Abstract

We present our research on defining a correct semantics for forward chaining production systems (PS) programs. A correct semantics ensures that the execution of the program will not produce incorrect answers and execution will terminate; it also ensures that the answers are consistent. We define a class of stratified PS programs, and propose an operational semantics for these programs. We define an operator T_{PS}, which computes the operational fixpoint for the productions of the stratified PS program; the fixpoint captures the meaning of the PS program. The theory that can be derived from the productions of the PS program may be inconsistent with the constraints that are also derived from the PS program. We can then view the constraints as modifying the theory so that the modified theory PS is consistent with the constraints. However, the same answers are obtained in the operational semantics of the stratified PS program or from the modified theory PS.

1. Introduction

In recent years, much AI research and development has focused on forward chaining rule-based systems which follow the production system (PS) paradigm (Hayes-Roth 1985). Large production rule-based expert systems have been successfully developed in diverse domains such as engineering design databases, trouble-shooting in telephone networks, and configuring VAX computer systems.

In these domains, the expert system programs often have to reason with large quantities of data. As the production rule base and the database grow larger, these programs have to access information stored on disk. Thus, for performance reasons, it is important that PS programs be implemented using database technology. Research in this area is reported in Delcambre and Etheredge 1988, Main-dreville and Simon 1988, Raschid, Sellis and Lin 1988, Simon and Mandreville 1988, Sellis, Lin and Raschid 1988 and Widom and Finkelstein 1989.

If large production systems (PS) are to be implemented successfully to interface with large (relational) databases, then it is critical that the semantics of PS be well understood. Unfortunately, most PS have an incomplete operational semantics defined for them. This can result in non-terminating execution of productions and inconsistent answers.

In this paper, we describe our research on defining a correct semantics for PS programs. This paper is organized as follows: In section 2, we introduce the operational semantics of OPS5, an example of a PS (Forgy 1981 and Forgy 1982) and motivate this research using some example OPS5 programs. We also define how a logical theory can be derived from the productions of the PS program. In section 3, we define a class of stratified PS programs and define an operational semantics for stratified PS programs. A stratified PS program is a stratified program, and comprises an extensional database (EDB) of facts, a stratified intensional database (IDB) of rules, and a stratified set of integrity constraints (IC). Both rules and integrity constraints correspond to productions in the PS program. We show that processing is guaranteed to terminate upon reaching the operational fixpoint of a defined operator T_{PS}. The fixpoint captures the meaning of the PS program and is correct and consistent.
The theory of the PS program, comprising the EDB facts and the IDB rules that are derived from the productions, may be inconsistent with the integrity constraints (IC) that are also derived from the productions. We can view the IC as modifying the theory so that the modified stratified theory PS will be consistent with IC. This is described in section 4. We also show the equivalence between the answers obtained in the operational fixpoint and the minimal model for the theory PS.

2. The OPS5 Production System

In this section we introduce the operational semantics defined for the OPS5 production system language and highlight some of its problems. We chose the OPS5 production system language (Forgy 1981 and Forgy 1982) as an example.

Operational Semantics of OPS5

An OPS5 knowledge base comprises a set of productions and an extensional database (EDB) of ground positive unit clauses which may be stored in relations. There will be one relation corresponding to each predicate.

An OPS5 production consists of (1) the symbol p, (2) the name of the production, (3) the antecedent or the left hand side (LHS), (4) the symbol →, and (5) the consequent actions or the right hand side (RHS), enclosed within parentheses.

The antecedent is a conjunction of first order positive literals of the form:
\[\forall x_1, x_2, \ldots, x_n \ P(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_n) \]
or negative literals of the form:
\[\forall x_1, x_2, \ldots, x_n \ \neg Q(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_n) \]
P and Q are \((n+m)\)-ary predicates corresponding to the EDB relations, \(a_1, a_2, \ldots, a_m\) are constants and \(x_1, x_2, \ldots, x_n\) are variables. Assume that all variables are range-restricted, i.e., any variable that occurs in a literal must appear in a positive literal. The advantages of this restriction have been discussed in Sadri and Kowalski 1988 and correspond to the safety of evaluating queries.

The antecedent of each production is interpreted as a query against the EDB relations. For example, for each of the positive literals, \(P(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_n)\), relation \(P\) is queried, and a set of instantiated tuples of \(P\) satisfying each positive literal in the antecedent is retrieved. For each of the negative literals, \(Q\), the query corresponding to the first order formula,
\[\neg (\exists x_1, x_2, \ldots, x_n \ Q(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_n)) \]
is verified against the relation \(Q\). Note that since the variables are range-restricted, the queries corresponding to the negative literals can always be verified. The antecedent of a production is satisfied if the relations contain instantiated tuples corresponding to each of the positive literals and the relations do not contain tuples corresponding to the negative literals.

The consequent actions are of the form:
\[\text{make } R(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_n) \]
or
\[\text{remove } P(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_n) \]
where \(P\) and \(R\) are relations. Again, we assume that all variables \(x_1, x_2, \ldots, x_n\) are range restricted. The interpretation of the make action is to insert the corresponding tuple into the \(R\) relation. Similarly, the remove action deletes the existing tuple from the \(P\) relation. This requires that the expression \(P(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_n)\) that is referred to by the remove action must occur as a positive literal in the antecedent of that production.

We note that the OPS5 language has many additional features that are not described here; we have not considered the effect of such features in our research.

The operational semantics of an OPS5 program has been defined as follows: The initial state of the PS corresponds to an initial EDB, corresponding to all the tuples of the EDB relations, and a set of productions. Processing in a production system repeatedly cycles through the following sequence:

Match
For each production, the antecedent, interpreted as above, is queried against the tuples of the corresponding relations. Each production whose antecedent is satisfied, together with its instantiated tuples is placed in a conflict set.

Select
Select one satisfied production from the conflict set. If there is no such production, halt execution.

Act
For this selected production, execute the make or remove action, interpreted as above. As a result of the Act phase, the EDB relations are updated. Consequently, the next Match phase may produce a new conflict set.

There is no concept of a query that retrieves information, in a PS program. Processing will continue as long as productions are executed and the EDB relations are updated. Processing terminates when an operational fixpoint is reached, i.e., when there are no longer any productions that can update the EDB relations. This operational
fixpoint (or the updated relations) corresponds to the meaning of the PS program.

Shortcomings of the Operational Semantics

The operational semantics for OPS5 are incompletely defined. Consequently, an initial EDB of relations and a set of productions can produce different answers. In some cases, an operational fixpoint is never reached.

Example 1

Consider a PS whose initial EDB has two tuples, \{Employee(Mike). GoodWorker(Mike).\}, and the following set of productions:

\((p_{p1} (Employee(X), GoodWorker(X)) \rightarrow (make Manager(X))) \)

\((p_{p2} (Manager(X)) \rightarrow (make HasOffice(X))) \)

\((p_{p3} (Employee(X), HasOffice(X)) \rightarrow (make PoorWorker(X))) \)

\((p_{p4} (Manager(X), PoorWorker(X)) \rightarrow (remove Manager(X))) \)

Given this initial EDB and corresponding set of productions, \(p_{p1}, p_{p2} \) and \(p_{p3} \) will execute in that sequence and the tuples Manager(Mike), HasOffice(Mike) and PoorWorker(Mike) will be added to the corresponding EDB relations. Next, \(p_{p4} \) executes and the tuple Manager(Mike) will be deleted from the Manager relation. Subsequently, \(p_{p1} \) and \(p_{p4} \) will execute, first inserting the tuple Manager(Mike) and then deleting this tuple from the Manager relation. Processing of \(p_{p1} \) and \(p_{p4} \) will continue but an operational fixpoint is not reached.

Example 2

The initial EDB = \{Employee(Mike).\} and the productions are as follows:

\((p_{p1} (Employee(X)) \rightarrow (make GoodWorker(X))) \)

\((p_{p2} (Employee(X), GoodWorker(X)) \rightarrow (make Manager(X))) \)

\((p_{p3} (Employee(X), ~GoodWorker(X)) \rightarrow (make PoorWorker(X))) \)

If productions execute in the sequence \(p_{p1} \) followed by \(p_{p2} \), then the final EDB will contain the set of tuples \{Employee(Mike). GoodWorker(Mike). Manager(Mike).\}. If the execution sequence were \(p_{p3} \) followed by \(p_{p1} \) and \(p_{p2} \), then, the final EDB would include the tuples, \{Employee(Mike). GoodWorker(Mike). Manager(Mike). PoorWorker(Mike).\}. Thus, in this case there are two fixpoints.

A Corresponding Logical Theory

In order to understand the shortcomings of the operational semantics, and to define a correct semantics, we define how a logical theory can be obtained from the productions in the PS program.

Definition

Every production that has a **make** action in its consequent corresponds to a rule of an intensional database (IDB).

For example, the following production:

\((p_{p1} (P(x), ~Q(x)) \rightarrow (make R(x))) \)

corresponds to the rule

\(P(x), ~Q(x) \rightarrow R(x). \)

Every production that has a **remove** action in its consequent corresponds to an integrity constraint (IC). General forms of integrity constraints and their treatment are discussed in Kowalski and Sadri 1989; we delay a detailed discussion of constraints to a later section 4.

Definition

Every production that has **remove P(x)** in the consequent is a constraint. The literal P(x) is retracted literal to restore consistency.

Thus, the following production:

\((p_{p2} (P(x), ~Q(x)) \rightarrow (remove P(x))) \)

corresponds to the following IC:

\(P(x), ~Q(x) \rightarrow . \)

\(P(x) \) is retracted to maintain consistency and the database must not prove \(\forall x P(x) \land \neg Q(x). \)

The meaning of treating some productions as integrity constraints will be discussed in section 4.

The following logical theory will be obtained, corresponding to the productions of Example 1:

\(EDB = \{ Employee(Mike). GoodWorker(Mike). \} \)

\(IDB = \{ Employee(X), GoodWorker(X) \rightarrow Manager(X). \}

\(Manager(X) \rightarrow HasOffice(X) \).

\(Employee(X), HasOffice(X) \rightarrow PoorWorker(X). \}) \)

\(IC = \{ Manager(X), PoorWorker(X) \rightarrow . \} \)

We can see that the logical theory of the PS is inconsistent with the constraints. Thus, there can be no model for the theory which is also a model for the constraints (Lloyd 1987). In the case of Example 2, there is a negative literal in the antecedent of a rule. With Horn theories (including stratified theories), the modus ponens rule of inference is insufficient to prove negative information. To do so one uses the closed world rule of inference or the closed world assumption (CWA). The correct interpretation, based on the CWA, is...
that a tuple, \(<a_1, a_2, \ldots, a_n>\) is not true if and only if the IDB \(\cup\) EDB viewed as a logical theory cannot prove \(P(a_1, a_2, \ldots, a_n)\). In our example, it is clear that the theory can prove \(\text{GoodWorker(Mike)}\), and \(\neg \text{GoodWorker(Mike)}\) cannot be proved. Thus, the interpretation of negative literals in the operational semantics of OPS5 is incorrect.

3. Stratified Production Systems

We identify a class of stratified PS programs, and we define an operational semantics for these programs. Stratification is an extension of Horn programs to more general Horn programs that allow negative literals in the antecedent of a rule; recall that productions in OPS5 have the same feature. Our research draws upon existing research in stratified databases (Apt, Blair and Walker 1988).

The Operational Semantics

A stratified production system program is viewed as a stratified program, and comprises an extensional database (EDB) of facts, a stratified intensional database (IDB) of rules, and a stratified set of integrity constraints (IC). Both rules and integrity constraints correspond to productions in PS.

The initial PS program comprises the following:

1. an intensional database of rules (IDB), where each rule corresponds to a production that has a \textit{make} action as its consequent,
2. a set of integrity constraints (IC), where each integrity constraint corresponds to a production that has a \textit{remove} action as its consequent, and
3. an initial extensional database of facts (EDB).

In the operational semantics, there must exist a partition so that PS is a stratified database. Thus, PS = \(PS_0 \cup PS_2 \ldots \cup PS_n\).

Each of the partitions \(PS_i\) comprises a set of rules \(IDB_i\), and a set of integrity constraints \(IC_i\), each of which may be possibly empty. Partition \(PS_0\) comprises the initial extensional database \(EDB_0\); \(EDB_0\) and \(IC_0\) are null. The following conditions hold for the stratification:

1. \(IDB = IDB_1 \cup \ldots \cup IDB_n\)
2. \(IC = IC_1 \cup \ldots \cup IC_n\)

(3) For every positive literal in the body of a rule in \(IDB_i\), or in the body of an integrity constraint in \(IC_i\), the definition of that literal must be contained within \(\cup IDB_i\). The definition of \(\neg l \in i\) a literal is all productions in which the literal occurs in the \textit{make} action.

(4) For every positive literal in the body of a rule in \(IDB_i\), or in the body of an integrity constraint in \(IC_i\), all \textit{other} integrity constraints where the literal occurs in the \textit{remove} action must be contained within \(\cup IC_i\).

(5) For every negative literal in a rule in \(IDB_i\), or in an integrity constraint in \(IC_i\), the definition of that literal must be contained within \(\cup IDB_i\).

(6) For every negative literal in a rule in \(IDB_i\), or in an integrity constraint in \(IC_i\), all integrity constraints where the literal occurs in the \textit{remove} action must be contained within \(\cup IC_i\).

The Operator \(T_{PS}\)

Once such a partition has been obtained for the stratified PS program, then, for each partition \(PS_i\), we define an operator \(T_{PS_i}\) as follows:

Definition

\(U_{PS}\) is a Herbrand universe for the stratified PS comprising predicates \((\text{make } P), (\text{remove } P)\), where \(P\) ranges over all propositional variables in the PS.

If we consider a PS program where the propositional variables are the set \{A, B, C\}, then \(U_{PS}\) is the set of predicates \{(make A), (remove A), (make B), (remove B), (make C), (remove C)\}.

In the case of predicate variables, we will use relations to represent \(U_{PS}\), two for each predicate symbol. Thus, for predicate \(P\), relation \textit{makeP} will contain all tuples \(P(\ldots,\ldots)\) which are added by some action \((\text{make } P(\ldots,\ldots))\) and relation \textit{removeP} will contain all tuples \(P(\ldots,\ldots)\) which are removed by some action \((\text{remove } P(\ldots,\ldots))\).

Definition

For each proposition \(P\) (or ground positive literal \(P(\ldots,\ldots)\)), in \(EDB_0\), we replace it with \((\text{make } P)\), (or we add the tuple \(P(\ldots,\ldots)\) to the
The interpretation of the predicates of UPS (for the propositional variable P), is defined as follows:

1. (make P) ∧ ¬ (remove P) ⊨ P
2. (make P) ∧ (remove P) ⊨ ¬ P
3. ¬ (make P) ∧ (remove P) is not allowed in the operational semantics and represents an inconsistency.

Definition

PS is a mapping from a subset of UPS to UPS, such that for any rule in IDBi or any integrity constraint in rCi, if there exists an interpretation of EDBi, as described above, such that the literals in the antecedent of the corresponding production are true, then, the operator adds the action in the head of the production to EDBi.

Each EDBi is computed as follows:

EDB1 = EDB0 ∪ TPS1 ⊩ ω (EDB0)
EDB2 = EDB1 ∪ TPS2 ⊩ ω (EDB1)
EDBn = EDBn-1 ∪ TPSn ⊩ ω (EDBn-1)

Obtaining an Operational Fixpoint for TPSi

Processing for each partition PSi should terminate when an operational fixpoint is reached, i.e., when there are no longer any satisfied productions that can update EDBi. Processing for PS terminates when the operational fixpoint for PSn is reached and EDBn is computed.

Theorem

TPSi ⊩ ω (EDBi-1) is a fixpoint for PSi = IDBi ∪ ICi.

We refer the reader to (Rase89) for the proof.

Example 3

Consider a PS whose initial EDB has two tuples, {Employee(Mike). GoodWorker(Mike)}., and the following set of productions:

(p p1 (Employee(X), GoodWorker(X)) →
 (make Manager(X)))
(p p2 (Employee(X)) → (make HasOffice(X)))
(p p3 (PoorWorker(X), HasOffice(X)) →
 (remove HasOffice(X)))
(p p4 (Employee(X), HasOffice(X)) →
 (make Manager(X)))

The stratification conditions will place productions p3 in a higher stratum, say PS3, while the other three productions are placed in PS1. The operational fixpoint EDB1 is as follows: {makeEmployee(Mike). makePoorWorker(Mike). makeHasOffice(Mike). removeHasOffice(Mike.).}

EDB1 is interpreted to prove ¬ HasOffice(Mike) and Manager(Mike) will not be an answer.

4. Maintaining Consistency with Integrity Constraints

We now try to understand the meaning of maintaining consistency with respect to integrity constraints in a stratified PS program. Informally, a database must satisfy its integrity constraints as it changes over time. Usually, an update to the database (more precisely an update to facts in the EDB) may cause the violation of an integrity constraint; such updates are rejected or modified. Sometimes, the database itself, i.e., the facts and the rules may be inconsistent with the constraints and must be modified, to maintain consistency. In Kowalski and Sadri 1989, such a method is presented for transforming a theory which is inconsistent with respect to a set of integrity constraints into a transformed theory which is consistent with the constraints. The transformation is syntactic. Although the transformation works for more general constraints, we restrict the discussion to denial constraints of the form A(t), Conj+.

where Conj is a conjunction of positive or negative literals (and may be empty). The denial, or the body of the constraint, should not be true in the database. The atom A is the retractable atom that restores consistency, if the constraint is violated.

Thus, if we consider the theory {C. C + A} and the constraint A, ¬B +, where the retractable atom is A, then, the theory is inconsistent with the constraint. However, the transformed theory {C, C, B +A} is consistent with the constraint.

If we apply a similar transformation to the theory obtained from the productions of Example 3, we obtain the following consistent theory:

EDB = {Employee(Mike). GoodWorker(Mike). }
IDB = {Employee(X), GoodWorker(X) +Manager(X).}
Employee(X) → PoorWorker(X) → HasOffice(X).
Employee(X), HasOffice(X) + Manager(X).}

We see that this theory will not prove Manager(Mike), just as in the operational semantics. In general, we can prove that if the PS
program is stratifiable as defined, then the following hold: (1) the logical theory derived from the stratified PS program, modified to be consistent with the constraints (also derived from the program), is a stratified theory. (2) the operational fixpoint of the stratified PS program is identical to the model for the modified consistent theory that is derived from the program.

5. Summary

A class of stratified PS programs and an operational semantics for these programs have been defined. The theory derived from the productions is modified so that it forms a consistent theory, PS, with the integrity constraints that are also derived from the productions. The operational fixpoint of PS is identical to the model for PS. A formal presentation of this research is in Raschid 1989. Future research includes extending the semantics of PS programs to include PS programs that exhibit non-deterministic behaviour when executing productions.

6. References