Symmetry as Bias: Rediscovering Special Relativity

Michael R. Lowry

AI Branch
M.S. 269-2
NASA Ames Research Center
Moffett Field, CA 94035
lowry@pluto.arc.nasa.gov

Abstract
This paper describes a rational reconstruction of Einstein's discovery of special relativity, validated through an implementation: the Erlanger program. Einstein's discovery of special relativity revolutionized both the content of physics and the research strategy used by theoretical physicists. This research strategy entails a mutual bootstrapping process between a hypothesis space for biases, defined through different postulated symmetries of the universe, and a hypothesis space for physical theories. The invariance principle mutually constrains these two spaces. The invariance principle enables detecting when an evolving physical theory becomes inconsistent with its bias, and also when the biases for theories describing different phenomena are inconsistent. Structural properties of the invariance principle facilitate generating a new bias when an inconsistency is detected. After a new bias is generated, this principle facilitates reformulating the old, inconsistent theory by treating the latter as a limiting approximation.

Introduction
Twentieth century physics has made spectacular progress toward a grand unified theory of the universe. This progress has been characterized by the development of unifying theories which are then subsumed under even more encompassing theories. Paradigm shifts are nearly routine, with the postulated ontology of the universe changing from the three dimensional absolute space of Newtonian physics, to the four dimensional space-time of relativistic physics, and through many other conceptual changes to current string theories embedded in ten dimensions. Theoretical physicists attribute much of the success of their discipline to the research strategy first invented by Einstein for discovering the theory of relativity [Zee 86].

At the heart of Einstein's strategy was the primacy of the principle of invariance: the laws of physics are the same in all frames of reference. This principle applies to reference frames in different orientations, displaced in time and space, and also to reference frames in relative motion. This principle also applies to many other aspects of physics, including symmetries in families of subatomic particles. The application of the invariance principle to "two systems of coordinates, in uniform motion of parallel translation relatively to each other" was Einstein's first postulate: the principle of special relativity [Einstein 1905].

Einstein's genius lay in his strategy for using the invariance principle as a means of unifying Newtonian mechanics and Maxwell's electrodynamics. This strategy of unifying different areas of physics through the invariance principle is responsible for many of the advances of theoretical physics. In the parlance of current machine learning theory, Einstein's strategy was to combine the principle of special relativity with his second postulate, the constancy of the speed of light in a vacuum, in order to derive a new bias. (This second postulate was a consequence of Maxwell's equations; [Einstein 1905] notes that experimental attempts to attribute it to a light medium were unsuccessful.) This new bias was designed and verified to be consistent with Maxwell's electrodynamics, but was inconsistent with Newton's mechanics. Einstein then reformulated Newton's mechanics to make them consistent with this new bias. He did this by treating Newton's mechanics as a limiting approximation, from which the relativistic laws were derived through generalization by the new bias.

Einstein's strategy is a model for scientific discovery that addresses a fundamental paradox of machine learning theory: in order to converge on a theory from experimental evidence in non-exponential time, it is necessary to incorporate a strong bias [Valiant 84], but the stronger the bias the more likely the 'correct' theory is excluded from consideration. Certainly any conventional analysis of what could be learned in polynomial time would exclude a grand unified theory of physics. The paradox can be avoided by machine learning algorithms that have capabilities for reasoning about and changing their bias. Even if a strong bias is ultimately 'incorrect', it is still possible to do a great
deal of useful theory formation before the inconsistencies between the bias and empirical facts becomes a limiting factor. The success of the Galilean/Newtonian framework is an obvious example. In order to avoid the paradox, a machine learning algorithm needs to detect when a bias is inconsistent with empirical facts, derive a better bias, and then reformulate the results of learning in the incorrect bias space into the new bias space [Dietterich 91]. The Erlanger program described in this paper is such an algorithm.

Einstein's strategy is essentially a mutual bootstrapping process between two interrelated hypothesis spaces: a space for biases, and a space for physical theories. The invariance principle defines the space of biases; each bias is a different postulated set of symmetries of the universe, formalized through a group of transformations. The invariance principle also defines a consistency relationship that mutually constrains the bias space and the space for physical theories. The hypothesis space for biases has a rich lattice structure that facilitates generating a new bias when a shift of bias is necessary. The hypothesis space for physical theories has an approximation relation between theories (limit homomorphisms) that, after a shift in bias, facilitates generating a new theory from an old (approximate) theory and the new bias. The entire process converges if learning in the bias space converges.

This paper builds upon the considerable body of literature on relativity and the role of symmetry in modern physics. Its contribution includes identifying and formalizing the structural relationships between the space of biases and the old and new theories that enabled Einstein's strategy to succeed, in other words, made it computationally tractable. The tactics for carrying out the components of this strategy have been implemented in the Erlanger program, written in Mathematica v.1.2.

The next section of this paper introduces the invariance principle, which determines the consistency relationship between a bias and a physical theory. It also describes the procedure for detecting inconsistency. The following section presents the tactic for computing a new bias using the invariance principle. It takes the reader through the Erlanger program's derivation of the Lorentz transformations. The section after defines limit homomorphisms, a formal semantics for approximation. The following section describes BEGAT: Bias-Erlangen Generalization of Approximate Theories, an algorithm which uses the invariance principle and the semantics of limit homomorphisms to generate components of the new theory. The paper concludes with a generalization of Einstein's strategy called primal-dual learning, which could be applied to other types of biases. A longer version of this paper is contained in [Lowry 92].

Symmetry as Bias: the Invariance Principle

Symmetry is a unifying aesthetic principle that has been a source of bias in physics since ancient times. In modern physics this principle is stated as: 'the laws of physics are invariant for all observers.' An invariance claim is a universally quantified statement of the form 'For all events/histories of type F, for all reference frames of type R, Physical Theory P holds.' An invariance claim implies that a group of transformations mapping measurements between different observers also maps physical theory P onto itself. Such a group of transformations defines the postulated symmetries of the universe, and is the type of bias used by theoretical physicists. The transformations are parameterized by the relation between two different observers, such as their relative orientation or velocity. For example, Galileo defined the following transformation equations relating measurements for observers in constant relative velocity v parallel to the x-axis: \[x' = x - vt, \quad t' = t \]. These transformations are consistent with Newton's theory of mechanics.

The invariance principle defines a consistency relationship between physical theories and groups of transformations. The following definitions are standard and sufficient for our purpose of understanding and implementing Einstein's strategy for deriving special relativity. However, the reader should be aware that these definitions are a simple starting point for a deep, well-developed mathematical theory that has had a profound impact on theoretical physics. (A good mathematical exposition focused on special relativity is [Aharony 65]; a more sophisticated philosophical and foundational treatment is [Friedman 83].)

Below, G is a transformation group. An invariant operation is a special case of a covariant operation. Laws are invariant if they define the same relation after they are transformed by the action of the transformation group. A sufficient condition for a theory to be invariant with respect to a transformation group G is if all the operations are covariant and all the laws are invariant.

Invariance of an operation or form:

\[\text{Invariant}(\text{op}, G) \iff \forall (g \in G, x_1 \ldots x_n) \]
\[\text{op}(x_1, x_2, \ldots, x_n) = \text{op}(g(x_1, x_2, \ldots, x_n)) \]

Covariance of an operation or form:

\[\text{Covariant}(\text{op}, G) \iff \forall (g \in G, x_1 \ldots x_n) \]
\[\text{op}(g(x_1, x_2, \ldots, x_n)) = \text{op}(x_1, x_2, \ldots, x_n) \]
\[\Rightarrow \forall (g \in G, x_1 \ldots x_n) \]
\[\text{op}(x_1, x_2, \ldots, x_n) = g^{-1}(\text{op}(g(x_1, x_2, \ldots, x_n))) \]

Invariance of a physical law expressed as a universally quantified equation:

\[\text{Invariant}(\forall (\ldots) \text{tl}(\ldots) = t(\ldots), G) \iff \forall (g \in G, x_1 \ldots x_n) \]
\[\text{tl}(x_1, x_2, \ldots, x_n) = t(\text{tl}(g(x_1, x_2, \ldots, x_n))) \]

To check an invariant predicate, the Erlanger program back-substitutes transformation equations into a form or law and then compares the result to the original form or law. If the function or relation are the same, then the invariant predicate is true. In essence the Erlanger program assumes the law holds good in the original reference frame and then transforms the law into measurements that would be observed in a new frame of reference. (This can be done
Deriving a New Bias

The invariance principle can be used not only to verify that a physical law is consistent with a particular bias, but also to generate a new bias when a physical law is inconsistent with the current bias, as when the constant speed of light is inconsistent with the Galilean transformations. There are important structural aspects of the invariance principle that enabled this aspect of Einstein’s strategy to succeed. In particular, the consistency relationship is contravariant: a weaker physical theory is consistent with a larger set of transformations. (For the purposes of this paper, ‘weaker’ can be thought of as ‘fewer deductive consequences’, though this is not entirely correct.) Thus when an inconsistency is detected between a bias represented by a set of transformations and an evolving physical theory, the physical theory can be relaxed, leading to an enlarged set of transformations. This enlarged set is then filtered to compute the new bias.

Assume that a physical theory T (e.g. Newton’s mechanics) is consistent with a transformation group G (e.g. the Galilean group). Further assume that G is the largest transformation group consistent with T. Then a new empirical fact e is observed (e.g. the constant speed of light), such that e is not consistent with G. Then T is relaxed to T' (e.g. Newton’s first law), thereby enlarging G to G' (e.g. the set of all linear transformations). The new bias is the subset of G', i.e. G'' (e.g. the Lorentz group), such that T' with e is consistent with G''. Then the laws in $(T - T')$ are transformed so that they are consistent with G'' and have as limiting approximations the original laws. This section describes an implemented algorithm for deriving G'', while the next sections describe transforming the laws in $(T - T')$. These same algorithms can also be used when trying to unify theories with different biases, such as Newton’s mechanics and Maxwell’s electromagnetism.

The Lorentz group is a set of transformations that relate the measurements of observers in constant relative motion. The Lorentz group is a sibling to the Galilean group in the space of biases. Einstein’s derivation of the Lorentz transformations implicitly relied upon structural properties of the lattice of transformation groups. In particular, Einstein constrained the form of the transformations with an upper bound, derived from Newton’s first law: a body in constant motion stays in constant motion in the absence of any force. This is his assumption of inertial reference frames, an assumption he relaxed in his theory of general relativity. The largest set of transformations consistent with Newton’s first law are the four dimensional linear transformations. Of these, the spatial rotations and spatial/temporal displacements can be factored out of the derivation, because they are already consistent with Einstein’s second postulate. (The Erlanger program does not currently have procedures implemented to factor out subgroups of transformations - these are under development.) This leaves an upper bound for a subgroup with three unknown parameters $\{a, df\}$ whose independent parameter is the relative velocity v:

$$x = a(x' + vt') \quad t = dx' + ft'$$

This upper bound includes both the Galilean transformations and the Lorentz transformations. The DeriveNewBias algorithm takes the definition of an upper bound, such as the one above, including lists of the unknown and independent parameters, a list of invariants, a list of background assumptions, and information on the group properties of the upper bound. When this algorithm is applied to Einstein’s second postulate of the constant speed of light, the derivation of the Lorentz transformations proceeds along roughly the same lines as that in Appendix 1 of [Einstein 1916]. This derivation and others are essentially a gradual accumulation of constraints on the unknown parameters of the transformations in the upper bound, until they can be solved exactly in terms of the independent parameter which defines the relation between two reference frames. The algorithm is described below, illustrated with the example of deriving the Lorentz transformations.

The input in this example to the DeriveNewBias algorithm is the upper bound given above, two invariants for a pulse of light - one going forward in the x direction and one going backwards in the x direction $\{x = ct, x = -ct\}$, the assumptions that the speed of light is not zero and that the relative velocity between reference frames is less than the speed of light, and information for
computing the inverse of a transformation. The steps of the DeriveNewBias algorithm:

1. Constraints on the unknown parameters for the transformation group are derived separately from each individual invariant. This step is similar to the procedure which checks whether a law is invariant under a transformation group. However, instead of steps 3 and 4 of that procedure, the system of equations from steps 1 and 2 are jointly solved for constraints on the unknown parameters. For the two invariants for a pulse of light, the derived constraints are:

\[a = \frac{-c^2 d + cf}{c - v}, \quad a = \frac{c^2 d + cf}{c + v} \]

2. The constraints from the separate invariants are combined through Mathematica's SOLVE function. In the example of the Lorentz derivation, this reduces the unknown parameters to a single unknown (a):

\[a = \frac{c(v)}{c^2} \]

3. In the last step, the group properties are used to further constrain the unknown parameters. Currently the implemented algorithm only uses the inverse property of a group, but the compositionality property is another source of constraints that could be exploited. First, the constraints on the unknown parameters are substituted into the upper bound transformation definition, yielding a more constrained set of transformations. For the Lorentz example this yields:

\[x = f(x' + vt') \quad t = ft' + fvx' / c^2 \]

Second, the inverse transformations are computed. The information given to the algorithm on the group properties of the upper bound define how the independent parameter for the transformation is changed for the inverse transformation. For relative velocity, this relation is simply to negate the relative velocity vector. This then yields the inverse transformations:

\[x' = f(x - vt) \quad t' = ft - (fmx) / c^2 \]

The inverse transformations are then applied to the right hand side of the uninverted transformations, thereby deriving expressions for the identity transformation:

\[x = f(f(x - vt) + v(\frac{ft - fmx}{c^2})) \]

\[t = f(\frac{ft - fmx}{c^2}) + fmx v(\frac{x - vt}{c^2}) \]

These expressions are then solved for the remaining unknown parameters of the transformation (e.g., f), whose solution is substituted back into the transformations:

\[x = (x' + vt') \frac{\sqrt{c}}{\sqrt{2} \sqrt{\frac{1}{c - v} + \frac{1}{c + v}} } \]

\[t = (t' + \frac{v}{c^2} x') \frac{\sqrt{c}}{\sqrt{2} \sqrt{\frac{1}{c - v} + \frac{1}{c + v}} } \]

The result is the new bias, which in this example is equivalent to the standard definition of the Lorentz transformations (the definitions above are in Mathematica's preferred normal form).

Limit Homomorphisms: Approximations between Theories.

Once a new bias is derived, a learning algorithm needs to transfer the results of learning in the old bias space into the new bias space. This is done by treating the old theory as an approximation to the new, unknown theory. Reasoning with approximate theories, and even generating approximate theories from detailed theories, has become a topic of research in AI in recent years [Elman 90]. Various notions of “approximation” have been developed to support these reasoning methods. The problem of generating a new theory from an approximate theory and a new bias requires a precise definition of approximation with a well defined semantics. This section describes limit homomorphisms, which are homomorphisms that only hold in the limiting value of some parameter.

A limit homomorphism is a map h from one domain to another such that for corresponding functions f and g the following equality converges as the limit expression goes to the limiting value:

\[\lim_{\text{expr} \to \text{value}} h(f(x_1, x_2, \ldots, x_n)) = g(h(x_1), h(x_2), \ldots, h(x_n)) \]

Within physics, limit homomorphisms define the relationship between new, unified theories and the older theories they subsume. If the mapping function h is invertible, then a limit homomorphism can be defined in the reverse direction. The limit homomorphisms between Newton's mechanics and different formulations of relativistic mechanics can all be defined through tupling and projections that are invertible.

From an a priori, mathematical viewpoint neither Newtonian mechanics nor relativistic mechanics is intrinsically more general than the other - the mathematical relationship is symmetric; each is a limit homomorphism of the other. These theories agree on their predictions when velocities are low, but diverge as velocities approach the speed of light. Relativistic mechanics is a posteriori more general because its predictions agree with experimental facts for high velocities, hence the theory is more generally applicable. Relativistic mechanics is also extrinsically more general in the sense that its bias is consistent with electrodynamics, and hence relativistic mechanics and electrodynamics can be unified.

BEGAT: (BiasEd Generalization of Approximate Theories)

While the intrinsic mathematical relationship between Newtonian and relativistic physics is not one of generalization [Friedman 83], the process of generating relativistic mechanics from Newtonian mechanics is one of generalization. This section describes the mathematics justifying this process, and an implemented algorithm based on these mathematics that derives relativistic kinematics. Extensions are currently under development to
enable it to derive different formulations of relativistic dynamics.

It is clear from a reading of [Einstein 1905] that Einstein derived relativistic mechanics from Newtonian mechanics, by treating the latter as a limiting approximation that was valid in low velocity reference frames and applying the Lorentz transformations in order to generalize to the relativistic laws. For example, in section 10, paragraph 2 of [Einstein 1905]: “If the electron is at rest at a given epoch, the motion of the electron ensues in the next instant of time according to the equations [Newton’s equations of motion] ... as long as its motion is slow.” Einstein then generalized to the relativistic equation of motion by applying the Lorentz transformations to Newton’s equations of motion. Einstein even constrained the laws of relativistic dynamics to have the same form as Newtonian dynamics.

A theory such as Newton’s mechanics that has a high degree of experimental confirmation over a range of phenomena (e.g. particles interacting at low velocities compared to the speed of light), represents a summary of many experimental facts. If a new theory is to account for these same experimental facts, it must agree with the old theory over the same range of phenomena. Hence the old theory must approximate, to within experimental error, the new theory over this range of phenomena (and vice versa). When both the old theory and the new theory comply with the invariance principle, then the difference in the biases will determine the limit point, i.e. the range of phenomena over which they must agree. The following mathematical sketch explains what this limit point must be, when the theories postulate the same number of dimensions. The two biases will share some subgroups in common (e.g. the spatial rotations) and differ in other subgroups (e.g. the subgroup for relative velocity). For the subgroups that differ, the identity transformations will be the same. Hence the value of the parameter (e.g. relative velocity) that yields the identity transformation must be the limit point (e.g. 0 relative velocity). Furthermore, assuming that the transformations in the differing subgroups are a continuous and smooth function of their parameter(s), and that the functions in the respective theories are smooth and continuous, then the bounding epsilon-delta requirements for a limit are satisfied.

Thus, given a new bias, the new theory must be derived so that it satisfies two constraints: the theory is invariant under the new bias, and the old theory is a limit homomorphism of the new theory. In simple cases, these two constraints can be solved directly to generate parts of the new theory by applying the transformations in the new bias to ‘rotate away’ from the limit point, as Einstein ‘rotated’ a description of Newton’s equations for an electron initially at rest to reference frames in which it was not at rest. (Here ‘rotate’ means applying the transformations in the subgroups of the new bias not contained in the old bias, e.g. the Lorentz transformations.) For the operations of the new theory, these two constraints can be combined as follows:

1. New, unknown operation is covariant wrt new bias:
 \[op(g(x_1, x_2, ..., x_n)) = \tilde{g}(op(x_1, x_2, ..., x_n)) \]
 Equivalently: \[op(x_1, x_2, ..., x_n) = \tilde{g}^{-1}(op(g(x_1, x_2, ..., x_n))) \]

2. New, unknown operation has limit homomorphism to old operation \(\tilde{o} \):
 \[\lim_{x_1 \rightarrow \text{limit point}} h(op(x_1, x_2, ..., x_n)) = \tilde{o}(h(x_1), h(x_2), ..., h(x_n)) \]
Thus:
 \[op(x_1, x_2, ..., x_n) = \tilde{g}^{-1}(\tilde{o}(h(g(x_1)), h(g(x_2)), ..., h(g(x_n)))) \]

In words, the new operation is obtained by:
1. Finding a transformation \(g \) that takes its arguments to a reference frame where the old operation is valid.
2. Applying the inverse transformation to define the value of the new operation in the original reference frame.

Applying BEGAT to derive the laws of the new theory is a similar two step process: first, a transformation is determined that takes the variables to a reference frame in which the old laws are valid, and then the inverse transformations are symbolically applied to the equations for the old laws.

The algorithm is underconstrained, because of the interaction of the definition of the new (unknown) operation and the definition of the (unknown) homomorphism \(h \). In parts of [Einstein 1905], Einstein assumes that \(h \) is the identity, for example in his derivation of the relativistic composition of velocities (described below), and then derives an expression for the new operation. In other parts of [Einstein 1905], he assumes that the old operation and the new operation are identical, for example in his derivation of the relativistic equation of motion. In that derivation he kept the same form as the Newtonian equation (i.e. force = mass * acceleration) and then solved for a relativistic definition of inertial mass, and hence \(h \). To his credit, Einstein recognized that he was making arbitrary choices [Einstein 1905 section 10, after definition of transverse mass]: “With a different definition of force and acceleration we should naturally obtain other values for the masses.”

Different assumptions about the ontology of relativistic mechanics leads to different homomorphisms \(h \) and different formulations of the equation for relativistic dynamics. In his original paper, Einstein reformulated the Newtonian equation by measuring the force in the reference frame of the moving object and the inertial mass and acceleration in the reference frame of the observer. (In essence, Einstein did not complete step 2, for reasons too complex to explain here.) This leads to a projection of the Newtonian mass into separate transverse and longitudinal relativistic masses. A subsequent formulation of relativistic dynamics consistently measures forces, masses, and accelerations in the reference frame of the observer, resulting in a single relativistic mass that varies with the speed of the object. In this formulation the mass of a system is the sum of the masses of its components, and is conserved in elastic collisions. The modern formulation of relativistic dynamics, based on Minkowski's space-time...
and Einstein's tensor calculus, requires that components that transform into each other be tupled together. Thus because time coordinates transform into spatial coordinates, time and space are tupled into a single 4-vector. Consequently energy and momentum are also tupled together. In this case h maps Newtonian inertial mass to rest mass, and maps Newtonian acceleration and forces to their 4-vector counterparts.

The following illustrates how the BEGAT algorithm works for a simple operation when h is the identity, refer to [Lowry 92] for details on more complicated cases. Note that when h is the identity: op(x₁, x₂, ..., xₙ) = g⁻¹[op'(g(x₁), g(x₂), ..., g(xₙ))]

BEGAT takes as input the definition of the old operation, the list of transformations for the new bias, and a definition of the limit point. For the composition of velocities, the old operation is simply the addition of velocities:

Newton - compose(v₁, v₂) = v₁ + v₂ where:
- v₁ is the velocity of reference frame R₁ w. r. t. R₀
- v₂ is the velocity of object A w. r. t. reference frame R₁
- and the time coordinate derived earlier.

The transformations are the Lorentz transformations derived earlier. The limit point is when R₁ is the same as R₀, i.e. v₁ = 0. The first part of the reasoning for the BEGAT algorithm is at the meta-level, so it is necessary to understand some aspects of the notation used in the Erlanger program. Variables are represented by an uninterpreted function of the form:

var[event, component, reference-frame]. This form facilitates pattern matching. Transformations have representations both as lists of substitutions and as a meta-level predicate of the form:

Transform[start-frame, end-frame, independent-parameter]
The independent parameter for relative velocity has the form: var[end-frame,relvelocity,start-frame]. Thus v₁ is represented as var[R₁, relvelocity, R₀] and v₂ as var[A, velocity, R₁].

1. BEGAT first solves for g, the transformation which takes the arguments to the limit point. This transformation maps the reference frame to the output reference frame for the limit point. The result is obtained by applying a set of rewrite rules at the meta-level:

Transform[R₀, R₁, var[R₀, relvelocity, R₁]]
This transformation maps reference frame R₀ to reference frame R₁.

2. BEGAT next solves for the value of the variables which are given to the old operation, i.e. g(v₁), g(v₂). For g(v₁) it symbolically solves at the meta level for:

Apply[Transform[R₀, R₁, var[R₀, relvelocity, R₁]], var[R₁, relvelocity, R₀]]

obtaining var[R₁, relvelocity, R₁], i.e. g(v₁) = 0
For g(v₂) it symbolically solves at the meta-level for:

Apply[Transform[R₀, R₁, var[R₀, relvelocity, R₁]], var[A, velocity, R₁]]

obtaining var[A, velocity, R₁], i.e. g(v₂) = v₂ since v₂ is measured in R₁.

This meta-level reasoning about the application of transformations is necessary when the input variables and the output variables are defined in different reference frames.

3. BEGAT next symbolically applies the old operation to the transformed variables:

Newton - compose(g(v₁), g(v₂)) = 0 + v₂ = v₂

4. BEGAT finally applies the inverse transformation to this result to obtain the definition for the relativistic operation:

Relativistic-compose(v₁, v₂) =

Apply[Transform[R₁, R₀, var[R₁, relvelocity, R₀]], var[A, velocity, R₁]]

There is no transformation yet defined for velocities, so BEGAT calls DeriveCompositeTransformation with the definition for velocity (i.e. v = ∂u/∂t), and the Lorentz Transformations for the components of the definition of velocity - namely the transformations for the x coordinate and the time coordinate derived earlier. DeriveCompositeTransformation then symbolically applies these transformations to the components of the definition, and then calls Mathematica's SOLVE operation to eliminate the ∆x, ∆t components from the resulting expression. The result is the same definition as Einstein obtained in section 5 of [Einstein 1905]:

Relativistic-compose(v₁, v₂) = (v₁ + v₂) / (1 + (v₁v₂) / c²)

Related Research

Within AI, this research is related to scientific discovery and theory formation [Shrager and Langley 90], qualitative physics [Weld and de Kleer 90], change of bias in machine learning [Benjamin 90a], and use of group theory [Benjamin 90b]. The research in this paper appears to be the first addressing the scientific revolutions of twentieth century theoretical physics. The notions of approximation within qualitative physics are closely related to limit homomorphisms. Within machine learning, research on declarative representations and reasoning about bias is most important, see the collection of papers in [Benjamin 90a].

Conclusion: Toward Primal-Dual Learning

A hypothesis of this research is that Einstein's strategy for mutually bootstrapping between a space of biases and a space of theories has wider applicability than theoretical physics. Below we generalize the structural relationships of the invariance principle which enabled the computational steps of Einstein's derivation to succeed. We conjecture that there is a class of primal-dual learning algorithms based on this structure that have similar computational properties to primal-dual optimization algorithms that incrementally converge on an optimal value by alternating updates between a primal space and a dual space. More details can be found in [Lowry 92].

Let B be a set of biases with ordering relation < that forms a lattice. Let T be a set of theories with ordering relation < that forms a lattice. Let C be a consistency relation on B x T such that:

Lowry 61
\[C(b,t) \text{ and } b' \prec b \Rightarrow C(b',t) \]
\[C(b,t) \text{ and } t' \prec t \Rightarrow C(b,t') \]

This definition is the essential property for a well-structured bias space. As a bias is strengthened, the set of theories it is consistent with decreases; as a theory is strengthened, the biases it is consistent with decreases. Hence \(C \) defines a contravariant relation between the ordering on biases and the ordering on theories.

Let \(\mathcal{U} \) be the max bias function from \(T \rightarrow B \) such that \(C(\mathcal{U}(t),t) \) and \(\forall b \in C(b,t) \Rightarrow b \prec \mathcal{U}(t) \). Let \(D \) be a function from \(B \times T \rightarrow B \) such that \(D(b,t) = b \land \mathcal{U}(t) \); \(\land \) is the lattice meet operation.

\(D \) is the DeriveNewBias function, which takes an upper bound on a bias and filters it with a (new) theory or observation to obtain a weaker bias. (For some applications of primal-dual learning, \(D \) should take a lower bound on a bias and filter it with a new theory or observation to obtain a stronger bias.) \(D \) is well-defined whenever \(B \), \(T \), and \(C \) have the properties described above. However, depending on the type of bias, it might or might not be computable. If it is computable, then it defines the bootstrapping from the theory space to the bias space when an inconsistency is detected.

The bootstrapping of BEGAT from a new bias to a new theory that has a limiting approximation to the old theory requires two capabilities. First, given the old bias and the new sibling bias, the restriction of the old theory to instances compatible with the new bias must be defined and computable. Second, given this restriction, its generalization by the new bias must also be defined and computable.

As an example of BEGAT with a different type of bias, consider the problem of learning to predict a person's native language from attributes available in a data base. A declarative representation for biases that includes functional dependencies was presented in [Davies and Russell 87] and subsequent work. Let the original bias be that the native language is a function of the birth place. This bias would likely be consistent with data from Europe, but would be inconsistent with the data from the U.S. because of its large immigrant population. Assume that a function \(D \) derives a new bias where the native language is a function of the mother's place of origin. Then the restriction of the original theory to concepts derived from non-immigrant data is compatible with this new bias. Furthermore, the concepts learned from this restricted set can be transferred directly to the new theory by substituting the value of the birth place attribute into the value for the mother's place of origin.

Future research will explore the theory and application of primal-dual learning to theoretical physics and other domains. Given the spectacular progress of twentieth century physics, based on the legacy of Einstein's research strategy, the computational advantages of machine learning algorithms using this strategy might be considerable.

Acknowledgements

Thanks to Robert Holte, Laura Jones, Hugh Lowry, Thomas Pressburger, Jeffrey Van Baalen and the referees for their many helpful comments for improving this paper.

References

