 

This raises the following question: if either Case 2 or 3 
holds for a particular sequence, was that sequence gen- 
erated by a “random” process? From a mathematical 
standpoint, the sequence exists as an entity in an abstract 
space. There is also a well-defined generating function 
that predicts the sequence exactly, it is just that this func- 
tion is not computable. Does the fact that it is not com- 
putable necessarily imply that the sequence arose from a 
random process ? Could it not have been predetermined 
in some sense? Is the apparent randomness a property 
of the thing being observed (i.e., ontological), or is it due 
to a fundamental limit on the kind of knowledge one can 
possess of that thing (i.e., epistemological)? Do random 
processes truly exist in the universe, as some proponents 
of Quantum Mechanics would have us believe, or is Quan- 
tum Mechanics merely the best theory we can come up 
with given the limitations of mind and machine? While 

the analysis presented in this paper does not purport to 
resolve these issues, I hope it will at least provoke some 
lively debate. 

ACKNOWLEDGEMENTS 

The research presented here was inspired by numerous 
discussions with Tom Cover on information theory, Kol- 
mogorov complexity, logical smoothing, and gambling. 
The choice of a gambling scenario for comparing candidate 
theories was influenced by Tom’s ideas on using gambling 
as a basis for motivating probability theory. I would like 
to thank Marla and Corinne Babcock, John Gabbe, Alan 
Ginsberg, Lawrence O’Gorman, and Jakub Segen for their 
comments on earlier drafts of the paper. 

REFERENCES 

[Angluin and Smith, 19831 D. Angluin and C.H. Smith. Induc- 
tive inference: theory and methods. Computing Surveys, 
Vol. 15, No. 3, pp 237-269 (September 1983). 

[Barron and Cover, 19831 A.R. Barron and T.M. Cover. Con- 
vergence of logically simple estimates of unknown prob- 
ability densities. Presented at the 1983 Interncational 
Symposium on Information Theory, St. Jovite, Quebec, 
Canada (1983). 

[Barron, 19851 A.R. Barron. Logically smooth density esti- 
mation. Technical Report 56, Department of Statistics, 
Stanford University, Stanford, California (1985). 

[Dietterich and Michalski, 19831 T.G. Dietterich and R.S. 
Michalski. A comparative review of selected methods for 
learning from examples. In Machine Learning: An Ar- 
tificial Intelligence Approach, R.S. Michalski, J.G. Car- 
bonell, and T.M. Mitchell (eds.), pp 41-81 (Tioga Pub- 
lishing, Palo Alto, California, 1983). 

[Gallager, 19681 R.G. Gallager. Information Theory and Re- 
liable Communication (John Wiley and Sons, New York, 
New York, 1968). 

[Kearns et al., 19871 M. Kearns, M. Li, L. Pitt, and L. Valiant. 
Recent results on boolean concept learning. Proc. 4th In- 
ternational Workshop on Mcachine Learning, Irvine, Cali- 
fornia, pp 337-352 (June 1987). 

[Rissanen, 19781 J. Rissanen. Modeling by shortest data 
scription. Automatica, Vol. 14, pp 465-471 (1978). 

de- 

[Rissanen, 19831 J. Rissanen. A universal prior of integers 
and estimation by minimum description length. Annals of 
Statistics, Vol. 11, pp 416-431 (1983). 

[Segen, 19801 J. Segen. Pattern-Directed Signal Analysis: 
Unsupervised Model Inference, Applications to EEG and 
Speech. Ph.D. Thesis, Dept. of Electrical Engineering, 
Carnegie-Mellon University, Pittsburgh, PA (1980). 

[Segen, 19851 J. Segen. Learning concept descriptions from 
examples with errors. Proc. IJCAI-85, Los Angeles, Cali- 
fornia, pp 634-636 (August, 1985). 

[Sorkin, 19831 R. S or ‘n. A quantitative occam’s razor. Inter- kr 
national Journal of Theoretical Physics, Vol. 22, pp 1091- 
1103 (1983). 

[Tukey, 19771 J.W. Tukey. Exploratory Data Analysis (Addis- 
son-Wesley, Reading, Massachusetts, 1977). 

628 Learning and Knowledge Acquisition 


