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Abstract 
We describe a technique for improving problem- 
solving performance by creating concepts that al- 
low problem states to be evaluated through an ef- 
ficient recognition process. A temporakdiflerence 
(TD) method is used to bootstrap a collection of 
useful concepts by backing up evaluations from 
recognized states to their predecessors. This pro- 
cedure is combined with explanation- based gener- 
alization (EBG) and goal regression to use knowl- 
edge of the problem domain to help generalize the 
new concept definitions. This maintains the effi- 
ciency of using the concepts and accelerates the 
learning process in comparison to knowledge-free 
approaches. Also, because the learned definitions 
may describe negative conditions, it becomes pos- 
sible to use EBG to explain why some instance 
is not an example of a concept. The learning 
technique has been elaborated for minimax game- 
playing and tested on a Tic-Tat-Toe system, T2. 
Given only concepts defining the end-game states 
and constrained to a two-ply search bound, exper- 
iments show that T2 learns concepts for achieving 
near-perfect play. T2’s total searching time, in- 
cluding concept recognition, is within acceptable 
performance limits while perfect play without the 
concepts requires searches taking well over 100 
times longer than T2’s. 

1 Introduction 
The use of concepts holds the potential for improv- 
ing both the speed and accuracy of a problem-solving 
agent. Concepts define sets over the space in which 
input problem instances are represented. They repre- 
sent classes of inputs that are significant with regard 
to achieving the goals of the agent. Concepts are only 
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useful, however, if their definitions support a recogni- 
tion process that is faster than other means available 
to the agent for computing the same information. For 
example, if an agent can determine that property P is 
true of a problem instance as quickly through search 
as through concept recognition, then there is no ben- 
efit in forming and storing a concept for recognizing 
P. On the other hand, using concepts that are effi- 
cient sources of valuable information allows an agent 
to r.espond more quickly to problems or to spend extra 
time computing higher-quality responses. 

This paper focuses on a method for enabling an 
agent to identify and define concepts that improve its 
performance in a task. The method is implemented 
in a system called T2, which operates within the do- 
main of minimax game-playing. T2’s learning process 
is closely related to the one used by Samuel’s checkers- 
playing program, which recursively improved its abil- 
ity to evaluate board positions based on a bounded- 
depth search of its current position [Samuel, 19591. 
The general approach of learning through recursively 
caching state evaluations was also demonstrated in 
the pole-balancing system of Barto, Sutton and An- 
derson [1983]. Recent related work may be found in 
the methods of temporal diflerences (TD) discussed by 
Sutton [1988] and in the learning architecture of Sut- 
ton’s Dyna system [1990]. Also, Barto, Sutton and 
Watkins [1990a; I990b] discuss TD methods from the 
perspective of the general framework of dynamic pro- 
gramming as suggested by Werbos [1977]. 

One of the mechanisms Samuel used for caching 
board payoffs was a rote memory that contained corn- 
plete descriptions of individual boards and their payoff 
values. In contrast, T2 takes advantage of its knowl- 
edge of the problem domain to generalize the descrip- 
tions of states before they are cached. The general- 
izations are achieved through explanation- based gener- 
alization (EBG) [Mitchell et al., 19861 followed by a 
slightly modified form of goab regression [Waldinger, 
19761. Consequently, T2’s memory contains general- 
ized specifications of states rather than descriptions of 
individual boards. 

The efficiency of using concepts learned through : 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



explanation-based approaches has been studied by a 
number of researchers. Minton [1988] demonstrated 
that a system employing EBG to learn search con- 
trol knowledge may become ineffective if no attempt 
is made to identify and eliminate low utility concepts 
whose expected benefits are outweighed by their aver- 
age matching costs. Tambe and Newell [1988] showed 
that the Soar learning architecture [Laird et al., 19861 
is susceptible to forming such low utility concepts, so- 
called “expensive chunks”. In such cases, overall per- 
formance after learning may be worse than in the initial 
system state. Tambe and Rosenbloom [1989] propose 
restricting the expressiveness of the language used to 
define concepts as a way of addressing the expensive 
chunks problem. In a similar spirit, concepts in T2 
possess restrictive definitions that are fast to evaluate. 
Concept recognition in T2 tends to be “perceptual” 
rather than analytic. The motivation behind the T2 
learning mechanism has been specifically to maintain 
the efficiency of new concept definitions while recur- 
sively improving the significance of the concepts being 
formed. 

2 Task Performance and Learning 
Given a game state in which it must move, T2 chooses 
its response by performing a bounded-depth minimax 
search to try to identify the best child state. Ulti- 
mately, the value of any state depends upon a payoff 
function that maps states into real values in the inter- 
val [-1.0, +l.O] h w ere +l.O is identified with wins for 
T2, -1.0 with losses, and 0.0 with draws. In T2, the 
backed-up minimax payoff is discounted by a uniform 
cost assigned to moves. This is done so that states with 
non-zero payoffs can be distinguished on the basis of 
the minimum number of steps to a win. We chose an 
arbitrary positive discount factor of 0.9. 

Since T2’s search is never deeper than a pre- 
determined number of levels, many states at interior 
nodes of the complete game tree will appear as leaves of 
T2’s truncated search tree. To approximate the com- 
plete search therefore requires a payoff function that 
can evaluate states representing intermediate stages 
of play. However, T2 starts out with a payoff func- 
tion only capable of accurately evaluating completed 
games: wins, losses and draws. All intermediate states 
evaluate to 0.0, the same value as a draw. Thus, the 
learning problem in T2 is as follows: 

Given a payoff function sufficient for evaluating 
the leaves of a complete game tree, develop an en- 
hanced payoff function that can also provide use- 
ful evaluations of states at intermediate stages of 
Play* 

The usefulness of the payoff function’s evaluations is 
determined by how well the truncated search identi- 
fies perfect lines of play. The rationale behind this 
approach is that using the enhanced payoff function 
should be a much more tractable computation than 

determining payoffs via deeper search. Hence, a pri- 
mary constraint on the learning process is that the 
application of the new payoff function be efficient. 

3 Caching Boards in Concepts: An 
Overview of T2 

T2 uses a collection of concepts to associate states with 
payoff values. Each concept is uniquely associated with 
a discounted payoff value found in the minimax game 
tree, and each has a definition that, ultimately, covers 
all the states corresponding to its payoff. To ensure 
efficiency in concept recognition, definitions are not al- 
lowed to specify properties of a state requiring infor- 
mation derived from combinatoric searches. In partic- 
ular, definitions may only refer to directly observable 
features of the given state representation, which we call 
the structural state description. 

Identifying concepts with payoff values has limita- 
tions. A more general approach would view the map- 
ping from input instances to concepts as an interme- 
diate or supplemental step in the process of mapping 
from inputs to evaluations. For example, the mapping 
from inputs to concepts could be composed with a non- 
trivial mapping from concepts to payoff values. Such 
an extension of the current approach could be useful 
for problems with a large number of payoff values. 

A general picture of the concept learning process in 
T2 consists of first detecting that an unknown state 
belongs to a particular payoff group and then caching 
that result in the definition of the proper concept. 
Rather than simply caching the entire state as an in- 
stance of the payoff group, generalizing the state be- 
fore caching it provides significant advantages both in 
the efficiency of the new concept definition and in the 
speed of the learning process because a set of states is 
learned in a single step. The new concept then provides 
a basis for further concept learning. Hence, the entire 
collection of concepts is built up in a bootstrapping 
fashion. 

3.1 A simple Test Domain: Tic-Tat-Toe 
Our concept learning method was developed from con- 
sidering the game of Tic-Tat-Toe. One advantage of 
this domain is that its simplicity allows attention to 
be focused on the problem of integrating EBG into 
the process of learning efficient definitions for concepts 
that enable perfect play. Also, the method has been 
designed with particular regard to the class of minimax 
problems, and therefore it is potentially applicable to 
more domains amenable to minimax search. 

Initially, T2 is given exactly three concepts for 
recognizing any legal Tic-Tat-Toe board b: nuZZ (b), 
win(X, b) and win(0, b); assuming T2 plays X, these 
represent the payoffs: 0.0, +l.O and -1.0, respectively. 
The null concept covers every board not covered by any 
other concept in the collection. Hence, it is always cor- 
rect for the boards that do not possess a guaranteed 
winning combination for either player. The concepts 
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for 0 need not be given explicitly since they can be 
obtained by using the X concepts on inverted boards. 

Clearly, performing a complete minimax search 
grounded in T2’s initial collection of concepts is suf- 
ficient for producing perfect play. However, given T2’s 
performance constraints -a search depth bounded at 
two-ply-this initial collection yields playing behavior 
only slightly better than random. All boards leading 
to forced wins or losses occurring beyond T2’s search 
horizon are simply recognized as null-payoff boards. 

To learn concept definitions that correct this situ- 
ation, one must first be able to identify a misclassi- 
fied board and its proper payoff value. Misclassifica- 
tions are identified by temporal differences: the differ- 
ence between the predicted value of a board and the 
value backed up either from search or from actual state 
transitions experienced during problem-solving. It is 
expected that the backed-up payoff values are more 
accurate than those derived directly from the payoff 
function. This will eventually become true even if 
the backed-up values are themselves ultimately derived 
from the same payoff function because the backed-up 
values are based on more accurate information con- 
cerning the future consequences of potential actions. 

To play a game using minimax search, the process 
of using concepts to determine payoff values need only 
occur for boards at the leaves of the search tree. For 
concept learning, however, concepts are also used to 
determine payoffs for boards at interior nodes of the 
tree, including at the root. As in Samuel’s system, for 
a given board b, the payoff determined from memory 
is a prediction of what b’s backed-up search payoff will 
be. A violated prediction indicates that the current 
collection of concepts is inadequate. Thus, concept 
learning in T2 is triggered in the following situation: 

If board b’s membership in concept C yields a pay- 
off that is different from the backed up minimax 
payoff, then C has a definition that is overly gen- 
eral. Its definition needs to be restricted to ex- 
clude (at least) the board b. 

In T2’s initial collection of concepts, the given def- 
initions for w&(X, b) and win(0, b) are correct, but 
the null definition, which covers every board, over- 
generalizes in covering boards with intermediate pay- 
off values. For example, a board b leading to a win 
in one step will be recognized only as a null board, 
but it will be found through minimax to have a payoff 
of f0.9. Therefore, it is necessary to prevent nubb(b) 
from recognizing b. Since null (b) covers all boards, it 
is “pre-empted” by creating a definition for a non-null 
concept that will cover b. The proper non-null concept 
to create or modify is the one representing b’s backed- 
up search payoff, +0.9. This concept will be created 
if it does not already exist in the current collection; 
otherwise, its definition will be modified to cover b, 
thereby excluding b from null (b). 

A useful perspective is that all of the non-null con- 
cepts define groups of exceptions to the null concept. 

Input: A board b at a node of a minimax search tree. 
Output: The collection of concepts that has been modified 

as appropriate to better predict b’s true payoff in the 
complete minimax game tree. 

Method: 1. Compute b’s payoff from a concept C, where 
bE c. 

2. Compute b’s backed-up search payoff, p. 
3. If Puyofl-of (C) # p then 
(a) Identify th e relevant children of b, {bi}, 

and their corresponding concepts (Di}. 
(b) Form a generalization of b based on C, (bi} 

and (D;}. 
(c) Use the generalization to restrict C. 

Table 1: An overview of the concept learning algorithm 

This view characterizes the learning process in T2: 
only overly general concept predictions are detected 
and subsequently corrected through the learning of ex- 
ceptions. Under-generalizations of non-null concepts 
are only detected when such failings lead to incorrect 
predictions of the null payoff. The learning of excep- 
tions to the null concept translates into the learning 
of positive examples for the non-null concepts. This 
learning process produces concepts possessing a log- 
ical structure similar to Vere’s mubtilevel counterjuc- 
tuals [1980]. One consequence of this counterfactual 
structure is that it becomes possible, in certain cases, 
to use EBG to explain “why not”, i.e., to explain why 
an instance is not an example of a concept. 

3.2 Generalizing Boards Before Caching 

The algorithm for learning concepts is summarized 
in Table 1. This section gives a brief description of the 
steps involved in generalizing a board b for which a pay- 
off prediction from a concept C has been invalidated- 
steps (3.a-c) of the algorithm. Further details are pro- 
vided in the sections indicated below, and a summary 
of the algorithm for step (3.b) is given in Table 2. 

To generalize the structure of board b, more informa- 
tion is needed than simply the board and its backed-up 
payoff. Because the children of b determine its payoff, 
information about their structures is needed as well. It 
is necessary to determine which of b’s children partic- 
ipated in the prediction violation and which concepts 
gave rise to their payoffs. Determining which children 
are relevant for correcting the parent’s misclassification 
depends upon whether the backed-up payoff was better 
or worse than predicted. When the backed-up payoff 
is better than predicted for the parent, it is because 
at least one child had a better payoff than predicted 
for the children. If there is more than one such child, 
one is selected arbitrarily. When the backed-up search 
payoff is worse for the parent, it is because all of the 
children have worse payoffs than predicted for them. 
These two cases yield the relevant children, (bd}, in- 
dicated in step (3.a). For each such child, it may be 
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Figure 1: The formation of a clause for pre-win (X, b) 

necessary to know the structure on which its own pay- 
off is based. This structure can be extracted from the 
definition of the concept 13i used to assign the child its 
payoff. 

In step (3.b), the key to generalizing the parent b is 
to use EBG appropriately to generalize the set of rele- 
vant children (bd). G iven a child bi, we rely on EBG to 
identify the child’s relevant features, where relevance 
is determined with respect to some concept l?. Typi- 
cally, EBG is used only when an example is known to 
be a member of a concept, i.e., when bd E I?. However, 
because concept definitions in T2 may explicitly rep- 
resent exceptions, it also becomes possible to produce 
useful generalizations of an example with respect to 
its nonmembership in a concept: bi 4 I’. Section 5.1 
describes the explanation process used in T2, and in 
particular, points out how the case for explaining non- 
membership arises. In either case, EBG extracts from 
a child board bi a general board structure that is suf- 
ficient for explaining its relationship to T. 

After obtaining the structures of the relevant chil- 
dren, we are in a position to back up this information 
to generalize the parent. A structure at the parent’s 
level is produced from a child’s structure by undoing 
the move that led to the child. This is accomplished by 
applying a slightly modified version of goal regression, 
which is a general technique for recovering the pre- 
image of a set by passing the set backwards through 
an operator. In T2, each particular move is an oper- 
ator. The corresponding backwards operator that we 
use produces a set that contains the pre-image of the 
child’s structure, possibly as a proper subset. This 
process is further described in Section 5.2. 

Undoing the moves in each child’s structure yields 
structures at the parent’s level of description. The re- 
gressed structures are then conjoined into a single spec- 
ification that describes a general structure that occurs 
in the parent b. Finally, this new specification is it- 
self conjoined as an exception within the definition of 
the concept C that incorrectly predicted the payoff of 
b-step (3.~) of the algorithm. 

An Example 
Consider the formation of a clause for the concept 

representing the payoff of +0.9, indicating that X can 
achieve a win in one step. Call this concept pre-win. 

Suppose that a board b of the form in Figure 1 is eval- 
uated. Board b does not contain a win, so its pay- 
off is initially 0.0, given by null (6). However, one of 
its children, bi, satisfies win(X, bi) yielding the pay- 
off +l.O. Therefore, the payoff of b should have been 
+0.9. This identifies a learning situation. For con- 
venience, label the nine board squares from 0 to 8 
in order from left-to-right, top-to-bottom. The por- 
tion of the definition of win (X, bi) that is the rea- 
son for bi E win (X, bi) is found through EBG to be: 
((X at 0) A (X at 4) A (X at 8)). Undoing the move 
that led to this child yields b’s structural generaliza- 
tion: ((X at 0) A (X at 4) A (blank at 8)). This struc- 
ture has been found to be the reason that b has the 
payoff $0.9. Hence, it is cached in the definition of the 
concept pre-win (X, b). 

4 Concept Definitions 
To achieve an efficient recognition process, concepts 
are required to have definitions that eliminate or bound 
the amount of search that may be done to match an in- 
stance with a concept. By expressing definitions solely 
in terms of the immediately observable features used to 
represent board structures, concepts’are not allowed to 
refer to functional properties requiring search through 
the state space. A further restriction is that definitions 
may not have variables at nested levels because these 
lead to combinatorial searches for bindings on a given 
board’s structure. 

In T2 the representation of boards consists of a list of 
the nine squares, in which each square takes on one of 
the three values: X, 0 or blank The values of specific 
squares are the only terms used in concept definitions. 
The only bindings allowed occur at the level of entire 
boards, i.e., the eight board symmetries provided by 
rotations and reflections are used in matching boards 
with concepts. This gives a fixed number of possible 
bindings across all concept definitions. 

Generalized board structures are represented as reg- 
ular boards in which the squares may also take on the 
value “don? care”. Such specifications shall be called 
gen-boards. A gen-board is used as a definition for the 
set of boards matching the specified structure. Because 
one cannot determine from a gen-board which player 
is on-move, it is necessary to record this information 
explicitly in the concept definitions. 

A concept definition also has a disjunctive expres- 
sion in which each clause specifies a subset of legal Tic- 
Tat-Toe boards. Each clause is a recursive expression, 
which is represented as a tree in which the nodes are 
gen-boards. The significance of the root gen-board of a 
clause is that its structure was sufficient for explaining 
why a particular board achieved the payoff value repre- 
sented by the concept possessing the clause. The signif- 
icance of any child gen-boards of the root is that they 
describe structures that occur in exceptions-boards 
containing the root structure yet not yielding the as- 
sociated payoff. This gives rise to a recursive logical 
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Figure 2: Deriving a clause for an exception 

structure in clauses: there can be exceptions to excep- 
tions, to any level of nesting. Hence, a clause is either 
a gcn- board or a gen-board conjoined with a conjunc- 
tion of negated clauses. For a given board to satisfy 
a clause, it must match the root gen-board while fail- 
ing to match each child clause. Henceforth, one entire 
clause (tree) of a concept definition will be called a 
concept-cZuuse when it is necessary to distinguish it 
from child clauses. 

Recall that non-null concepts can be considered as 
exceptions to the null concept. This indicates that all 
of the concept-clauses for the non-null concepts can be 
treated as children of the null gen-board. Thus, the 
entire set of concepts forms a single tree with the null 
gen-board at the root and all of the concept-clauses at 
the first-level of children. The given concept win (X, b) 
(hence win(O), b)) is defined by three concept-clauses 
each of which is a single gen-board. There is a gen- 
board for an edge row: ((X at O)A(X at l)A(X at 2)), 
and, similarly, one for a middle row and one for a di- 
agonal row. Using the board symmetries, these are 
sufficient for recognizing any win. 

5 Learning New Clauses 
This section describes how the generalization of a 
board, b, is derived using EBG and a modified version 
of goal regression. Figure 2 illustrates the process in 
the case of a single relevant child. The total informa- 
tion required for creating a new clause is: the concept 
C that incorrectly predicted b’s payoff, the children 
(bi) that produced the prediction violation for b, and 
each such child’s corresponding concept, Di. 

5.1 Explaining 6LWhy9s and “Why NotS9 
The membership of board b in the concept C, pre- 

dicts that the best payoff among all of b’s children 
will be given by the concept C’, where the payoff of 
C’ is the payoff of C divided by the discount factor. 
Therefore, in order to generalize b as an exception to 
C, we would like to know why the relevant children 
were not in C’. In this case, EBG is sometimes able 
to identify features of a child bi that are relevant for 

Input: A concept C where b E C, b’s relevant children 
(bi} (i = 1, s ma 9 n), their corresponding concepts {Di}. 

Output: A clause generalizing b. 

Method: 1. Let C’ be the concept predicted for the chil- 
dren, based on b E C. 

2. For each child bi 
If 7; t Explain (b; $! C’) then 

Return: Undo- Move- Clause (7;) 
3. For each child bi 
(a) 7i + Explain (bi E Di) 
(b) ri t Undo-Move-Clause (ri) 
4. Return: Conjoin-Clauses (71 ,‘yz, . . . , m) 

Table 2: The generalization algorithm: (3.b) of Table 1 

non-membership in C’. This type of explanation is at- 
tempted first because, when it succeeds, it appears to 
yield a more precise generalization of the parent b than 
does explaining bi E Di. Explaining a child’s member- 
ship in its own concept, Di, provides a reliable back- 
up strategy. Whichever approach is used, the resulting 
explanation is a clause specifying a set of boards that 
includes ba. 

T2’s back-up strategy employs the standard EBG 
approach to explain why bi E Di. The explanation 
is a clause that is a portion of Di’s definition that 
matched bi and was sufficient for concluding concept 
membership. Specifically, it is a concept-clause of Di 
that is satisfied by b;. The concept-clause is a general- 
ized structural specification that covers bi along with 
a group of boards sharing the relevant structures and, 
therefore, sharing the payoff represented by Di. 

Explaining non-membership in a concept is possi- 
ble because the concept-clauses may recursively specify 
alternating levels of positive and negative conditions. 
A non-trivial generalization of a non-member example 
can be obtained by explaining the example’s member- 
ship in one of the child clauses of a concept-clause. 
Suppose we wish to explain bi $Z 6’. Clearly, one pos- 
sible reason could be that ba does not match the root 
gen-board of any of C”s concept-clauses, but this is 
a trivial explanation since the default assumption for 
all boards is that they are null. Such an explanation 
cannot be used to improve the system’s overall knowl- 
edge. The potentially interesting case occurs when bi 
satisfies the root gen-board of a concept-clause for C’ 
yet also satisfies at least one of the root’s child clauses 
which specify exceptions. In this case, there is prima 
facie evidence that bi belongs in the concept, yet it is 
an exception. The explanation of br’s non-membership 
in C’ is a matching child clause of a concept-clause 
whose root also matches b;. 

5.2 Undoing Moves 
In T2 each move rni is an operator yielding bi from 
b. We wish to regress each generalized child clause 
back through its respective move operator to recover a 
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Figure 3: The success of T2 against 
opponents of varying depths 

Games played 

T2 vs. depth 6 

standard minimax 

clause for a pre-image containing b. The conjunction of 
the regressed clauses specify the components of b that 
make it an exception to the overly general concept C. 

Each move consists of a player’s symbol and a board 
square. Undoing a move in a clause is accomplished by 
recursively traversing the clause’s tree structure, and 
undoing the move in the gen-board at each node. Un- 
doing a move in a gen-board is illustrated by the follow- 
ing example. Suppose that in gen-board G the move 
“X to square 3” is to be undone. If 3 contains an X 
replace it with a blank. If 3 is a don’t care, then we 
use the heuristic of returning G unchanged. Strictly 
speaking, in such a case G should be returned with the 
added specification “blank at 3”. Using the heuristic 
rule is an attempt to produce a useful generalization 
of b. In many cases, specifying the additional blank 
squares introduces unnecessary constraints that can be 
expected to incre<ase the number of concept-clauses and 
to slow significantly the speed of learning. Therefore, 
we are willing to tolerate the possibility that G may 
be slightly overly general since the learning mechanism 
can produce corrections if necessary. While we do not 
yet have a proof that perfect concepts will eventually 
be formed, experiments demonstrate that the concepts 
come to support near-perfect play. 

After undoing the moves in the clauses, they are 
conjoined into a single clause by conjoining their root 
gen-boards into a single gen-board. All child clauses 
become children of this new root-step (4) in Table 2. 

6 Experiments 
To evaluate our approach, T2 was played against op- 
ponents using standard minimax searches of differ- 
ent fixed depths. T2 always performed a two-ply 
search. The only concepts known to the opponents 
were: null (b), win(X, b) and win(O,b). In both T2 

T2 
Opponen/t ’ 

x’ 

2 3 4 5 6 
Search depth (Opponent) 

Figure 4: The maximum time used by the players to 
make a move. Time is shown on a logarithmic scale. 

and the opponents, if more than one child of a board 
returned the best payoff value, then a child was ran- 
domly selected from among these child 
these experiments was to determine: 

ren. 
(4 

The goal of 
whether T2 

can improve its performance sufficiently to match or 
surpass any opponent, and (b) whether T2 always uses 
an acceptable amount of resources, especially time. 

Figure 3 shows the performance of T2 against four 
opponents. Their searches are bounded from depths 
three to six; a six-ply search is sufficient for perfect 
play in Tic-Tat-Toe. The abscissa is the number of 
games played, and the ordinate is the cumulative dif- 
ference between the number of games won by T2 and 
the number it lost. The performance of T2 may be 
judged by the average slope of the line, e.g., a positive 
slope indicates a dominant winning trend. The graphs 
indicate that the learned concepts enable T2 to win 
35-40% of the time against all opponents that search 
to a depth of five or less. Against the depth-six op- 
ponent the slope of the line showing T2’s performance 
approaches zero indicating that T2 is approaching the 
perfect play of the opponent. 

Figure 4 uses a logarithmic scale, to show the max- 
imum time ( in seconds) used for making a move bY 
T2 and each successive opponent. The time repor ,ted 
is for compiled functions written in Common-Lisp and 
run on a SUN 3/60. Each value is the maximum for 
any move occurring in ten additional games that were 
played after the 200 shown in Figure 3. Figure 4 shows 
that the time required by T2 to make a move is nearly 
constant regardless of the opponent. As one would ex- 
pect, the opponents’ times- &how exponential growth 
with increasing search depth. 

Figure 3 shows that T2 performs as well or better 
than its opponents while Figure 4 shows that T2 is 
achieving its results faster than any opponent using a 
search of depth four or more. In particular, T2 can 
approach the level of perfect play. Using the learned 
concepts for this level of play is well over 100 times 
faster than using standard search alone. 
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7 Conclusions 

We have described a technique for combining a 
temporal-diflerence learning method with ezplanation- 
based generalization and a slightly modified form of 
goal regression to enable an agent to learn concepts 
that improve its problem-solving performance. The 
learned concepts are generalized memories of problem- 
solving experiences, and they can be used to evaluate 
quickly similar problem states encountered in the fu- 
ture. The information for forming concepts can be de- 
rived from either local search employing a model (plan- 
ning) or from direct environmental feedback. We have 
been interested in situations in which the agent is able 
to integrate concept learning with actual task perfor- 
mance. Consequently, neither the learning process nor 
the subsequent process of recalling information can be 
allowed to interfere seriously with meeting the time 
constraints of performance. 

The T2 system implements the technique in the do- 
main of minimax game-playing and has been tested on 
Tic-Tat-Toe. The value of the approach can be un- 
derstood by following Minton’s analysis of the benefits 
versus the costs of using learned concepts. The TD 
process of backing up board evaluations ensures that 
application of the concepts will yield significant bene- 
fits, which are measured in terms of the depth of the 
searches necessary for computing the same payoff in- 
formation. The generdizations and use of board sym- 
metries help ensure that each definition covers a rela- 
tively large number of instances resulting in wide ap- 
plicability of the concepts. Also, there is a correspond- 
ing increase in the speed of learning. In considering 
the costs of the concepts, it is seen that the generaliza- 
tions also help ensure that there will be a small number 
of gen-boards to match in the definitions. Restricting 
the expressiveness of the definitions strictly controls 
the binding problem during matching as Tambe and 
Rosenbloom have also demonstrated. Finally, the logi- 
cal structure of the concepts probably also contributes 
to the efficiency of recognition. Since concepts are rec- 
ognized by applying a level-by-level series of general 
positive and negative tests, it may be expected that, 
for most concepts, most boards will either pass or fail 
early in the process. Moreover, in certain cases, this 
logical structure allows us to use EBG to explain why 
a given instance is not a member of some concept. 

Exploiting domain knowledge within the context of 
problem solving using local search appears to be an 
effective method of learning. Our approach efficiently 
defines concepts whose significance lies in the fact that 
they distinguish only those regions of the input rep- 
resentation space that are relevant to to the goals of 
the agent. This addresses fundamental computational 
issues in producing goal-directed behavior, and we ex- 
pect that further research will produce more general 
formulations of these principles. 
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