
Mutluhan Erol ana S. P&u+ V. S. Subrahmanians 
kutluhan@cs.umd.edu nau@cs.umd.edu vs@cs.umd.edu 

Computer Science Department 
University of Maryland 
College Park, MD 20’742 

Abstract 
In this paper, we examine how the complexity 
of domain-independent planning with STRIPS-Style 
operators depends on the nature of the planning 
operators. We show how the time complexity 
varies depending on a wide variety of conditions: 

whether or not delete lists are allowed; 
whether or not negative preconditions are al- 
lowed; 
whether or not the predicates are restricted to 
be propositions (i.e., 0-ary); 
whether the planning operators are given as 
part of the input to the planning problem, or 
instead are fixed in advance. 

Introduction 
Despite the acknowledged difficulty of planning, it is 
only recently that researchers have begun to exam- 
ine the computational complexity of planning problems 
and the reasons for that complexity (Chapman, 1987; 
Bylander, 1991; Gupta & Nau, 1991; Gupta & Nau, 
1992; Minton et al., 1991; McAllester and Rosen- 
blitt, 1991). H ere, we examine how the complexity 
of domain-independent planning depends on the na- 
ture of the planning operators. We consider planning 
problems in which the current state is a set of ground 
atoms, and each planning operator is a STRIPS-style 
operator consisting of three lists of atoms: a precondi- 
tion list, an add list, and a delete list. So that it will 
be decidable whether a plan exists (Erol et al., 1992; 
Erol et al., 1991), we make the “datalog” restriction 
that no function symbols are allowed and only finitely 
many constant symbols are allowed. Our results are 
summarized in Table 1. Examination of this table re- 
veals several interesting properties: 
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For PLAN EXISTENCE,~ comparing the propositional 
case (in which all predicates are restricted to be O- 
ary) with the datalog case (in which the predicates 
may have constants or variables as arguments) re- 
veals a regular pattern. In most cases, the complex- 
ity in the datalog case is exactly one level harder 
than the complexity in the corresponding propo- 
sitional case. we have EXPSPACE-complete versus 
PSPACE-complete, NEXPTIME-complete versus NP- 
complete, EXPTIME-complete versus polynomial. 

If delete lists are allowed, then PLAN EXISTENCE 
is EXPSPACE-Complete but PLAN LENGTH is Only 
NEXPTIME-complete. Normally, one would not ex- 
pect PLAN LENGTH to be easier than PLAN EXIS- 
TENCE. In this case, it happens because the length 
of a plan can sometimes be doubly exponential in 
the length of the input. hi PLAN LENGTH we are 
given a bound k, encoded in binary, which confines 
us to plans of length at most exponential in terms of 
the input. Hence in the worst case, PLAN LENGTH is 
easier than PLAN EXISTENCE. 

We do not observe the same anomaly in the propo- 
sitional case, because the lengths of the plans are 
at most exponential in the length of the input. 
Hence, giving an exponential bound on the length 
of the plan does not reduce the complexity of PLAN 
LENGTH. As a result, in the propositional case, both 
PLAN EXISTENCE and PLAN LENGTH are PSPACE- 
complete. 

When the operator set is fixed in advance, any op- 
erator whose predicates are not all propositions can 
be mapped into a set of operators whose predicates 
are all propositions. Thus, planning with a fixed set 
of datalog operators has basically the same complex- 
ity as planning with propositional operators that are 
given as part of the input. 

PLAN LENGTH has the same complexity regardless 
of whether or not negated preconditions are allowed. 

‘Informally, PLAN EXISTENCE is the problem of deter- 
mining whether a plan exists, and PLAN LENGTH is the 
problem of determining whether there is a plan of length 
5 Ic. Formal definitions appear in the next section. 

Erol, Nau, and Subrahmanian 381 

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved. 



1 Language 
restrictions 
dat alog 
(no function 
symbols, 
and only 
finitely 
many 
constant 

1 symbols) 

1 propositional 
(all 
predicates 
are 

1 0-ary) 
QNo operator 

Table 1: Complexity of domain-in Dependent phming. 
How the oper- Allow de- Allow negated Telling if a Telling if there’s a 
ators are given lete lists? preconditions? plan exists plan of length 5 k 

given in 
the input 

I no” 

fixed 
yes/no 
ves 

no 

Yes 

60 

noa 

yes/no 

given in 

the input 
Yes 
no 

I no noa /noP 
fixed I ves/no I ves/no I 

Las more than one precondition. 

EXPSPACE-complete 
NEXPTIME-complete 
EXPTIME-complete 

NEXPTIME-complete 
NEXPTIME-complete 
NEXPTIME-complete 

PSPACE-complete 
in PSPACE -Y 

PSPACE-complete 
in PSPACE r 

in NP y 1 in NP -Y 
in P 
in NLOGSPACE 

PSPACE-complete6 

in NP y 
in NP 

PSPACE-complete 1 
NP-complete ’ 1 NP-complete 
in P 6 NP-complete 
NLOGSPACE-complete NP-complete 
constant time constant time 

aEvery operator with more than one precondition is a composition of other operators. 
TWith PSPACE- or NP-completeness for some sets of operators. 
6These results are due to Bylander (1991). All other results are new. 

This is because what makes the problem hard is the 
task of choosing operators that achieve several sub- 
goals in order to minimize the overall length of the 
plan, and this task remains equally hard regardless 
of whether negated preconditions are allowed. 

5. Delete lists are more powerful than negated precon- 
ditions. Thus, if the operators are allowed to have 
delete lists, then whether or not they have negated 
preconditions has no effect on the complexity. 

Definitions 
Let ,!Z be any datalog (i.e., function-free first-order) 
language. Then a state is any nonempty set of ground 
atoms in C. Intuitively, a state tells us which ground 
atoms are currently true. Thus, if a ground atom A 
is in state S, then A is true in state S; if B $ S, 
then B is false in state S. Thus, a state is simply an 
Herbrand interpretation for the language L, and hence 
each formula of first-order logic is either satisfied or not 
satisfied in S according to the usual first-order logic 
definition of satisfaction. 

Let ,!Z be any datalog language. A planning operu- 
tor cy is a 4-tuple (Name(a), Pre(a), Add(a), Del(o)), 
where 

1. Name(a) is a syntactic expression of the form 
Q(&,..., Xn) where each Xi is a variable symbol 
0fL; 

2. Pre(a) is a finite set of literals, called the precondi- 
tion list of cy, whose variables are all from the set 
Wl,...,&h 

3. Add(o) and Del(o) are both finite sets of atoms 
(possibly non-ground) whose variables are taken 
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Fig. 1: Initial 
configuration 

Fig. 2: Goal 
configuration 

from the set {Xl, . . . , X,}. Add(a) is called the add 
list of o., and Del(a) is called the delete list of CY. 

Observe that atoms and negated atoms may occur in 
the precondition list, but negated atoms may not occur 
in either the add list or the delete list. 

A planning domain is a pair I? = (Se, O), where So 
is the initial state and 0 is a finite set of operators. 
A planning problem is a triple P = (SO, 0, G), where 
(So, 0) is a planning domain and G is a goal (an exis- 
tentially closed conjunction of atoms). In both cases, 
the language of $ is the datalog language L generated 
by the constant, predicate, and variable symbols ap- 
pearing in P, along with an infinite number of variable 
symbols. 

Example 1 (Blocks World) Consider a blocks- 
world domain containing three blocks a, b, c, along 
with Nilsson’s “stack”, “unstack”, “pickup”, and “put- 
down” operators (Nilsson, 1980). Suppose the initial 
and goal configurations are as shown in Figs. 1 and 2. 
This domain can be represented as follows: 

* Language. The language ic contains a supply of vari- 
able symbols X1, X2, . . . , and three constant sym- 
bols a, b, c to represent the three blocks. ,C contains a 
binary predicate symbol “on”, unary predicate sym- 
bols “ontable”, “clear”, and “holding”, and a 0-ary 



predicate symbol “handempty”. Operator names, 
such as “stack”, “unstack”, etc., are not part of L. 
Opercators. The “unstack” operator is the following 
4-tuple (the “stack”, “pickup”, and “putdown” op- 
erators are defined analogously): 

Name : unstack(Xr , X2) 
Pre : {on(Xl, XZ), clear(&), handempty 
Del : {on(&, X2), clear(&), handempty 

Add : {clear(Xz), holding(Xi)} 

Planning Domain. The planning domain is (So, S), 
where So and 0 are as follows: 

s() = {clear(a), on(a, b), ontable( 

clear(c), ontable( handempty( 

0 = {stack, unstack, pickup, putdown). 

Plannzng Problem. The planning problem is 
(So, 0, G), where G = (on(b, c)}. 

Let P = (Ss,O) b e a planning domain, LL be an _ _ 
operator in 0 whose name is cu(Xi, . . . , X,), and 0 
be a substitution that assigns ground terms to each 
Xi, 1 5 i < n. Suppose that the following conditions 
hold: 

(A6lA is an atom in Pre(cr)) c S; 
(S0llB is a negated literal in Pre(a)} II S = 0; 

S’ = (S - (Del(o)0)) U (Add(a)) 8. 

Then we say that CY is tLexecutabZe in state S, resulting 

in state S’. This is denoted symbolically as S 2 S’. 
Suppose P = (So, 0, G) is a planning problem. A 

plan in P that achieves G is a sequence 

such that G is satisfied by S,, i.e. there exists a ground 
instance of G that is true in Sn. The length of the above 
plan is n. 

Let P = (So, 0) be a planning domain or P = 
(So, 0, G) be a planning problem; and let C be the 
language of P. Then: 

1. 0 and P are positive if for all cy E 0, Pre(a) is a 
finite set of atoms (i.e. negations are not present in 
Pre(a)). 

2. f and P are deletion-free if for all CY E 0, Del(a) = 
. 

3. 0 and I? are context-free if for all a! E 0, IPre(c;u)l < 
1, i.e., Pre(cu) contains at most one atom. 

4. 0 and P are side-e$ect-free if for all Q E 0, 
IAdd U Del(a)1 5 1, i.e., LY has at most one post- 
condition. 

5. 0 and P are propositional if every predicate P in 
,C is a propositional symbol (i.e. a 0-ary predicate 
symbol). 

PLAN EXISTENCE is the following problem: “given a 
planning problem I? = (So, 0, G), is there a plan in 
I? that achieves G?” PLAN LENGTH is the following 
problem: 2 “given a planning problem P = (Se, 0,G) 
and an integer k: encoded in binary, is there a plan in 
I? of length Ic or less that achieves G?” 

in-hating Negated 
w below that if delete list 

can remove negations from preconditions of operators 
in polynomial time. Thus, if delete lists are allowed, 
negated preconditions do not affect the complexity of 
planning. 
Theorem 1 (Eliminating Negated Precondi- 
tions) In polynomial time, given any planning domain 
P = (So, 0) we can produce a positive planning do- 
main P’ = (Sk, 0’) having the following properties: 

1. For every goal G, a plan exists for G in P if and only 
if a plan exists for G in 

2. For every goal G and non-negative integer I, there 
exists a plan of length I for G in P if and only if there 
exists a plan of length d + 2”’ for G in P’, where Ic is 
the maximum arity among the predicates of B and 
v = [lg cl, where c is the number of constants in P 
(i.e., w is the number of bits necessary to encode the 
constants in binary). 
Here is a sketch of P’. For each predicate in P, 

we introduce a complementary predicate in P’, and 
modify the operators such that whenever one is added, 
the other is deleted and vita versa. Hence negated 
preconditions can be replaced by their complementary 
predicates. We use a chain of operators to assert the 
instances of complementary predicates whose corre- 
sponding instances are not in the initial state of P. 
We set the preconditions such that any plan in P’ has 
to start with this chain. This guarantees that property 
2 is satisfied. 

Note that P’ will not be deletion-free, even if P is. 

rying Sets of 
In this section, we consider the complexity of planning 
in the “domain-independent” case, in which the oper- 
ators are part of the input and thus different problem 
instances may have different operator sets. 

21n this definition, we follow the standard procedure 
for converting optimization problems into yes/no decision 
problems. What really interests us, of course, is the prob- 
lem of finding the shortest plan that achieves G. This prob- 
lem is at least as difficult as PLAN LENGTH, and in some 
cases harder. For example, in the Towers of Hanoi problem 
(Aho et al., 1976) an d certain generalizations of it (Graham 
et QI., 1989), the length of the shortest plan can be found 
in low-order polynomial time-but actually producing this 
plan requires exponential time and space, since the plan 
has exponential length. For further discussion of the rela- 
tion between the complexity of optimization problems and 
the corresponding decision problems, the reader is referred 
to pp. 115-117 of Garey & Johnson (1979). 
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Case 1: Propositional Operators 
The following theorems deal with the special case in 
which all predicates are propositions (i.e., 0-ary). 

Theorem 2 (due to Bylander (1991)) 

1. 

2. 

3. 

4. 

5. 

If we restrict P to be propositional, then PLAN EX- 
ISTENCE is PSPACE-complete. 
If we restrict P to be propositional and positive, then 
PLAN EXISTENCE iS PSPACE-complete. 
If we restrict P to be propositional and deletion-free, 
then PLAN EXISTENCE is NP-complete. 
If we restrict P to be propositional, deletion-free, 
and positive then PLAN EXISTENCE is in P. 
If we restrict P to be propositional, positive, and 
side-effect-free, then PLAN EXISTENCE is in P. 

Theorem 3 If we restrict P to be propositional, pos- 
itive, context-free, and deletion-free, then PLAN EXIS- 
TENCE is NLOGSPACE-complete. 

Theorem 4 If we restrict P to be propositional, posi- 
tive, context-free and deletion-free, then PLAN LENGTH 
iS NP-complete. 

Corollary 1 If we restrict P to be propositional, pos- 
itive and deletion-free, then PLAN LENGTH is NP- 
complete. 

Corollary 2 If we restrict P to be propositional and 
deletion-free, PLAN LENGTH is NP-complete. 

Theorem 5 PLAN LENGTH is PSPACE-complete if we 
restrict P to be propositional. It is still PSPACE- 
complete if we restrict P to be propositional and pos- 
itive. 

Both Theorem 3 and Clause 5 of Theorem 2 require 
restrictions on the number of clauses in the precondi- 
tions and/or postconditions of the planning operators. 
These restrictions can easily be weakened by allowing 
the operators to be composed, as described below. 

An operator cy is composable with another operator 
,f3 if the positive preconditions of p and del(cr) are dis- 
joint, and the negative preconditions of ,0 and add(o) 
are disjoint. 

If cy and ,f3 are composable, then the composition of 
a! with /? is 

Pre : Pre(ar) U (PI - Add(o)) u (P2 - de@)) 
Add : Add(P) U (Add(a) - Del(P)) 

Del : Del(p) U (Del(o) - Add(P)) 

where PI and P2, respectively, are ,0’s positive and 
negative preconditions. 

Theorem 6 (Composition Theorem) Let P = 
(Se, 0) be a planning domain, and 0’ be a set of oper- 
ators such that each operator in 0’ is the composition 
of operators in 0. Then for any goal G, there is a plan 
to achieve G in P iff there is a plan to achieve G in P’, 
where P’ = (So, 0 u 0’). 

The above lets us extend the scope of several previ- 
ous theorems: 
Corollary 3 Suppose we restrict P = (SO, 0, G) to 
be such that 0 = 01 U 02, where 01 is propositional, 
deletion-free, positive and context-free, and every op- 
erator in 02 is the composition of operators in Or. 
Then PLAN EXISTENCE is NLOGSPACE-complete. 
Corollary 4 Suppose we restrict P = (SO, 0, G) to 
be such that 0 = 01 U 02, where 01 is propositional, 
positive, and side-effect-free, and every operator in 02 
is the composition of operators in 01. Then PLAN EX- 
ISTENCE is in P. 
Example 2 (Reformulation of Blocks World) 
Bylander (1991) reformulates the blocks world so that 
each operator is restricted to positive preconditions 
and one postcondition. Instead of the usual “on” and 
“clear” predicates, he uses proposition o&j to denote 
that block i is not on block j. For each pair of blocks 
i and j, he has two operators: one that moves block 
i from the top of block j to the table, and one that 
moves block i from the table to the top of block j. 
These operators are defined as follows: 

Name : totableii 

Pre : (ofh,i,off2,i,. . . , ofL,i, Offl,j, Off2,j, 

. . . . O&--l,j, offa+1,j, . . . ) Offn,j} 

Del: 0 

Add : Ioffi,j 1 

Name : toblockij 

Pre : {Offl,i,Off2,i,.~~,Oft~,i,OflFl,j,off2,j, 

. . . . n,j,Offi,l,Off~,2,...,Offi,n} 

Del : {Off;: 
Add: 0 

In Bylander’s formulation of blocks world, P is pos- 
itive and side-effect-free. Thus as a consequence of 
Clause 5 of Theorem 2, in Bylander’s formulation of 
blocks world PLAN EXISTENCE can be solved in poly- 
nomial time. 

In Bylander’s formulation of the blocks world, it is 
not possible for blocks to be moved directly from one 
stack to another. This has two consequences, as de- 
scribed below. 

The first consequence is that in Bylander’s formu- 
lation of blocks world, PLAN LENGTH can be solved 
in polynomial time. To show this, below we describe 
how to compute how many times each block b must be 
moved in the optimal plan. Thus, to see whether or 
not there is a plan of length k or less, all that is needed 
is to compare k with 

c how many times b must be moved. 
b 

Let S be the current state, and b be any block. If 
the stack of blocks from b down to the table is consis- 
tent with the goal conditions (whether or not this is so 
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can be determined in polynomial time (Gupta & Nau, 
1992)), then b need not be moved. Otherwise, there 
are three possibilities: 

1. If b is on the table and the goal requires that b be 
on some other block c, then in the shortest plan, b 
must be moved exactly once: from the table to c. 

2. If b is on some block c and the goal requires that b 
be on the table, then in the shortest plan, b must be 
moved once: from c to the table. 

3. If b on some block c and the goal requires that b be 
on some block d (which may be the same as c), then 
in the shortest plan, b must be moved exactly twice: 
from c to the table, and from the table to d. 

The second consequence is that translating an or- 
dinary blocks-world problem into Bylander’s formula- 
tion will not always preserve the length of the optimal 
plan. The reason for this is that in the ordinary for- 
mulation of blocks world, the optimal plan will often 
involve moving blocks directly from one stack to an- 
other without first moving them to the table, and this 
cannot be done in Bylander’s formulation. It appears 
that Bylander’s formulation cannot be extended to al- 
low this kind of move another without violating the 
restriction that each has only positive preconditions 
and one postcondition. 

We can easily overcome the above problem by aug- 
menting Bylander’s formulation to include all possi- 
ble compositions of pairs of his operators. Theorem 
2 does not apply to this formulation, but Corollary 4 
does apply, and gives the same result as before: PLAN 
EXISTENCE can be solved in polynomial time. 

Since this extension to Bylander’s formulation allows 
stack-to-stack moves, there is a one-to-one correspon- 
dence between plans in this formulation and the more 
usual formulations of the blocks world, such as those 
given in (Charniak & McDermott, 1985; Warren, 1990; 
Nilsson, 1980; Waldinger, 1990; Gupta & Nau, 1991; 
Gupta & Nau, 1992). Thus, from results proved in 
(Gupta & Nau, 1992), it follows that in this exten- 
sion of Bylander’s formulation, PLAN LENGTH is NP- 
complete. 

Case 2: Datalog Operators 

Below, we no longer restrict the predicates to be propo- 
sitions. As a result, planning is much more complex 
than in the previous case. 

Theorem 7 If we restrict P to be positive and 
deletion-free, then PLAN EXISTENCE is EXPTIME- 
complete. 

Theorem 8 If we restrict P to be deletion-free, then 
PLAN EXISTENCE is NEXPTIME-complete. 

Theorem 9 PLAN EXISTENCE is EXPSPACE-complete. 
It is still EXPSPACE-Complete if we restrict P to be 
positive. 

We show below that when we restrict preconditions 
of planning operators to contain at most one atom, 
then the planning problem is PSPACE-Complete. 

Theorem 10 If we restrict to be context-free, 
positive, and deletion-free, then PLAN EXISTENCE is 
PSPACE-complete. 

Theorem 11 If we restrict P to be deletion-free, pos- 
itive, and context-free, then PLAN LENGTH is PSPACE- 
complete. 

Theorem 12 PLAN LENGTHisNEXPTIME-completein 
each of these cases: 

P is deletion-free and positive; 
P is deletion-free; 
P is positive; 
no restrictions on P. 

Fixed Sets of Operators 
The above results are for the case in which the set of 
operators is part of the input. However, in many well 
known planning problems, the set of operators is fixed. 
For example, in the blocks world (see Example l), we 
have only four operators: stack, unstack, pickup and 
putdown. 

In this section we will present complexity results 
on planning problems in which the set of operators 
is fixed, and only the initial state and goal are allowed 
to vary. The problems we will consider will be of the 
form: “given the initial state So and the goal 6, is 
there a plan that achieves G?” We assume no predi- 
cate/proposition that does not appear in the operators 
appears in G or Se. Since the operators can neither add 
nor delete atoms constructed from these predicates, 
this is a reasonable restriction. 

Case 1: Propositional Operators 
Propositional planning with a fixed set of operators 
is very restrictive. The number of possible plans is 
constant. We include the following two results just for 
the sake of completeness. 

Theorem 13 PLAN EXISTENCE can be solvedin con- 
stant time if we restrict P = (Se, 0,G) to be proposi- 
tional and 0 to be a fixed set. 

Corollary 5 PLAN LENGTH can be solved in constant 
time if we restrict P = (Se, 0, G) to be propositional 
and 0 to be a fixed set. 

Case 2: Datalog Operators 
When the set of operators is fixed, we can enumerate 
all ground instances in polynomial time, reducing the 
problem to propositional planning with a varying set of 
operators.3 Thus, the following theorem follows from 

3This is similar, but not identical, to the reformulation 
of the Blocks World given in Example 2. The reformu- 
lation in Example 2 also involved replacing the “on” and 
“clear” predicates by a single “off” predicate, as well as 
some changes to the nature of the planning operators. 
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Theorems 2-5 and their corollaries. 

Theorem 14 

1. 

2. 

3. 

4. 

If we restrict P to be fixed, deletion-free, context-free 
and positive, then PLAN EXISTENCE is in NLOGSPACE 
and PLAN LENGTH is in NP. 

If we restrict P to be fixed, deletion-free, and posi- 
tive, then PLAN EXISTENCE is in P and PLAN LENGTH 
is in NP. 

If we restrict P to be fixed and deletion-free, then 
PLAN EXISTENCE and PLAN LENGTH are in NP. 

If we restrict P to be fixed, then PLAN EXISTENCE 
and PLAN LENGTH are in PSPACE. 

The above theorem puts a bound on how hard plan- 
ning can be with a fixed set of operators. The following 
theorems state that we can find fixed sets of operators 
such that their corresponding planning problems are 
complete for these complexity classes. 

Theorem 15 There exists a fixed positive deletion- 
free set of operators 0 for which PLAN LENGTH is NP- 
hard. 

Theorem 16 There exist fixed deletion-free sets of 
operators 0 for which PLAN EXISTENCE and PLAN 
LENGTH are NP-hard. 

Theorem 17 There exists a fixed set of positive oper- 
atorsO for which PLAN EXISTENCE and PLAN LENGTH 
are PsPACE-hard. 

Conclusion 

The primary aim of this paper has been to develop 
an exhaustive analysis of the complexity of planning 
with STRIPS-style planning operators (i.e., operators 
comprised of preconditions, add lists, and delete lists). 
Based on various syntactic restrictions on the planning 
operators, we have developed a comprehensive theory 
of the complexity of planning. 

In order to guarantee that PLAN EXISTENCE and 
PLAN LENGTH are decidable, we have restricted the 
planning language L to be a datalog language. Thus, 
II: has no function symbols, as is the case in STRIPS and 
many other planning systems. In (Erol et al., 1992; 
Erol et al., 1991), we show that if Z is allowed to 
contain function symbols (and thus contain infinitely 
many ground terms), then PLAN EXISTENCE and PLAN 
LENGTH are both undecidable in general. 

In summary, planning is a hard problem even under 
severe restrictions on the nature of planning operators. 
Thus, in order to construct efficient planners, it is im- 
portant to find other ways to prevent the complexity 
from getting out of hand. For example, Yang et al. 
(1990; 1992) h s ow how to develop efficient algorithms 
for merging plans to achieve multiple goals, given cer- 
tain kinds of restrictions on what kinds of goal and 
subgoal interactions can occur. 
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