
laini or ces to Create
Useful Concepts for Evaluating States

Richard C. Yee Sharad Saxena Paul E. Utgoff Andrew G. Barto
Department of Computer and Information Science
University of Massachusetts, Amherst, MA 01003

yee@cs.umass.edu, saxena@cs.umass.edu
utgoff@cs.umass.edu, barto@cs.umass.edu

Abstract
We describe a technique for improving problem-
solving performance by creating concepts that al-
low problem states to be evaluated through an ef-
ficient recognition process. A temporakdiflerence
(TD) method is used to bootstrap a collection of
useful concepts by backing up evaluations from
recognized states to their predecessors. This pro-
cedure is combined with explanation- based gener-
alization (EBG) and goal regression to use knowl-
edge of the problem domain to help generalize the
new concept definitions. This maintains the effi-
ciency of using the concepts and accelerates the
learning process in comparison to knowledge-free
approaches. Also, because the learned definitions
may describe negative conditions, it becomes pos-
sible to use EBG to explain why some instance
is not an example of a concept. The learning
technique has been elaborated for minimax game-
playing and tested on a Tic-Tat-Toe system, T2.
Given only concepts defining the end-game states
and constrained to a two-ply search bound, exper-
iments show that T2 learns concepts for achieving
near-perfect play. T2’s total searching time, in-
cluding concept recognition, is within acceptable
performance limits while perfect play without the
concepts requires searches taking well over 100
times longer than T2’s.

1 Introduction
The use of concepts holds the potential for improv-
ing both the speed and accuracy of a problem-solving
agent. Concepts define sets over the space in which
input problem instances are represented. They repre-
sent classes of inputs that are significant with regard
to achieving the goals of the agent. Concepts are only

This material is based upon work supported by the Na-
tional Science Foundation under Grants IRI-861910’7 and
ECS-8912623, by the Air Force Office of Scientific Research,
Bolling AFB, under Grant AFOSR-89-0526 and by the Of-
fice of Naval Research through the University Research Ini-
tiative program, contract N00014-86-K-0764.

882 MACHINE LEARNING

useful, however, if their definitions support a recogni-
tion process that is faster than other means available
to the agent for computing the same information. For
example, if an agent can determine that property P is
true of a problem instance as quickly through search
as through concept recognition, then there is no ben-
efit in forming and storing a concept for recognizing
P. On the other hand, using concepts that are effi-
cient sources of valuable information allows an agent
to r.espond more quickly to problems or to spend extra
time computing higher-quality responses.

This paper focuses on a method for enabling an
agent to identify and define concepts that improve its
performance in a task. The method is implemented
in a system called T2, which operates within the do-
main of minimax game-playing. T2’s learning process
is closely related to the one used by Samuel’s checkers-
playing program, which recursively improved its abil-
ity to evaluate board positions based on a bounded-
depth search of its current position [Samuel, 19591.
The general approach of learning through recursively
caching state evaluations was also demonstrated in
the pole-balancing system of Barto, Sutton and An-
derson [1983]. Recent related work may be found in
the methods of temporal diflerences (TD) discussed by
Sutton [1988] and in the learning architecture of Sut-
ton’s Dyna system [1990]. Also, Barto, Sutton and
Watkins [1990a; I990b] discuss TD methods from the
perspective of the general framework of dynamic pro-
gramming as suggested by Werbos [1977].

One of the mechanisms Samuel used for caching
board payoffs was a rote memory that contained corn-
plete descriptions of individual boards and their payoff
values. In contrast, T2 takes advantage of its knowl-
edge of the problem domain to generalize the descrip-
tions of states before they are cached. The general-
izations are achieved through explanation- based gener-
alization (EBG) [Mitchell et al., 19861 followed by a
slightly modified form of goab regression [Waldinger,
19761. Consequently, T2’s memory contains general-
ized specifications of states rather than descriptions of
individual boards.

The efficiency of using concepts learned through :

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

explanation-based approaches has been studied by a
number of researchers. Minton [1988] demonstrated
that a system employing EBG to learn search con-
trol knowledge may become ineffective if no attempt
is made to identify and eliminate low utility concepts
whose expected benefits are outweighed by their aver-
age matching costs. Tambe and Newell [1988] showed
that the Soar learning architecture [Laird et al., 19861
is susceptible to forming such low utility concepts, so-
called “expensive chunks”. In such cases, overall per-
formance after learning may be worse than in the initial
system state. Tambe and Rosenbloom [1989] propose
restricting the expressiveness of the language used to
define concepts as a way of addressing the expensive
chunks problem. In a similar spirit, concepts in T2
possess restrictive definitions that are fast to evaluate.
Concept recognition in T2 tends to be “perceptual”
rather than analytic. The motivation behind the T2
learning mechanism has been specifically to maintain
the efficiency of new concept definitions while recur-
sively improving the significance of the concepts being
formed.

2 Task Performance and Learning
Given a game state in which it must move, T2 chooses
its response by performing a bounded-depth minimax
search to try to identify the best child state. Ulti-
mately, the value of any state depends upon a payoff
function that maps states into real values in the inter-
val [-1.0, +l.O] h w ere +l.O is identified with wins for
T2, -1.0 with losses, and 0.0 with draws. In T2, the
backed-up minimax payoff is discounted by a uniform
cost assigned to moves. This is done so that states with
non-zero payoffs can be distinguished on the basis of
the minimum number of steps to a win. We chose an
arbitrary positive discount factor of 0.9.

Since T2’s search is never deeper than a pre-
determined number of levels, many states at interior
nodes of the complete game tree will appear as leaves of
T2’s truncated search tree. To approximate the com-
plete search therefore requires a payoff function that
can evaluate states representing intermediate stages
of play. However, T2 starts out with a payoff func-
tion only capable of accurately evaluating completed
games: wins, losses and draws. All intermediate states
evaluate to 0.0, the same value as a draw. Thus, the
learning problem in T2 is as follows:

Given a payoff function sufficient for evaluating
the leaves of a complete game tree, develop an en-
hanced payoff function that can also provide use-
ful evaluations of states at intermediate stages of
Play*

The usefulness of the payoff function’s evaluations is
determined by how well the truncated search identi-
fies perfect lines of play. The rationale behind this
approach is that using the enhanced payoff function
should be a much more tractable computation than

determining payoffs via deeper search. Hence, a pri-
mary constraint on the learning process is that the
application of the new payoff function be efficient.

3 Caching Boards in Concepts: An
Overview of T2

T2 uses a collection of concepts to associate states with
payoff values. Each concept is uniquely associated with
a discounted payoff value found in the minimax game
tree, and each has a definition that, ultimately, covers
all the states corresponding to its payoff. To ensure
efficiency in concept recognition, definitions are not al-
lowed to specify properties of a state requiring infor-
mation derived from combinatoric searches. In partic-
ular, definitions may only refer to directly observable
features of the given state representation, which we call
the structural state description.

Identifying concepts with payoff values has limita-
tions. A more general approach would view the map-
ping from input instances to concepts as an interme-
diate or supplemental step in the process of mapping
from inputs to evaluations. For example, the mapping
from inputs to concepts could be composed with a non-
trivial mapping from concepts to payoff values. Such
an extension of the current approach could be useful
for problems with a large number of payoff values.

A general picture of the concept learning process in
T2 consists of first detecting that an unknown state
belongs to a particular payoff group and then caching
that result in the definition of the proper concept.
Rather than simply caching the entire state as an in-
stance of the payoff group, generalizing the state be-
fore caching it provides significant advantages both in
the efficiency of the new concept definition and in the
speed of the learning process because a set of states is
learned in a single step. The new concept then provides
a basis for further concept learning. Hence, the entire
collection of concepts is built up in a bootstrapping
fashion.

3.1 A simple Test Domain: Tic-Tat-Toe
Our concept learning method was developed from con-
sidering the game of Tic-Tat-Toe. One advantage of
this domain is that its simplicity allows attention to
be focused on the problem of integrating EBG into
the process of learning efficient definitions for concepts
that enable perfect play. Also, the method has been
designed with particular regard to the class of minimax
problems, and therefore it is potentially applicable to
more domains amenable to minimax search.

Initially, T2 is given exactly three concepts for
recognizing any legal Tic-Tat-Toe board b: nuZZ (b),
win(X, b) and win(0, b); assuming T2 plays X, these
represent the payoffs: 0.0, +l.O and -1.0, respectively.
The null concept covers every board not covered by any
other concept in the collection. Hence, it is always cor-
rect for the boards that do not possess a guaranteed
winning combination for either player. The concepts

YEEETAL. 883

for 0 need not be given explicitly since they can be
obtained by using the X concepts on inverted boards.

Clearly, performing a complete minimax search
grounded in T2’s initial collection of concepts is suf-
ficient for producing perfect play. However, given T2’s
performance constraints -a search depth bounded at
two-ply-this initial collection yields playing behavior
only slightly better than random. All boards leading
to forced wins or losses occurring beyond T2’s search
horizon are simply recognized as null-payoff boards.

To learn concept definitions that correct this situ-
ation, one must first be able to identify a misclassi-
fied board and its proper payoff value. Misclassifica-
tions are identified by temporal differences: the differ-
ence between the predicted value of a board and the
value backed up either from search or from actual state
transitions experienced during problem-solving. It is
expected that the backed-up payoff values are more
accurate than those derived directly from the payoff
function. This will eventually become true even if
the backed-up values are themselves ultimately derived
from the same payoff function because the backed-up
values are based on more accurate information con-
cerning the future consequences of potential actions.

To play a game using minimax search, the process
of using concepts to determine payoff values need only
occur for boards at the leaves of the search tree. For
concept learning, however, concepts are also used to
determine payoffs for boards at interior nodes of the
tree, including at the root. As in Samuel’s system, for
a given board b, the payoff determined from memory
is a prediction of what b’s backed-up search payoff will
be. A violated prediction indicates that the current
collection of concepts is inadequate. Thus, concept
learning in T2 is triggered in the following situation:

If board b’s membership in concept C yields a pay-
off that is different from the backed up minimax
payoff, then C has a definition that is overly gen-
eral. Its definition needs to be restricted to ex-
clude (at least) the board b.

In T2’s initial collection of concepts, the given def-
initions for w&(X, b) and win(0, b) are correct, but
the null definition, which covers every board, over-
generalizes in covering boards with intermediate pay-
off values. For example, a board b leading to a win
in one step will be recognized only as a null board,
but it will be found through minimax to have a payoff
of f0.9. Therefore, it is necessary to prevent nubb(b)
from recognizing b. Since null (b) covers all boards, it
is “pre-empted” by creating a definition for a non-null
concept that will cover b. The proper non-null concept
to create or modify is the one representing b’s backed-
up search payoff, +0.9. This concept will be created
if it does not already exist in the current collection;
otherwise, its definition will be modified to cover b,
thereby excluding b from null (b).

A useful perspective is that all of the non-null con-
cepts define groups of exceptions to the null concept.

Input: A board b at a node of a minimax search tree.
Output: The collection of concepts that has been modified

as appropriate to better predict b’s true payoff in the
complete minimax game tree.

Method: 1. Compute b’s payoff from a concept C, where
bE c.

2. Compute b’s backed-up search payoff, p.
3. If Puyofl-of (C) # p then
(a) Identify th e relevant children of b, {bi},

and their corresponding concepts (Di}.
(b) Form a generalization of b based on C, (bi}

and (D;}.
(c) Use the generalization to restrict C.

Table 1: An overview of the concept learning algorithm

This view characterizes the learning process in T2:
only overly general concept predictions are detected
and subsequently corrected through the learning of ex-
ceptions. Under-generalizations of non-null concepts
are only detected when such failings lead to incorrect
predictions of the null payoff. The learning of excep-
tions to the null concept translates into the learning
of positive examples for the non-null concepts. This
learning process produces concepts possessing a log-
ical structure similar to Vere’s mubtilevel counterjuc-
tuals [1980]. One consequence of this counterfactual
structure is that it becomes possible, in certain cases,
to use EBG to explain “why not”, i.e., to explain why
an instance is not an example of a concept.

3.2 Generalizing Boards Before Caching

The algorithm for learning concepts is summarized
in Table 1. This section gives a brief description of the
steps involved in generalizing a board b for which a pay-
off prediction from a concept C has been invalidated-
steps (3.a-c) of the algorithm. Further details are pro-
vided in the sections indicated below, and a summary
of the algorithm for step (3.b) is given in Table 2.

To generalize the structure of board b, more informa-
tion is needed than simply the board and its backed-up
payoff. Because the children of b determine its payoff,
information about their structures is needed as well. It
is necessary to determine which of b’s children partic-
ipated in the prediction violation and which concepts
gave rise to their payoffs. Determining which children
are relevant for correcting the parent’s misclassification
depends upon whether the backed-up payoff was better
or worse than predicted. When the backed-up payoff
is better than predicted for the parent, it is because
at least one child had a better payoff than predicted
for the children. If there is more than one such child,
one is selected arbitrarily. When the backed-up search
payoff is worse for the parent, it is because all of the
children have worse payoffs than predicted for them.
These two cases yield the relevant children, (bd}, in-
dicated in step (3.a). For each such child, it may be

884 MACHINE LEARNING

Figure 1: The formation of a clause for pre-win (X, b)

necessary to know the structure on which its own pay-
off is based. This structure can be extracted from the
definition of the concept 13i used to assign the child its
payoff.

In step (3.b), the key to generalizing the parent b is
to use EBG appropriately to generalize the set of rele-
vant children (bd). G iven a child bi, we rely on EBG to
identify the child’s relevant features, where relevance
is determined with respect to some concept l?. Typi-
cally, EBG is used only when an example is known to
be a member of a concept, i.e., when bd E I?. However,
because concept definitions in T2 may explicitly rep-
resent exceptions, it also becomes possible to produce
useful generalizations of an example with respect to
its nonmembership in a concept: bi 4 I’. Section 5.1
describes the explanation process used in T2, and in
particular, points out how the case for explaining non-
membership arises. In either case, EBG extracts from
a child board bi a general board structure that is suf-
ficient for explaining its relationship to T.

After obtaining the structures of the relevant chil-
dren, we are in a position to back up this information
to generalize the parent. A structure at the parent’s
level is produced from a child’s structure by undoing
the move that led to the child. This is accomplished by
applying a slightly modified version of goal regression,
which is a general technique for recovering the pre-
image of a set by passing the set backwards through
an operator. In T2, each particular move is an oper-
ator. The corresponding backwards operator that we
use produces a set that contains the pre-image of the
child’s structure, possibly as a proper subset. This
process is further described in Section 5.2.

Undoing the moves in each child’s structure yields
structures at the parent’s level of description. The re-
gressed structures are then conjoined into a single spec-
ification that describes a general structure that occurs
in the parent b. Finally, this new specification is it-
self conjoined as an exception within the definition of
the concept C that incorrectly predicted the payoff of
b-step (3.~) of the algorithm.

An Example
Consider the formation of a clause for the concept

representing the payoff of +0.9, indicating that X can
achieve a win in one step. Call this concept pre-win.

Suppose that a board b of the form in Figure 1 is eval-
uated. Board b does not contain a win, so its pay-
off is initially 0.0, given by null (6). However, one of
its children, bi, satisfies win(X, bi) yielding the pay-
off +l.O. Therefore, the payoff of b should have been
+0.9. This identifies a learning situation. For con-
venience, label the nine board squares from 0 to 8
in order from left-to-right, top-to-bottom. The por-
tion of the definition of win (X, bi) that is the rea-
son for bi E win (X, bi) is found through EBG to be:
((X at 0) A (X at 4) A (X at 8)). Undoing the move
that led to this child yields b’s structural generaliza-
tion: ((X at 0) A (X at 4) A (blank at 8)). This struc-
ture has been found to be the reason that b has the
payoff $0.9. Hence, it is cached in the definition of the
concept pre-win (X, b).

4 Concept Definitions
To achieve an efficient recognition process, concepts
are required to have definitions that eliminate or bound
the amount of search that may be done to match an in-
stance with a concept. By expressing definitions solely
in terms of the immediately observable features used to
represent board structures, concepts’are not allowed to
refer to functional properties requiring search through
the state space. A further restriction is that definitions
may not have variables at nested levels because these
lead to combinatorial searches for bindings on a given
board’s structure.

In T2 the representation of boards consists of a list of
the nine squares, in which each square takes on one of
the three values: X, 0 or blank The values of specific
squares are the only terms used in concept definitions.
The only bindings allowed occur at the level of entire
boards, i.e., the eight board symmetries provided by
rotations and reflections are used in matching boards
with concepts. This gives a fixed number of possible
bindings across all concept definitions.

Generalized board structures are represented as reg-
ular boards in which the squares may also take on the
value “don? care”. Such specifications shall be called
gen-boards. A gen-board is used as a definition for the
set of boards matching the specified structure. Because
one cannot determine from a gen-board which player
is on-move, it is necessary to record this information
explicitly in the concept definitions.

A concept definition also has a disjunctive expres-
sion in which each clause specifies a subset of legal Tic-
Tat-Toe boards. Each clause is a recursive expression,
which is represented as a tree in which the nodes are
gen-boards. The significance of the root gen-board of a
clause is that its structure was sufficient for explaining
why a particular board achieved the payoff value repre-
sented by the concept possessing the clause. The signif-
icance of any child gen-boards of the root is that they
describe structures that occur in exceptions-boards
containing the root structure yet not yielding the as-
sociated payoff. This gives rise to a recursive logical

YEEETAL. 885

Figure 2: Deriving a clause for an exception

structure in clauses: there can be exceptions to excep-
tions, to any level of nesting. Hence, a clause is either
a gcn- board or a gen-board conjoined with a conjunc-
tion of negated clauses. For a given board to satisfy
a clause, it must match the root gen-board while fail-
ing to match each child clause. Henceforth, one entire
clause (tree) of a concept definition will be called a
concept-cZuuse when it is necessary to distinguish it
from child clauses.

Recall that non-null concepts can be considered as
exceptions to the null concept. This indicates that all
of the concept-clauses for the non-null concepts can be
treated as children of the null gen-board. Thus, the
entire set of concepts forms a single tree with the null
gen-board at the root and all of the concept-clauses at
the first-level of children. The given concept win (X, b)
(hence win(O), b)) is defined by three concept-clauses
each of which is a single gen-board. There is a gen-
board for an edge row: ((X at O)A(X at l)A(X at 2)),
and, similarly, one for a middle row and one for a di-
agonal row. Using the board symmetries, these are
sufficient for recognizing any win.

5 Learning New Clauses
This section describes how the generalization of a
board, b, is derived using EBG and a modified version
of goal regression. Figure 2 illustrates the process in
the case of a single relevant child. The total informa-
tion required for creating a new clause is: the concept
C that incorrectly predicted b’s payoff, the children
(bi) that produced the prediction violation for b, and
each such child’s corresponding concept, Di.

5.1 Explaining 6LWhy9s and “Why NotS9
The membership of board b in the concept C, pre-

dicts that the best payoff among all of b’s children
will be given by the concept C’, where the payoff of
C’ is the payoff of C divided by the discount factor.
Therefore, in order to generalize b as an exception to
C, we would like to know why the relevant children
were not in C’. In this case, EBG is sometimes able
to identify features of a child bi that are relevant for

Input: A concept C where b E C, b’s relevant children
(bi} (i = 1, s ma 9 n), their corresponding concepts {Di}.

Output: A clause generalizing b.

Method: 1. Let C’ be the concept predicted for the chil-
dren, based on b E C.

2. For each child bi
If 7; t Explain (b; $! C’) then

Return: Undo- Move- Clause (7;)
3. For each child bi
(a) 7i + Explain (bi E Di)
(b) ri t Undo-Move-Clause (ri)
4. Return: Conjoin-Clauses (71 ,‘yz, . . . , m)

Table 2: The generalization algorithm: (3.b) of Table 1

non-membership in C’. This type of explanation is at-
tempted first because, when it succeeds, it appears to
yield a more precise generalization of the parent b than
does explaining bi E Di. Explaining a child’s member-
ship in its own concept, Di, provides a reliable back-
up strategy. Whichever approach is used, the resulting
explanation is a clause specifying a set of boards that
includes ba.

T2’s back-up strategy employs the standard EBG
approach to explain why bi E Di. The explanation
is a clause that is a portion of Di’s definition that
matched bi and was sufficient for concluding concept
membership. Specifically, it is a concept-clause of Di
that is satisfied by b;. The concept-clause is a general-
ized structural specification that covers bi along with
a group of boards sharing the relevant structures and,
therefore, sharing the payoff represented by Di.

Explaining non-membership in a concept is possi-
ble because the concept-clauses may recursively specify
alternating levels of positive and negative conditions.
A non-trivial generalization of a non-member example
can be obtained by explaining the example’s member-
ship in one of the child clauses of a concept-clause.
Suppose we wish to explain bi $Z 6’. Clearly, one pos-
sible reason could be that ba does not match the root
gen-board of any of C”s concept-clauses, but this is
a trivial explanation since the default assumption for
all boards is that they are null. Such an explanation
cannot be used to improve the system’s overall knowl-
edge. The potentially interesting case occurs when bi
satisfies the root gen-board of a concept-clause for C’
yet also satisfies at least one of the root’s child clauses
which specify exceptions. In this case, there is prima
facie evidence that bi belongs in the concept, yet it is
an exception. The explanation of br’s non-membership
in C’ is a matching child clause of a concept-clause
whose root also matches b;.

5.2 Undoing Moves
In T2 each move rni is an operator yielding bi from
b. We wish to regress each generalized child clause
back through its respective move operator to recover a

886 MACHINE LEARNING

F! -100 L T2 vs. depth 3 -100 L T2 vs. depth 4

Games played -50
t

2
-100 L T2 vs. depth 5 -100 L

Figure 3: The success of T2 against
opponents of varying depths

Games played

T2 vs. depth 6

standard minimax

clause for a pre-image containing b. The conjunction of
the regressed clauses specify the components of b that
make it an exception to the overly general concept C.

Each move consists of a player’s symbol and a board
square. Undoing a move in a clause is accomplished by
recursively traversing the clause’s tree structure, and
undoing the move in the gen-board at each node. Un-
doing a move in a gen-board is illustrated by the follow-
ing example. Suppose that in gen-board G the move
“X to square 3” is to be undone. If 3 contains an X
replace it with a blank. If 3 is a don’t care, then we
use the heuristic of returning G unchanged. Strictly
speaking, in such a case G should be returned with the
added specification “blank at 3”. Using the heuristic
rule is an attempt to produce a useful generalization
of b. In many cases, specifying the additional blank
squares introduces unnecessary constraints that can be
expected to incre<ase the number of concept-clauses and
to slow significantly the speed of learning. Therefore,
we are willing to tolerate the possibility that G may
be slightly overly general since the learning mechanism
can produce corrections if necessary. While we do not
yet have a proof that perfect concepts will eventually
be formed, experiments demonstrate that the concepts
come to support near-perfect play.

After undoing the moves in the clauses, they are
conjoined into a single clause by conjoining their root
gen-boards into a single gen-board. All child clauses
become children of this new root-step (4) in Table 2.

6 Experiments
To evaluate our approach, T2 was played against op-
ponents using standard minimax searches of differ-
ent fixed depths. T2 always performed a two-ply
search. The only concepts known to the opponents
were: null (b), win(X, b) and win(O,b). In both T2

T2
Opponen/t ’

x’

2 3 4 5 6
Search depth (Opponent)

Figure 4: The maximum time used by the players to
make a move. Time is shown on a logarithmic scale.

and the opponents, if more than one child of a board
returned the best payoff value, then a child was ran-
domly selected from among these child
these experiments was to determine:

ren.
(4

The goal of
whether T2

can improve its performance sufficiently to match or
surpass any opponent, and (b) whether T2 always uses
an acceptable amount of resources, especially time.

Figure 3 shows the performance of T2 against four
opponents. Their searches are bounded from depths
three to six; a six-ply search is sufficient for perfect
play in Tic-Tat-Toe. The abscissa is the number of
games played, and the ordinate is the cumulative dif-
ference between the number of games won by T2 and
the number it lost. The performance of T2 may be
judged by the average slope of the line, e.g., a positive
slope indicates a dominant winning trend. The graphs
indicate that the learned concepts enable T2 to win
35-40% of the time against all opponents that search
to a depth of five or less. Against the depth-six op-
ponent the slope of the line showing T2’s performance
approaches zero indicating that T2 is approaching the
perfect play of the opponent.

Figure 4 uses a logarithmic scale, to show the max-
imum time (in seconds) used for making a move bY
T2 and each successive opponent. The time repor ,ted
is for compiled functions written in Common-Lisp and
run on a SUN 3/60. Each value is the maximum for
any move occurring in ten additional games that were
played after the 200 shown in Figure 3. Figure 4 shows
that the time required by T2 to make a move is nearly
constant regardless of the opponent. As one would ex-
pect, the opponents’ times- &how exponential growth
with increasing search depth.

Figure 3 shows that T2 performs as well or better
than its opponents while Figure 4 shows that T2 is
achieving its results faster than any opponent using a
search of depth four or more. In particular, T2 can
approach the level of perfect play. Using the learned
concepts for this level of play is well over 100 times
faster than using standard search alone.

YEEETAL. 887

7 Conclusions

We have described a technique for combining a
temporal-diflerence learning method with ezplanation-
based generalization and a slightly modified form of
goal regression to enable an agent to learn concepts
that improve its problem-solving performance. The
learned concepts are generalized memories of problem-
solving experiences, and they can be used to evaluate
quickly similar problem states encountered in the fu-
ture. The information for forming concepts can be de-
rived from either local search employing a model (plan-
ning) or from direct environmental feedback. We have
been interested in situations in which the agent is able
to integrate concept learning with actual task perfor-
mance. Consequently, neither the learning process nor
the subsequent process of recalling information can be
allowed to interfere seriously with meeting the time
constraints of performance.

The T2 system implements the technique in the do-
main of minimax game-playing and has been tested on
Tic-Tat-Toe. The value of the approach can be un-
derstood by following Minton’s analysis of the benefits
versus the costs of using learned concepts. The TD
process of backing up board evaluations ensures that
application of the concepts will yield significant bene-
fits, which are measured in terms of the depth of the
searches necessary for computing the same payoff in-
formation. The generdizations and use of board sym-
metries help ensure that each definition covers a rela-
tively large number of instances resulting in wide ap-
plicability of the concepts. Also, there is a correspond-
ing increase in the speed of learning. In considering
the costs of the concepts, it is seen that the generaliza-
tions also help ensure that there will be a small number
of gen-boards to match in the definitions. Restricting
the expressiveness of the definitions strictly controls
the binding problem during matching as Tambe and
Rosenbloom have also demonstrated. Finally, the logi-
cal structure of the concepts probably also contributes
to the efficiency of recognition. Since concepts are rec-
ognized by applying a level-by-level series of general
positive and negative tests, it may be expected that,
for most concepts, most boards will either pass or fail
early in the process. Moreover, in certain cases, this
logical structure allows us to use EBG to explain why
a given instance is not a member of some concept.

Exploiting domain knowledge within the context of
problem solving using local search appears to be an
effective method of learning. Our approach efficiently
defines concepts whose significance lies in the fact that
they distinguish only those regions of the input rep-
resentation space that are relevant to to the goals of
the agent. This addresses fundamental computational
issues in producing goal-directed behavior, and we ex-
pect that further research will produce more general
formulations of these principles.

888 MACHINE LEARNING

Acknowledgements
We are grateful to Steven Bradtke, Carla Brodley,
Jamie Callan, Margie Connell, and Tom Fawcett for
many valuable comments on a draft of this paper.

References
[Barto et al., 19831 A. G. Barto, R. S. Sutton, and

C. W. Anderson. Neuronlike elements that can solve
difficult learning control problems. IEEE Z’ramactiom
on Systems, Man and Cybernetics, 13:835-846, 1983.

[Barto et al., 1990a] A. G. Barto, R. S. Sutton, and
C. J. C. H. Watkins. Learning and Sequential Deci-
sion Making. In M. Gabriel and J. W. Moore, (eds.),
Learning and Computational Neuroscience, MIT Press,
Cambridge, MA, Forthcoming.

[Barto et al., 1990b] A. G. Barto, R. S. Sutton, and
C. J. C. H. Watkins. Sequential decision problems and
neural networks. In D. S. Touretzky, (ed.), Advances
in Neural Information Processing Systems 2, Morgan
Kaufmann, San Mateo, CA, Forthcoming.

[Laird et aZ., 19861 J. E. Laird, P. S. Rosenbloom, and
A. Newell. Chunking in soar: The anatomy of a gen-
eral learning mechanism. Machine Learning, 1:1 l-46,
1986.

[Minton, 19881 S. Minton. Quantitative results concerning
the utility of explanation-based learning. In Proceeding8
of the Seventh National Conference on Artificial Intel-
ligence, pages 564-569, Morgan Kaufmann, San Mateo,
CA, 1988.

[Mitchell et al., 1986] T. Mitchell, Fl. Keller, and S. Kedar-
Cabelli. Explanation-based generalization: A unifying
view. Machine Learning, 1:47-80, 1986.

[Samuel, 19591 A. L. Samuel. Some studies in machine
learning using the game of checkers. IBM Journal on
Research and Development, 3:210-229, July 1969.

[Sutton, 19881 R. S. Sutton. Learning to predict by the
method of temporal differences. Machine Learning, 3:9-
44, 1988.

[Sutton, 19901 R. S. Sutton. Integrated architectures for
learning, planning and reacting based on approximating
dynamic programming. Submitted to the 1990 Interna-
tional Machine Learning Conference, 1990.

[Tambe and Newell, 19881 M. Tambe and A. Newell. Some
chunks are expensive. In Proceedings of the Fifth Con-
ference on Machine Learning, Morgan Kaufmann, San
Mateo, CA, 1988.

[Tambe and Rosenbloom, 19891 M. Tambe and P. Rosen-
bloom. Eliminating expensive chunks by restricting ex-
pressiveness. In Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, pages
731-737, Morgan Kaufmann, San Mateo, CA, 1989.

[Vere, 19801 S. A. Vere. Multilevel counterfactuals for gen-
eralizations of relational concepts and productions. AT-
tificial Intelligence, 14:138-164, 1980.

[Waldinger, 19761 R. Waldinger. Achieving several goals
simultaneously. In E. W. Elcock and D. Michie, (eds.),
Machine Intelligence, Wiley and Sons, New York, 1976.

[Werbos, 19771 P. J. W er b OS. Advanced forecasting meth-
ods for global crisis warning and models of intelligence.
General Systems Yearbook, 22:25-38, 1977.

