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Abstract 
The problem of computing maximally-specific generali- 
zations (MSCG~) of relational descriptions can be 
modelled as tree search. We describe several transfor- 
mations and pruning methods for reducing the com- 
plexity of the problem. Based on this analysis, we have 
implemented a search program (X-search) for finding 
the MSCG's. Experiments compare the separate and 
combined effects of pruning methods on search 
efficiency. With effective pruning methods, full-width 
search appears feasible for moderately sized relational 
descriptions. 

Introduction 
Since Hayes-Roth’s (1977) SPROUTER, several sys- 
tems have been designed that manipulate structural 
descriptions. Michalski’s (1983) INDUCE learns con- 
cepts expressed using both attributes and predicates, 
preferring simpler structural descriptions. VanLehn’s 
(1989) Sierra also learns concepts, efficiently updating 
the set of minimally general hypotheses. Whereas 
these systems input examples for supervised learning, 
Quinlan’s (1989) FOIL inputs a set of descriptions for 
unsupervised learning. Instead of generalizing descrip- 
tions, Falkenhainer, Forbus, and Gentner’s (1989) SME 
(structure mapping engine) was designed to find analo- 
gies by matching descriptions between a target and 
base domain. 

Although one purpose of this paper is to compare 
algorithms that manipulate structural descriptions, its 
main purpose is to explore a new algorithm X-search. 
First, we detail the basic problem and some assump- 
tions, then develop and explains the X-search algo- 
rithm. Next, we describe an empirical analysis of X- 
search. We review other programs, and compare them 
to X-search. The last section summarizes our work. 

Problem and Assumptions 
The problem of matching two structural descriptions . :s often expressed in terms of first order predicate 
logic. Given such a representation, certain assump- 
tions and constraints may simplify algorithms. 
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Representation and Matching 
A relation is a k-ary predicate P’. Since any k-ary 
predicate can be represented using a combination of 
unary and binary predicates, we pssume a fixed set R 
of m utary relstions P, , . . ., P, and n binary rela- 
tions P, ,..., 
las over R 

P, (Haussler 1989). ‘I;he atomic formu- 
are the literah Pi (z) (d < n) and 

'j (‘19 zJ (i 5 ‘)9 where each (subscripted) z?s a vari- 
able. 

To simplify notation we drop the variables in 
literals and the superscripts of literals indicating unary 
versus binary predicates. An existential conjunctive 
expression is a formula F = 3 2r,. . ., 2,: P, & P, 
&. . . & P,, where n > 1. These descriptions can be 
viewed as graphs, in which the nodes are the variables 
or constants, and the edges are the binary relations. 
Unary relations may be drawn as reflexive edges. 

We can view the problem of structure matching 
from two perspectives. One is pictorial: a set of rela- 
tions is a graph, and the problem is to superimpose 
two candidate graphs so that their nodes and edges 
agree. The other view is logical: a set of relations is 
an existential conjunctive expression, and the problem 
is to unify two such expressions by performing suitable 
substitutions of constants for variables in the two can- 
didate expressions. The following section develops the 
logical view of matching. 

The Mechanics of Matching 
We briefly review the notions from logic needed to 
create or to match existential conjunctive expressions. 
Then we define the problem of matching. 

Substitution and consistency. A substitution 6 = 
{ c  1 / q ,  l l �9 

~,/a+,,} is set of correspondences between 
constants ci and variables xi. Under the 1:l mapping 
assumption (Hayes-Roth 1977), every constant in a 
consistent substitution corresponds to exactly one 
variable, and every variable corresponds to exactly one 
constant. 

A substitution instance of a literal P is the result of 
replacing each of the variables in P by the correspond- 
ing constants in 8. This is denoted by Poe. 

A description F matches a set of literals L if for 
some substitution 8, FotJ C L. A description is con- 
sistent with a set of positive examples if it matches all 
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of them. 

The*problem and context of matching. Matching 
appears in several guises. One problem is to find a 
maximally specific common generalization MSCG of 
two or more objects. Another problem is to unify two 
or more descriptions of object classes. In these and 
other cases, the matching problem may be reduced to 
pairwise matching. For example, if we want to find a 
generalization of positive examples, we can first form 
an existential conjunctive expression from one exam- 
ple, then iteratively match each of the remaining 
examples to the composite. This version of the match- 
ing problem is concept learning. 

In Mitchell’s (1978) version space method of concept 
learning, the set of candidate concepts is represented 
by two boundary sets G and S. G is the set of all 
maximally general expressions consistent with the 
examples, and S is the set of all maximally specific 
expressions consistent with the examples. When a 
positive example p is encountered by the system, 5’ is 
minimally generalized so that each expression in S is 
consistent with p. Similarly, when a negative example 
n is encountered, G must be minimally specialized to 
become consistent with n. Van Lehn (1989) gives an 
efficient algorithm for updating the G set. 

In theory, however, G can grow exponentially even 
for the propositional case (Haussler 1989). In contrast, 
a propositional S never contains more than one 
hypothesis (Bundy, Silver, & Plummer 1985). But for 
structural domains, Haussler shows that S and G can 
grow exponentially. 

Yet Haussler (1989) notes that many of the tech- 
niques developed for learning in structural domains 
appear to work well in applications of practical 
interest. This is our motivation in trying to improve 
current techniques despite the intractability of the 
problem. In particular, one-sided methods using only 
the S set might be more efficient than two-sided 
methods in domains of practical interest. 

Our Approach to the Problem 

Generalizing specific expressions. In the one-sided 
version space method, the set S must be modified to 
make its members consistent with a new positive 
example. This leads to the following generalization 
problem: 

Given: s , a member of S, and 
pi a positive example 

Find: a set of existential descriptions C such that: 
every concept in c matches p, 
every concept in C is a generalization of s, and 
no concept in C is a generalization of any other 
concept in C. 

The set C is simply the set of MSCG’s of s and p . 
As Van Lehn (1989) notes, S may have multiple 
members so the above problem must be solved for 

each member of S, and the results merged. In the 
one-sided approach, S is replaced by the merged C at 
each step. 

Hayes-Roth (1977) proposed an interference 
matching algorithm for computing C. In the version 
space framework, interference matching involves the 
following steps: 

for every literal 1 in s 
Add {I} to C 

Repeat 
Choose an unchosen literal I from s 
For each c in C 

if c + (1) matches p 
Add c + {I} to C 

Prune C according to heuristics 
until all literals from s have been chosen 

Interference matching uses some sophisticated 
heuristics to make a good choice of literal for speciali- 
zation and to prune 6. However, pruning may prevent 
some elements of C from being found. 

Decomposition into connected components. Our 
method uses the fact that graph matching is computa- 
tionally less complex if only disconnected subgraphs 
are matched. This is is related to factoring of version 
spaces (Genesereth & Nilsson 1988). Similar methods 
are used by Falkenhainer, Forbus and Gentner (1989) 
for analogical mapping. 

A graph represents a conjunctive description F = 
3 ZI,..., 2,: P, & P, &...& P,. The existential 
expression is connected iff for every z;, Zj, either z,. 
and zj occur in the same literal P, or there is an zlt 
such that xi and z1 are connected and xL and xi are 
connected. 

An existential conjunctive expression can be normal- 
ized by finding its connected components and creating 
a new existential conjunctive expression for each com- 
ponent. The result is a set of existential conjunctive 
expressions. The set of expressions matches another 
expression E iff every element of the set matches E. 

As shown in Figure l., the S set of a version space 
can be normalized by replacing each of its elements by 
the element’s connected components, and removing the 
non-maximally specific components. Although some 

Figure 1. Normalized S set of version space 
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or all of the new elements of S may be less specific 
than the old elements of S, together they define the 
same boundary of the version space as previously. 

The X-Search Algorithm 
The X-search algorithm computes the set of MSCG’s 
for a given description s and a positive example p. 
This computation can be viewed as search in a tree T, 
where nodes correspond to descriptions, and a branch 
corresponds to a literal that is used to specialize the 
description. Every description is more general than s, 
and is constrained to match p. For example, interfer- 
ence matching searches the tree shown in Figure 2. 

From this perspective, a branch (or its literal) can 
be viewed as specializing a node (or its description) of 
the search tree. Our algorithm uses a connectivity 
constraint: a literal can specialize a node only if it is 
connected to its description. The empty description, 
when at the root node, is defined to be connected to 
every literal in s . 

The search tree can be viewed in yet another per- 
spective. Suppose n is a node in the search tree with 
description d. If a branch specializes n to a node n’ 
with a literal I, then the subtree rooted at n’ searches 
for the MSCG’s that are supersets of d + {I}. The i- 
th sibling of n’, n- searches for the MS&G’s that are 
supersets of d + ‘;I;>. S’ mce any two MSCG’s must 
differ by at least one literal, no node in the subtree 
rooted at n,. needs to be specialized by I,, I,, . . . 1,-r. 
This avoids an inefficiency in the interference match- 
ing algorithm: an MSCG will be found at many leaf 
nodes of the search tree, once for every permutation of 
its literals. We refer to these constraints as literal 
constraints. The tree searched by a depth-first stra- 
tegy with literal constraints is shown in Figure 3. 

Previous systems have used some form of connec- 
tivity and literal constraints. The next two con- 
straints appear to be new. 

The observation that any two MSCG’s must differ 
by at least one literal motivates another pruning 

C b c a b a 

Figure 2. Tree searched by interference matching 

Figure 3. Tree searched with literal constraints. 

method. This method, called root pruning, prunes the 
branches leading from the root. Specifically, when a 
MSCG is found, we can prune all of the branches from 
the root that are labelled by a literal in the MSCG. 
Because this pruning technique can only be applied 
once during the search, X-search waits until it finds a 
reasonably “large” . MSCG before applying root prun- 
ing. The branches that are pruned by root pruning are 
marked by “X” in Figure 3. We will discuss the final 
pruning method, substitution pruning, after present- 
ing the main procedures of the X-search algorithm. 

Figure 4 shows the X-search algorithm. X-search is 
given s, a connected structural description, and p, a 
positive example, and returns a superset of the 
MSCG’s of s and p. Each literal in s is matched 
against p to initialize its substitutions list, used later 
in CreateNode (Fig. 5). 

The search stack is initialized to contain the root 
node corresponding to the empty description. A node 
has a marked list to keep track of which literals have 
been tried at the node, and a literal-constraint list to 
keep track of which literals are not allowed to 

X-search( s , p ) 
for each literal f E s 

Init-Substitutions( I); 
stack := NULL; root = {}; 
Push( root, stack); 
while stack # NULL; 

fop = Pop(&ack) 
while 3 1 E s s.t. Expandable(top, I) 

Mark( t op, I); 
nezt := CreateNode(top, I) 
if nezt # FAIL 

Push( top, stack); 
top := nezt 

if fop is a leai then 
Push( top, Saved) 
if top is “large” apply root pruning; 

remove subsumed elements from Saved; 
return( Saved) 

Figure 4. Basic MSCG algorithm X-search. 
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specialize a node because of the literal constraint. A 
literal 1 is added to the marked list of a node n by a 
call to Mark( n, I), and to the literal-constraint list by 
Add-Literal-Constraint( n, I). This information is 
used to determine which literals can be used to special- 
ize a literal. The root node can also have laterals 
marked by by root pruning. 

The function Expandable( d , I) returns true iff 1 can 
be used to specialize d. For the root node, this is true 
iff 1 is not on the marked or literal-constraint lists of 
d. For all other nodes, Expandable(d, I) returns true 
iff Z is not on the marked or literal-constraint lists of 
d, and 1 is connected to d. The main procedure of 
X-search conducts a depth-first search for a superset 
of the MSCG’s, which is stored on Satled. Afterwards, 
the non-maximally specific elements of hued are 
removed. 

CreateNode forms a new node, if possible, from a 
node d, and a literal I. CreateNode’s main function is 
to find- the matches from d and Z to p, and to store 
these on the substitutions list of d and 1. The 
matches are generated by multiplying the substitu- 
tions of d by the substitutions of I, and saving the 
consistent ones. If there are no consistent ones, 
CreateNode returns FAIL. If there are some con- 
sistent ones, CreateNode creates a literal constraint for 
that literal &nd the node d, and returns the specializa- 
tion d + {I}. The literal constraints of the parent 
node d are inherited here by the new node d + {I }. 

CreateNode also calls Substitution-Prune (Fig. 6), 
which implements the final pruning method. Substitu- 
tion pruning attempts to prune the generation of sub- 
stitutions at a new node. This is important for 
efficiency because the number of substitutions at a 
node can grow exponentially in the depth of the tree. 
Substitution pruning has a second advantage: nodes 
without any substitutions are pruned. Thus, pruning 
substitutions can indirectly lead to pruning of nodes. 

Substitution pruning is based on an analysis of the 
necessity for backtracking. First, backtracking might 
be necessary when a node with description d matches 
several different parts of p. For each match, it may 
be possible to specialize d with one of the literals. 

CreateNode( d , I) 
for 6 E Substitutions(d) 

if -Prune(d) 0, I) or d = root 
for sub’ E Substitutions(l) 

if Consistent( 6, sub’) 
Add-Substitution( d +{ Z}, 8+ sub’) 

if Substitutions(d + {I}) = NULL then return(FA.IL) 
else 

for I’ E s 
if Literal-Constraint( d, Z’) = TRUE then 

Add-Literal-Constraint(d+{I}, 1’) 
return(d + {I}) 

However, it may not be possible to specialize d with 
any pair of these literals, because the 
may-be in different parts of p . 

matching _ literal23 

Even if d has only one match to p, backtracking 
may be needed because of the 1:l mapping assump- 
tion. Suppose description d is matched to p with sub- 
stitution 8. Specializing d with a literal Z may require 
assigning a constant c from a literal in p to a variable 
z from 1. Specializing d with another literal 1’ may 
require assigning the same constant c to a different 
variable 2 from I’. Because of the 1:l mapping 
assumption, we cannot assign c to both z and z’, so d 
cannot be specialized with both 1 and 1’. 

If the graph is acyclic, then two literals are incom- 
patible only if they have the same predicate name, and 
their corresponding variables are bound to the same 
constants by 8. This defines an equivalence class of 
literals, any of which may map to the same subset of 
literals in p . If there are fewer literals in the 
equivalence class than corresponding literals in p, then 
the substitution can be pruned. 

Figure 6 shows the implementation of substitution 
pruning. The equivalence class is initialized to the 
first literal that matches p using the substitution B 
(plus some other assignments of constants to vari- 
ables). The next time Prune is called with d and 8, the 
substitution is pruned if 1 is not in the equivalence 
class. 

Empirical Results 
Three experiments were run. The first experiment 
measured the cpu times, real times, and substitution 
counts for X-search as a function of the size of the 
examples. Th e second experiment compared compared 
the effects of X-search’s pruning methods by running 
X-search without each of the pruning methods in 
turn. The third experiment compared X-search 
against a random beam search. 

The data were generated from the structural exam- 
ples used in Hoff, Stepp, and Michalski (1983). Each 

Prune-Substitutions( d, 8, I) 
if d + {I} matches p using 0 then 

if EquivClassLiteral( d, fl) is undefined then 
set EquivClassLiteral( d ,O) to Z 
return FALSE 

else if 1 is not in the same equivalence class as 
EquivClassLiteral( d) fl) under 6 
return TRUE 

else if Competitors(d) 0, I) < 
Resources( s , 8, I) then 
return TRUE 

else 
return FALSE 

else return TRUE 

Figure 5. Procedure CreateNode Figure 6. Procedure Prune-Substitutions 
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data set consisted of a pair of positive examples. The 
examples of the dst pair were created by merging i 
examples of i different classes from Hoff et al.‘s data. 
Additional literals were added to the examples to con- 
nect their descriptions. 

The real times, cpu times, and substitution counts 
for X-search are shown in Table 1. The example size is 
the average number of literals in an example. 

The substitution counts for X-search in several 
configurations is given in Table 2. The configurations 
correspond to the single pruning constraint that was 
not used in the test run. These are: LC = literal con- 
straints, RP = root pruning, SP = substitution prun- 
ing, and CC = connectivity constraints. Where no 
table entry is given, the job was killed after taking 
excessive time. 

For the third experiment, X-search and the beam 
search were compared along two dimensions. The first 
dimension measured how many nodes beam search 
expanded to find the full MSCG set. This was deter- 
mined by rerunning beam search with incrementally 
increasing beam width until the full MSCG set was 
found. Only the number of nodes expanded during the 
last run was counted. The second test measured how 
many descriptions were found by beam search when it 
expanded the same number of nodes as needed by X- 
search. The test data consisted of about 33 pairs of 
examples. For the first test, beam search expanded 
about four times as many nodes as X-search. For the 

Table 1. CPU time and substitution counts. 

Table 2. Effect of removing pruning methods 

45 13234 16087 349176 - 

63 56842 69286 - - 

86 67070 73639 - - 

second test, beam search found 70% of the descrip- 
tions found by X-search. 

Discussion 
X-search was able to handle moderately sized 

descriptions, up to 86 binary predicates per example, 
in .4 seconds of CPU time and of 226.2 seconds of real 
time, on a Sun4 workstation. These results indicate 
that full-width search may be feasible for moderate- 
sized examples. Previously, full-width search methods 
have been avoided because they are expensive even for 
small problems. An alternative to full-width search is 
a beam search, typically based on information- 
theoretic criteria or an evaluation function. 

An information-theoretic or evaluation function 
based approach considers the number of positive and 
negative examples when evaluating partial descrip- 
tions. For example, one might prune a node if it 
corresponded to a description that covered many nega- 
tive examples and few positive ones. This is an impor- 
tant source of information that methods such as ver- 
sion spaces ignore. Instead, methods such as version 
spaces are guided by their inductive bias. The advan- 
tage of the version space approach is that when there 
are few examples, and the examples are carefully 
chosen, a great deal of information about the concept 
can be extracted. Thus, computing MSCG’s is impor- 
tant for problems such as analogy, or learning from a 
helpful teacher. In contrast, an information-theoretic 
approach will probably perform better when doing 
unsupervised learning in a complex and noisy domain 
with many examples. 

Although the pruning methods used by X-search 
seem to give significant increases in efficiency, the 
problem is still intractable in the worst case. How- 
ever, efficient pruning methods can delay the point at 
which full-width search becomes infeasible. X-search 
must also be viewed from the perspective of its 
intended use. Typically, the learned descriptions are 
used as classification rules for an expert system. The 
expert system is limited by the same matching com- 
binatorics, as X-search, and cannot efficiently use 
extremely large and complex rules. 

The results show that removing even one of the 
methods leads to a substantial increase in the number 
of substitutions. The most important constraint is 
connectivity, followed by substitution pruning, literal 
constraints, and root pruning. 

Although substitution pruning is an effective con- 
straint, it requires that the descriptions be acyclic. 
This is a strong requirement, so we will be generalizing 
the method to handle cyclic descriptions in future 
research. 

The use of a random beam search is a weak basis for 
comparison. However, it was quite difficult to come 
up with a good evaluation function for beam search 
for this problem. When given only two positive exam- 
ples, an information-theoretic evaluation function is of 
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little value. Evaluation functions that score descrip- 
tions according to some desirability metric have the 
effect of concentrating the beam in the same region of 
the search space. Thus, the same MSCG was rederived 
by many elements of the beam. Several of our initial 
attempts at evaluation functions produced worse 
results than the random strategy, and others were 
insignificantly better. Although the results of this 
experiment were inconclusive, our difficulties have led 
us to conjecture that a good evaluation function for 
beam search must evaluate the beam as a whole, 
rather than any particular element of it. 

The empirical evaluation of X-search gives some 
indication of how well it performs. However, these 
indicators are based only on a few examples with simi- 
lar structure, namely pseudo-chemical molecules. We 
will be conducting more extensive empirical evaluation 
and comparisons in future research. 

Other Approaches 
Earlier algorithms share some similarities with each 
other and with our program. Our approach also 
differs in some ways. 

SPROUTER 
Hayes-Roth’s (1977) interference matching algorithm 
SPROUTER is one of the earliest and most widely imi- 
tated method for learning structural descriptions. 
Hayes-Roth makes the 1:l mapping assumption in 
early versions of his system, although he notes the 
inadequacy of this assumption for learning many 
classes of interesting concepts. The interference 
matching algorithm matches literals in a member s of 
the specific set S against literals in p, checking the 
consistency of the bindings, and extending the general- 
ized description if possible. Only the best w descrip- 
tions are kept at each step. Hayes-Roth’s (1977) 
paper also discusses many issues in structural learning 
that we have not addressed here. 

INDUCE 
Michalski’s (1983) INDUCE is one of the earliest struc- 
tural learning algorithms. INDUCE is similar to 
interference matching in using a beam search through 
the space of possible abstractions, but differs in search- 
ing for a maximally general description that is con- 
sistent with the negative examples, rather than a max- 
imally specific description that is consistent with the 
postive examples. INDUCE also uses a two-space 
search method: first a description is found in structure 
only space, and then attribute-based learning methods 
are used to specialize the structural description. 
INDUCE uses an evaluation function that evaluates the 
completeness and consistency of the descriptions with 
respect to the positive and negative example. The 
evaluation function gives INDUCE an information- 
theoretic flavor, in contrast to version spaces which 

relies more heavily on the characteristics of a particu- 
lar example. INDUCE’s two space search method, in 
which attributes are ignored when first finding a struc- 
tural description, is similar to part of Falkenhainer, 
Forbus and Gentner’s Structure Mapping Engine 
(1989)’ h h g w ic i nores attributes when finding an initial 
set of analogical mappings. Michalski’s representation 
is more expressive than ours, allowing attributes to be 
combined with operators such as <, 2, =, 2, and >, 
to permit expressions such as [distance(z,y) < 331. 
INDUCE can also learn disjunctive descriptions, unlike 
version-space based methods. 

SUBDUE 
Holder’s (1989) SUBDUE uses clustering methods to 
construct features from the examples. The examples 
are simplified by replacing parts of their initial 
descriptions by constructed features. These modified 
examples are given to INDUCE which performs the 
actual learning. Holder’s two-step approach to learn- 
ing structural descriptions is more efficient than a 
single-step approach. 

The Structure Mapping Engine 
Falkenhainer , Forbus and Gentner’s (1989) SME 
addresses the problem of structural matching in the 
context of analogical reasoning. Analogical reasoning 
has some rather different properties from learning rela- 
tions, as predicates can be matched against other 
predicates. Falkenhainer et al.‘s approach is interest- 
ing in its use of extensive knowledge to guide the 
matching process. The initial construction of match- 
ings, is similar to VanLehn’s (1989) method in that it 
enumerates the possible correspondences of objects in 
the target and base domain. SME is efficient when 
knowledge about the base and target domains is avail- 
able to guide the mapping process. 

Sierra 
VanLehn (1989) g ives an efficient method for updating 
the G set when a negative example is encountered that 
matches G. VanLehn enumerates the substitutions, 
and uses an efficient bit-representation for the set of 
substitutions. He reduces the problem of updating G 
to a series of cover problems, and uses Well’s algo- 
rithm (1971, sec. 6.4.3) for finding irredundant covers 
to solve the problem. 

The length of the bit representations is c !/(c-N)!, 
where N is the number of variables in s and c is the 
number of constants in n, the negative example. 
Although this number is very large, the efficiency of 
the bit operations is sufficient to produce some impres- 
sive results. In addition, VanLehn enforces the 
equivalent of type constraints on substitutions. 

880 MACHINE LEARNING 



FOIL 
Quinlan’s (1989) FOIL uses a full first-order predicate 
representation to learn relations. An interesting 
feature of FOIL is its ability to learn relations in either 
supervised or unsupervised mode. FOIL uses an 
information-theoretic evaluation function to perform 
an heuristic search for a single description. Unlike 
most other structural learning systems, FOIL is capa- 
ble of learning disjunctive, recursive descriptions, with 
embedded skolem functions. 

for helpful discussions about structural 

Commonalities 
Many programs, such as SME, X-search, Sierra, and 
SPROUTER are incremental, conjunctive learners that 
rely on the conjunctive bias, their current hypothesis, 
and the current example to form a hypothesis. Other 
programs, such as INDUCE and FOIL are non- 
incremental, disjunctive learners that use 
information-theoretic methods or an evaluation func- 
tion to form a hypothesis. 

Haussler (1989) shows a number of interesting 
results about the difficulty of learning existential con- 
junctive descriptions. He proves that this problem is 
NP-complete, even when no binary relations are 
defined, attributes are Boolean valued, and each exam- 
ple contains exactly two objects. However, he notes 
that heuristic methods for learning existential concepts 
can be effective, if not always efficient. 

Haussler (1989) also presents a subset query method 
for pat-learning learning existential conjunctive 
descriptions that have a fixed number of variables. 
The main technique he uses is matching positive exam- 
ples with each other and with intermediate hypotheses 
to form MSCG ‘s. This is the basis of many learning 
algorithms for existential conjunctive concepts (Diet- 
terich 1983). 

Conclusions 
This paper describes a new search method, X-search, 
for computing the maximally specific common general- 
izations (MsCG’S) of a description and a positive 
example. Finding MSCG’s is important for learning 
relational descriptions and plays a role in many struc- 
tural learning programs. This is the main problem in 
updating the specific (S) set in a version space algo- 
rithm for structured descriptions. The main weakness 
of X-search is that under the 1:l mapping assumption, 
it is restricted to descriptions corresponding to acyclic 
graphs. Our preliminary results indicate that X- 
search is a fast and effective method for computing the 
MSCG (S) set. 
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