
Effective Generalization of Relational Descriptions

Larry Watanabe and Larry Rendell

Beckman Institute and Department of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield Avenue, Urbana, Illinois 61801 U.S.A.
watanabe@cs.uiuc.edu

Abstract
The problem of computing maximally-specific generali-
zations (MSCG~) of relational descriptions can be
modelled as tree search. We describe several transfor-
mations and pruning methods for reducing the com-
plexity of the problem. Based on this analysis, we have
implemented a search program (X-search) for finding
the MSCG's. Experiments compare the separate and
combined effects of pruning methods on search
efficiency. With effective pruning methods, full-width
search appears feasible for moderately sized relational
descriptions.

Introduction
Since Hayes-Roth’s (1977) SPROUTER, several sys-
tems have been designed that manipulate structural
descriptions. Michalski’s (1983) INDUCE learns con-
cepts expressed using both attributes and predicates,
preferring simpler structural descriptions. VanLehn’s
(1989) Sierra also learns concepts, efficiently updating
the set of minimally general hypotheses. Whereas
these systems input examples for supervised learning,
Quinlan’s (1989) FOIL inputs a set of descriptions for
unsupervised learning. Instead of generalizing descrip-
tions, Falkenhainer, Forbus, and Gentner’s (1989) SME
(structure mapping engine) was designed to find analo-
gies by matching descriptions between a target and
base domain.

Although one purpose of this paper is to compare
algorithms that manipulate structural descriptions, its
main purpose is to explore a new algorithm X-search.
First, we detail the basic problem and some assump-
tions, then develop and explains the X-search algo-
rithm. Next, we describe an empirical analysis of X-
search. We review other programs, and compare them
to X-search. The last section summarizes our work.

Problem and Assumptions
The problem of matching two structural descriptions . :s often expressed in terms of first order predicate
logic. Given such a representation, certain assump-
tions and constraints may simplify algorithms.

1. This research was supported in part by grant IRI
8822031 from the National Science Foundation.

rendell@cs.uiuc.edu

Representation and Matching
A relation is a k-ary predicate P’. Since any k-ary
predicate can be represented using a combination of
unary and binary predicates, we pssume a fixed set R
of m utary relstions P, , . . ., P, and n binary rela-
tions P, ,...,
las over R

P, (Haussler 1989). ‘I;he atomic formu-
are the literah Pi (z) (d < n) and

'j (‘19 zJ (i 5 ‘)9 where each (subscripted) z?s a vari-
able.

To simplify notation we drop the variables in
literals and the superscripts of literals indicating unary
versus binary predicates. An existential conjunctive
expression is a formula F = 3 2r,. . ., 2,: P, & P,
&. . . & P,, where n > 1. These descriptions can be
viewed as graphs, in which the nodes are the variables
or constants, and the edges are the binary relations.
Unary relations may be drawn as reflexive edges.

We can view the problem of structure matching
from two perspectives. One is pictorial: a set of rela-
tions is a graph, and the problem is to superimpose
two candidate graphs so that their nodes and edges
agree. The other view is logical: a set of relations is
an existential conjunctive expression, and the problem
is to unify two such expressions by performing suitable
substitutions of constants for variables in the two can-
didate expressions. The following section develops the
logical view of matching.

The Mechanics of Matching
We briefly review the notions from logic needed to
create or to match existential conjunctive expressions.
Then we define the problem of matching.

Substitution and consistency. A substitution 6 =
{ c 1 / q , l l �9

~,/a+,,} is set of correspondences between
constants ci and variables xi. Under the 1:l mapping
assumption (Hayes-Roth 1977), every constant in a
consistent substitution corresponds to exactly one
variable, and every variable corresponds to exactly one
constant.

A substitution instance of a literal P is the result of
replacing each of the variables in P by the correspond-
ing constants in 8. This is denoted by Poe.

A description F matches a set of literals L if for
some substitution 8, FotJ C L. A description is con-
sistent with a set of positive examples if it matches all

WATANABEANDRENDELL 875

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

of them.

The*problem and context of matching. Matching
appears in several guises. One problem is to find a
maximally specific common generalization MSCG of
two or more objects. Another problem is to unify two
or more descriptions of object classes. In these and
other cases, the matching problem may be reduced to
pairwise matching. For example, if we want to find a
generalization of positive examples, we can first form
an existential conjunctive expression from one exam-
ple, then iteratively match each of the remaining
examples to the composite. This version of the match-
ing problem is concept learning.

In Mitchell’s (1978) version space method of concept
learning, the set of candidate concepts is represented
by two boundary sets G and S. G is the set of all
maximally general expressions consistent with the
examples, and S is the set of all maximally specific
expressions consistent with the examples. When a
positive example p is encountered by the system, 5’ is
minimally generalized so that each expression in S is
consistent with p. Similarly, when a negative example
n is encountered, G must be minimally specialized to
become consistent with n. Van Lehn (1989) gives an
efficient algorithm for updating the G set.

In theory, however, G can grow exponentially even
for the propositional case (Haussler 1989). In contrast,
a propositional S never contains more than one
hypothesis (Bundy, Silver, & Plummer 1985). But for
structural domains, Haussler shows that S and G can
grow exponentially.

Yet Haussler (1989) notes that many of the tech-
niques developed for learning in structural domains
appear to work well in applications of practical
interest. This is our motivation in trying to improve
current techniques despite the intractability of the
problem. In particular, one-sided methods using only
the S set might be more efficient than two-sided
methods in domains of practical interest.

Our Approach to the Problem

Generalizing specific expressions. In the one-sided
version space method, the set S must be modified to
make its members consistent with a new positive
example. This leads to the following generalization
problem:

Given: s , a member of S, and
pi a positive example

Find: a set of existential descriptions C such that:
every concept in c matches p,
every concept in C is a generalization of s, and
no concept in C is a generalization of any other
concept in C.

The set C is simply the set of MSCG’s of s and p .
As Van Lehn (1989) notes, S may have multiple
members so the above problem must be solved for

each member of S, and the results merged. In the
one-sided approach, S is replaced by the merged C at
each step.

Hayes-Roth (1977) proposed an interference
matching algorithm for computing C. In the version
space framework, interference matching involves the
following steps:

for every literal 1 in s
Add {I} to C

Repeat
Choose an unchosen literal I from s
For each c in C

if c + (1) matches p
Add c + {I} to C

Prune C according to heuristics
until all literals from s have been chosen

Interference matching uses some sophisticated
heuristics to make a good choice of literal for speciali-
zation and to prune 6. However, pruning may prevent
some elements of C from being found.

Decomposition into connected components. Our
method uses the fact that graph matching is computa-
tionally less complex if only disconnected subgraphs
are matched. This is is related to factoring of version
spaces (Genesereth & Nilsson 1988). Similar methods
are used by Falkenhainer, Forbus and Gentner (1989)
for analogical mapping.

A graph represents a conjunctive description F =
3 ZI,..., 2,: P, & P, &...& P,. The existential
expression is connected iff for every z;, Zj, either z,.
and zj occur in the same literal P, or there is an zlt
such that xi and z1 are connected and xL and xi are
connected.

An existential conjunctive expression can be normal-
ized by finding its connected components and creating
a new existential conjunctive expression for each com-
ponent. The result is a set of existential conjunctive
expressions. The set of expressions matches another
expression E iff every element of the set matches E.

As shown in Figure l., the S set of a version space
can be normalized by replacing each of its elements by
the element’s connected components, and removing the
non-maximally specific components. Although some

Figure 1. Normalized S set of version space

876 MACHINE LEARNING

or all of the new elements of S may be less specific
than the old elements of S, together they define the
same boundary of the version space as previously.

The X-Search Algorithm
The X-search algorithm computes the set of MSCG’s
for a given description s and a positive example p.
This computation can be viewed as search in a tree T,
where nodes correspond to descriptions, and a branch
corresponds to a literal that is used to specialize the
description. Every description is more general than s,
and is constrained to match p. For example, interfer-
ence matching searches the tree shown in Figure 2.

From this perspective, a branch (or its literal) can
be viewed as specializing a node (or its description) of
the search tree. Our algorithm uses a connectivity
constraint: a literal can specialize a node only if it is
connected to its description. The empty description,
when at the root node, is defined to be connected to
every literal in s .

The search tree can be viewed in yet another per-
spective. Suppose n is a node in the search tree with
description d. If a branch specializes n to a node n’
with a literal I, then the subtree rooted at n’ searches
for the MSCG’s that are supersets of d + {I}. The i-
th sibling of n’, n- searches for the MS&G’s that are
supersets of d + ‘;I;>. S’ mce any two MSCG’s must
differ by at least one literal, no node in the subtree
rooted at n,. needs to be specialized by I,, I,, . . . 1,-r.
This avoids an inefficiency in the interference match-
ing algorithm: an MSCG will be found at many leaf
nodes of the search tree, once for every permutation of
its literals. We refer to these constraints as literal
constraints. The tree searched by a depth-first stra-
tegy with literal constraints is shown in Figure 3.

Previous systems have used some form of connec-
tivity and literal constraints. The next two con-
straints appear to be new.

The observation that any two MSCG’s must differ
by at least one literal motivates another pruning

C b c a b a

Figure 2. Tree searched by interference matching

Figure 3. Tree searched with literal constraints.

method. This method, called root pruning, prunes the
branches leading from the root. Specifically, when a
MSCG is found, we can prune all of the branches from
the root that are labelled by a literal in the MSCG.
Because this pruning technique can only be applied
once during the search, X-search waits until it finds a
reasonably “large” . MSCG before applying root prun-
ing. The branches that are pruned by root pruning are
marked by “X” in Figure 3. We will discuss the final
pruning method, substitution pruning, after present-
ing the main procedures of the X-search algorithm.

Figure 4 shows the X-search algorithm. X-search is
given s, a connected structural description, and p, a
positive example, and returns a superset of the
MSCG’s of s and p. Each literal in s is matched
against p to initialize its substitutions list, used later
in CreateNode (Fig. 5).

The search stack is initialized to contain the root
node corresponding to the empty description. A node
has a marked list to keep track of which literals have
been tried at the node, and a literal-constraint list to
keep track of which literals are not allowed to

X-search(s , p)
for each literal f E s

Init-Substitutions(I);
stack := NULL; root = {};
Push(root, stack);
while stack # NULL;

fop = Pop(&ack)
while 3 1 E s s.t. Expandable(top, I)

Mark(t op, I);
nezt := CreateNode(top, I)
if nezt # FAIL

Push(top, stack);
top := nezt

if fop is a leai then
Push(top, Saved)
if top is “large” apply root pruning;

remove subsumed elements from Saved;
return(Saved)

Figure 4. Basic MSCG algorithm X-search.

WATANABEANDRENDELL 877

specialize a node because of the literal constraint. A
literal 1 is added to the marked list of a node n by a
call to Mark(n, I), and to the literal-constraint list by
Add-Literal-Constraint(n, I). This information is
used to determine which literals can be used to special-
ize a literal. The root node can also have laterals
marked by by root pruning.

The function Expandable(d , I) returns true iff 1 can
be used to specialize d. For the root node, this is true
iff 1 is not on the marked or literal-constraint lists of
d. For all other nodes, Expandable(d, I) returns true
iff Z is not on the marked or literal-constraint lists of
d, and 1 is connected to d. The main procedure of
X-search conducts a depth-first search for a superset
of the MSCG’s, which is stored on Satled. Afterwards,
the non-maximally specific elements of hued are
removed.

CreateNode forms a new node, if possible, from a
node d, and a literal I. CreateNode’s main function is
to find- the matches from d and Z to p, and to store
these on the substitutions list of d and 1. The
matches are generated by multiplying the substitu-
tions of d by the substitutions of I, and saving the
consistent ones. If there are no consistent ones,
CreateNode returns FAIL. If there are some con-
sistent ones, CreateNode creates a literal constraint for
that literal &nd the node d, and returns the specializa-
tion d + {I}. The literal constraints of the parent
node d are inherited here by the new node d + {I }.

CreateNode also calls Substitution-Prune (Fig. 6),
which implements the final pruning method. Substitu-
tion pruning attempts to prune the generation of sub-
stitutions at a new node. This is important for
efficiency because the number of substitutions at a
node can grow exponentially in the depth of the tree.
Substitution pruning has a second advantage: nodes
without any substitutions are pruned. Thus, pruning
substitutions can indirectly lead to pruning of nodes.

Substitution pruning is based on an analysis of the
necessity for backtracking. First, backtracking might
be necessary when a node with description d matches
several different parts of p. For each match, it may
be possible to specialize d with one of the literals.

CreateNode(d , I)
for 6 E Substitutions(d)

if -Prune(d) 0, I) or d = root
for sub’ E Substitutions(l)

if Consistent(6, sub’)
Add-Substitution(d +{ Z}, 8+ sub’)

if Substitutions(d + {I}) = NULL then return(FA.IL)
else

for I’ E s
if Literal-Constraint(d, Z’) = TRUE then

Add-Literal-Constraint(d+{I}, 1’)
return(d + {I})

However, it may not be possible to specialize d with
any pair of these literals, because the
may-be in different parts of p .

matching _ literal23

Even if d has only one match to p, backtracking
may be needed because of the 1:l mapping assump-
tion. Suppose description d is matched to p with sub-
stitution 8. Specializing d with a literal Z may require
assigning a constant c from a literal in p to a variable
z from 1. Specializing d with another literal 1’ may
require assigning the same constant c to a different
variable 2 from I’. Because of the 1:l mapping
assumption, we cannot assign c to both z and z’, so d
cannot be specialized with both 1 and 1’.

If the graph is acyclic, then two literals are incom-
patible only if they have the same predicate name, and
their corresponding variables are bound to the same
constants by 8. This defines an equivalence class of
literals, any of which may map to the same subset of
literals in p . If there are fewer literals in the
equivalence class than corresponding literals in p, then
the substitution can be pruned.

Figure 6 shows the implementation of substitution
pruning. The equivalence class is initialized to the
first literal that matches p using the substitution B
(plus some other assignments of constants to vari-
ables). The next time Prune is called with d and 8, the
substitution is pruned if 1 is not in the equivalence
class.

Empirical Results
Three experiments were run. The first experiment
measured the cpu times, real times, and substitution
counts for X-search as a function of the size of the
examples. Th e second experiment compared compared
the effects of X-search’s pruning methods by running
X-search without each of the pruning methods in
turn. The third experiment compared X-search
against a random beam search.

The data were generated from the structural exam-
ples used in Hoff, Stepp, and Michalski (1983). Each

Prune-Substitutions(d, 8, I)
if d + {I} matches p using 0 then

if EquivClassLiteral(d, fl) is undefined then
set EquivClassLiteral(d ,O) to Z
return FALSE

else if 1 is not in the same equivalence class as
EquivClassLiteral(d) fl) under 6
return TRUE

else if Competitors(d) 0, I) <
Resources(s , 8, I) then
return TRUE

else
return FALSE

else return TRUE

Figure 5. Procedure CreateNode Figure 6. Procedure Prune-Substitutions

878 MACHINJZ LEARNING

data set consisted of a pair of positive examples. The
examples of the dst pair were created by merging i
examples of i different classes from Hoff et al.‘s data.
Additional literals were added to the examples to con-
nect their descriptions.

The real times, cpu times, and substitution counts
for X-search are shown in Table 1. The example size is
the average number of literals in an example.

The substitution counts for X-search in several
configurations is given in Table 2. The configurations
correspond to the single pruning constraint that was
not used in the test run. These are: LC = literal con-
straints, RP = root pruning, SP = substitution prun-
ing, and CC = connectivity constraints. Where no
table entry is given, the job was killed after taking
excessive time.

For the third experiment, X-search and the beam
search were compared along two dimensions. The first
dimension measured how many nodes beam search
expanded to find the full MSCG set. This was deter-
mined by rerunning beam search with incrementally
increasing beam width until the full MSCG set was
found. Only the number of nodes expanded during the
last run was counted. The second test measured how
many descriptions were found by beam search when it
expanded the same number of nodes as needed by X-
search. The test data consisted of about 33 pairs of
examples. For the first test, beam search expanded
about four times as many nodes as X-search. For the

Table 1. CPU time and substitution counts.

Table 2. Effect of removing pruning methods

45 13234 16087 349176 -

63 56842 69286 - -

86 67070 73639 - -

second test, beam search found 70% of the descrip-
tions found by X-search.

Discussion
X-search was able to handle moderately sized

descriptions, up to 86 binary predicates per example,
in .4 seconds of CPU time and of 226.2 seconds of real
time, on a Sun4 workstation. These results indicate
that full-width search may be feasible for moderate-
sized examples. Previously, full-width search methods
have been avoided because they are expensive even for
small problems. An alternative to full-width search is
a beam search, typically based on information-
theoretic criteria or an evaluation function.

An information-theoretic or evaluation function
based approach considers the number of positive and
negative examples when evaluating partial descrip-
tions. For example, one might prune a node if it
corresponded to a description that covered many nega-
tive examples and few positive ones. This is an impor-
tant source of information that methods such as ver-
sion spaces ignore. Instead, methods such as version
spaces are guided by their inductive bias. The advan-
tage of the version space approach is that when there
are few examples, and the examples are carefully
chosen, a great deal of information about the concept
can be extracted. Thus, computing MSCG’s is impor-
tant for problems such as analogy, or learning from a
helpful teacher. In contrast, an information-theoretic
approach will probably perform better when doing
unsupervised learning in a complex and noisy domain
with many examples.

Although the pruning methods used by X-search
seem to give significant increases in efficiency, the
problem is still intractable in the worst case. How-
ever, efficient pruning methods can delay the point at
which full-width search becomes infeasible. X-search
must also be viewed from the perspective of its
intended use. Typically, the learned descriptions are
used as classification rules for an expert system. The
expert system is limited by the same matching com-
binatorics, as X-search, and cannot efficiently use
extremely large and complex rules.

The results show that removing even one of the
methods leads to a substantial increase in the number
of substitutions. The most important constraint is
connectivity, followed by substitution pruning, literal
constraints, and root pruning.

Although substitution pruning is an effective con-
straint, it requires that the descriptions be acyclic.
This is a strong requirement, so we will be generalizing
the method to handle cyclic descriptions in future
research.

The use of a random beam search is a weak basis for
comparison. However, it was quite difficult to come
up with a good evaluation function for beam search
for this problem. When given only two positive exam-
ples, an information-theoretic evaluation function is of

WATANABEANDRENDELL 879

little value. Evaluation functions that score descrip-
tions according to some desirability metric have the
effect of concentrating the beam in the same region of
the search space. Thus, the same MSCG was rederived
by many elements of the beam. Several of our initial
attempts at evaluation functions produced worse
results than the random strategy, and others were
insignificantly better. Although the results of this
experiment were inconclusive, our difficulties have led
us to conjecture that a good evaluation function for
beam search must evaluate the beam as a whole,
rather than any particular element of it.

The empirical evaluation of X-search gives some
indication of how well it performs. However, these
indicators are based only on a few examples with simi-
lar structure, namely pseudo-chemical molecules. We
will be conducting more extensive empirical evaluation
and comparisons in future research.

Other Approaches
Earlier algorithms share some similarities with each
other and with our program. Our approach also
differs in some ways.

SPROUTER
Hayes-Roth’s (1977) interference matching algorithm
SPROUTER is one of the earliest and most widely imi-
tated method for learning structural descriptions.
Hayes-Roth makes the 1:l mapping assumption in
early versions of his system, although he notes the
inadequacy of this assumption for learning many
classes of interesting concepts. The interference
matching algorithm matches literals in a member s of
the specific set S against literals in p, checking the
consistency of the bindings, and extending the general-
ized description if possible. Only the best w descrip-
tions are kept at each step. Hayes-Roth’s (1977)
paper also discusses many issues in structural learning
that we have not addressed here.

INDUCE
Michalski’s (1983) INDUCE is one of the earliest struc-
tural learning algorithms. INDUCE is similar to
interference matching in using a beam search through
the space of possible abstractions, but differs in search-
ing for a maximally general description that is con-
sistent with the negative examples, rather than a max-
imally specific description that is consistent with the
postive examples. INDUCE also uses a two-space
search method: first a description is found in structure
only space, and then attribute-based learning methods
are used to specialize the structural description.
INDUCE uses an evaluation function that evaluates the
completeness and consistency of the descriptions with
respect to the positive and negative example. The
evaluation function gives INDUCE an information-
theoretic flavor, in contrast to version spaces which

relies more heavily on the characteristics of a particu-
lar example. INDUCE’s two space search method, in
which attributes are ignored when first finding a struc-
tural description, is similar to part of Falkenhainer,
Forbus and Gentner’s Structure Mapping Engine
(1989)’ h h g w ic i nores attributes when finding an initial
set of analogical mappings. Michalski’s representation
is more expressive than ours, allowing attributes to be
combined with operators such as <, 2, =, 2, and >,
to permit expressions such as [distance(z,y) < 331.
INDUCE can also learn disjunctive descriptions, unlike
version-space based methods.

SUBDUE
Holder’s (1989) SUBDUE uses clustering methods to
construct features from the examples. The examples
are simplified by replacing parts of their initial
descriptions by constructed features. These modified
examples are given to INDUCE which performs the
actual learning. Holder’s two-step approach to learn-
ing structural descriptions is more efficient than a
single-step approach.

The Structure Mapping Engine
Falkenhainer , Forbus and Gentner’s (1989) SME
addresses the problem of structural matching in the
context of analogical reasoning. Analogical reasoning
has some rather different properties from learning rela-
tions, as predicates can be matched against other
predicates. Falkenhainer et al.‘s approach is interest-
ing in its use of extensive knowledge to guide the
matching process. The initial construction of match-
ings, is similar to VanLehn’s (1989) method in that it
enumerates the possible correspondences of objects in
the target and base domain. SME is efficient when
knowledge about the base and target domains is avail-
able to guide the mapping process.

Sierra
VanLehn (1989) g ives an efficient method for updating
the G set when a negative example is encountered that
matches G. VanLehn enumerates the substitutions,
and uses an efficient bit-representation for the set of
substitutions. He reduces the problem of updating G
to a series of cover problems, and uses Well’s algo-
rithm (1971, sec. 6.4.3) for finding irredundant covers
to solve the problem.

The length of the bit representations is c !/(c-N)!,
where N is the number of variables in s and c is the
number of constants in n, the negative example.
Although this number is very large, the efficiency of
the bit operations is sufficient to produce some impres-
sive results. In addition, VanLehn enforces the
equivalent of type constraints on substitutions.

880 MACHINE LEARNING

FOIL
Quinlan’s (1989) FOIL uses a full first-order predicate
representation to learn relations. An interesting
feature of FOIL is its ability to learn relations in either
supervised or unsupervised mode. FOIL uses an
information-theoretic evaluation function to perform
an heuristic search for a single description. Unlike
most other structural learning systems, FOIL is capa-
ble of learning disjunctive, recursive descriptions, with
embedded skolem functions.

for helpful discussions about structural

Commonalities
Many programs, such as SME, X-search, Sierra, and
SPROUTER are incremental, conjunctive learners that
rely on the conjunctive bias, their current hypothesis,
and the current example to form a hypothesis. Other
programs, such as INDUCE and FOIL are non-
incremental, disjunctive learners that use
information-theoretic methods or an evaluation func-
tion to form a hypothesis.

Haussler (1989) shows a number of interesting
results about the difficulty of learning existential con-
junctive descriptions. He proves that this problem is
NP-complete, even when no binary relations are
defined, attributes are Boolean valued, and each exam-
ple contains exactly two objects. However, he notes
that heuristic methods for learning existential concepts
can be effective, if not always efficient.

Haussler (1989) also presents a subset query method
for pat-learning learning existential conjunctive
descriptions that have a fixed number of variables.
The main technique he uses is matching positive exam-
ples with each other and with intermediate hypotheses
to form MSCG ‘s. This is the basis of many learning
algorithms for existential conjunctive concepts (Diet-
terich 1983).

Conclusions
This paper describes a new search method, X-search,
for computing the maximally specific common general-
izations (MsCG’S) of a description and a positive
example. Finding MSCG’s is important for learning
relational descriptions and plays a role in many struc-
tural learning programs. This is the main problem in
updating the specific (S) set in a version space algo-
rithm for structured descriptions. The main weakness
of X-search is that under the 1:l mapping assumption,
it is restricted to descriptions corresponding to acyclic
graphs. Our preliminary results indicate that X-
search is a fast and effective method for computing the
MSCG (S) set.

Acknowledgements
We want to thank Ryszard Michalski for supporting
the first author during part of this research, and
Robert Stepp, Larry Holder, Diane Cook, and Brad

Whitehall
learning.

References
Bundy, Alan, A. Silver, and D. Plummer, An Analyti-
cal Comparison of Some Rule-Learning Programs,
Artificial Intelligence, vol 27, pp 137-181, 1985.

Dietterich, Thomas G. and Ryszard S. Michalski, A
Comparative Review of Selected Methods for Learning
from Examples, in Machine Learning: An Artificial
Intelligence Approach ed. R. S. Michalski et al, pp.
41-81, Tioga, 1983.

Falkenhainer, Brian, Kenneth D. Forbus, and Dedre
Gentner, The Structure-Mapping Engine: Algorithm
and Examples,Artificial Intelligence, vol. 41, no. 1,
pp. l-63, 1989.

Genesereth, Michael R. and Nils J. Nilsson, Logical
Foundations of Artificial Intelligence, Morgan Kauf-
man, 1988.

Haussler, David, Learning Conjunctive Concepts in
Structural Domains, Machine Learning, vol. 4, no. 1,
pp. 7-40, 1989.

Hayes-Roth, Frederick and John McDermott,
Knowledge Acquisition from Structural Descriptions,
Proc. fifth I t n ernational Joint Conference on
Artificial Intelligence, pp. 356-362, Morgan Kaufman
Publishers, Inc., Cambridge, Massachussetts, August,
1977.

Hoff, William A., Ryszard S. Michalski, and Robert E.
Stepp, INDUCE 3: A Program for Learning Struc-
tural Descriptions from Examples, Department of
Computer Science, University of Illinois at Urbana-
Champaign, Urbana-Champaign, Illinois.

Holder, Lawrence B., Empirical Substructure
Discovery, Proceedings of the Sixth International
Workshop on Machine Learning, pp. 133-136, Mor-
gan Kaufman Publishers, Inc., Ithaca, New York,
June, 1989.

Michalski, R. S., A Theory and Methodology of Induc-
tive Learning, in Artificial Intelligence, vol. 20, 2, pp.
111-161, 1983.

Mitchell, Thomas M., Version Spaces: An Approach
to Concept Learning, Stanford University, 1978.
Ph.D. Thesis

Quinlan, J. R., Learning Relations: Comparison of a
Symbolic and a Connectionist Approach, University
of Sydney Technical Report, no. TR-346, Basser
Department of Computer Science, University of Syd-
ney, Sydney, Australia, May, 1989.

VanLehn, Kurt, Efficient Specialization of Relational
Concepts, Machine Learning, vol. 4, no. 1, pp. 99-
106, 1989.

WATANABE AND RENDELL 88 1

