
Introduction 
I have been asked in this note to 

Richard Fikes 

Price Waterhouse Technology Centre 
68 Willow Road 

Menlo Park, California 94025 U.S.A. 

comment on the 
nature and extent to which the technologies and 
methodologies used to build “smart” application 
systems have contributed to software engineering. I 
will interpret the term “software engineering” broadly 
here as refering to the ability to create software 
solutions to problems, and will consider “‘smart’ 
application systems” to be what are generally referred 
to as “expert systems” or “knowledge-based systems”. 

First of all, knowledge-based systems have 
contributed directly to software engineering by 
providing a technology that expands the range of tasks 
which computers can effectively perform. Generally 
speaking, the expansion has been to simple decision 
tasks that were previously considered to require human 
intelligence. Much of the first generation rule-based 
and object-based technology which enabled the 
expansion is now being integrated into conventional 
programming environments so that it will be available 
for use when needed as a standard part of the 
professional system builder’s repertoire. 

The AI community at large has been a major 
contributor to software engineering by playing a 
pioneering role in the development of symbolic, 
interactive, and exploratory programming. The 
building of knowledge-based application systems has 
typically required all three of these forms of 
programming and has recently been particularly 
responsible for motivating the development of 
techniques for effectively managing exploratory 
programming activities. (See, for example, (Walters 
and Nielsen 1988), (Schoen and Sykes 1988), and 
(Fikes and Jacobstein 1989).) Since exploratory 
programming can be a useful methodology in a broad 
range of both AI and non-AI system building projects 
(Sheil 1983), I consider techniques for managing its 
use to be a significant contribution to software 
engineering. It is those techniques that I wish to 
address briefly in this note. 

Managing Exploratory Programming 
As we know from experience, knowledge-based system 
applications typically require an exploration process in 
order to determine the functionality, knowledge, and 

1126 INVITEDTALKSANDPANELS 

processing methods that are needed to perform the 
target task. The initial specifications from the client 
for such projects are often little more than aspirations 
(e.g., recognize the tax issues in a business situation, 
monitor the operation of a plant). Therefore, a major 
goal of the early part of a knowledge-based systems 
application project is to determine a realizable detailed 
set of functional specifications that are satisfactory to 
the client. The typical means for achieving that goal 
is to build a sucession of prototype systems, each of 
which is exposed to users and experts for comment and 
then refined to produce the next system. The challenge 
faced by project planners and managers is how to allow 
such exploration to occur and still maintain an 
acceptable degree of predictability in the cost, timing, 
and results of the project. 

In the last few years, a set of guidelines has emerged 
from the building of knowledge-based systems for 
managing exploratory programming activities in the 
form of additions to and modifications of conventional 
software engineering management methodology. The 
following describes some of the principal points in 
those guidelines. 

Conventional software engineering methodology 
holds that central to any software development is the 
availability of (1) a system requirements specification 
stating the problem to be solved and criteria for 
success against which the application can be designed, 
implemented, tested, and validated; and (2) a project 
plan containing an activity schedule and a description 
of the deliverables and costs for each activity 
(Sommerville 1989). What has been learned is that 
the use of exploratory programming does not lessen 
the importance of writing such a specification and plan 
at the beginning of a project and of maintaining those 
documents throughout the project, even though they 
are initially lacking in significant detail and change 
substantially as the project progresses. 

The requirements specification and project plan are 
important because they represent a common agreement 
among the interested parties in a project, including the 
sponsor, experts, users, and developers. For 
exploratory programming projects, they also indicate 
at any given time what has been learned thus far and 
what questions remain open to be answered by the 
exploration. The project manager’s job is then one of 

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved. 



managing the evolution of that agreement and assuring 
that the open questions are being effectively addressed. 

The first guideline in managing the evolution of the 
common agreement is to make sure that all interested 
parties understand from the outset that the agreement is 
in fact going to evolve. Everyone must understand 
that the current agreement at any time during the 
exploratory phase of the project is only a best guess 
and that the primary purpose of the exploration is to 
improve those guesses and remove the uncertainties in 
them. Thus, the changes in the requirements 
specification and project plan at the end of each 
exploratory step are the results of that step. If there 
are no changes and no reduction of uncertainty, then 
nothing has been accomplished by the exploration. 

The primary way to gain support for a project in 
which specifications and plans are expected to change 
is to establish clear procedures for updating the 
specification and plan and for informing all interested 
parties when those changes occur. (The manager can 
make clear, also, that the updating and informing 
procedures are not expected to change.) The central 
element of those procedures is to have frequent project 
reviews, including prototype demonstrations, that give 
all interested parties an opportunity to revise and renew 
their agreements. Such reviews typically produce a 
list of errors or problems in the prototype to be 
addressed in the next step such as desired changes in 
the user interface, missing or inadequate areas of 
knowledge or functionality, or errors in the knowledge 
or its representation. 

At each project review, a detailed specific plan needs 
to be presented for the period up to and including the 
next review. An important element of that plan is a 
list of objectives for the step. Such a list would 
include the unresolved requirement specification issues 
to be addressed and errors or problems in the prototype 
that were found during the review to be fixed. These 
objectives provide the developers with a basis for 
deciding what to do next and a set of criteria for 
evaluating the results of the next step. At any time 
during a project, the plan for the current prototyping 
step is not expected to change substantially. Thus, an 

exploratory programming project can be considered to 
have a stepwise stable project plan such that at each 
review point a stable plan exists for the next step. 

Summary 
The technologies and methodologies used to build 
knowledge-based systems have expanded the range of 
tasks that computers can effectively perform and has 
contributed to the development of symbolic, 
interactive, and exploratory programming. In 
particular, experience in building knowledge-based 
systems has produced a set of guidelines for managing 
both AI and non-AI exploratory programming efforts. 
Those guidelines have contributed substantially to 
making exploratory programming a viable system 
development technique for use whenever there is 
significant uncertainty as to the functional 
requirements for the desired system. 

eferences 
Sommerville, I. 1989. Software Engineering. 
Reading Mass.: Addison-Wesley. 

Walters, J.R., and Neilson, N.R. 1988. Crafting 
Knowledge-Based Systems; Expert Systems Made 
(Easy) Realistic. New York: Wiley-Interscience 

Schoen, S., and Sykes, W. 1987. Putting Artificial 
Intelligence to Work; Evaluating and Implementing 
Business Applications. New York: John Wiley & 
Sons, Inc. 

Fikes, R., and Jacobstein N. 1989. Managing Expert 
System Projects. Tutorial: MAS. Eleventh 
International Joint Conference on Artificial 
Intelligence. Detroit: IJCAI-89. 

Sheil, B. 1983. Power Tools for Programmers. 
DATAMATION February, 1983. 

FIKES 1127 


