
Mutluhan Erol ana S. P&u+ V. S. Subrahmanians
kutluhan@cs.umd.edu nau@cs.umd.edu vs@cs.umd.edu

Computer Science Department
University of Maryland
College Park, MD 20’742

Abstract
In this paper, we examine how the complexity
of domain-independent planning with STRIPS-Style
operators depends on the nature of the planning
operators. We show how the time complexity
varies depending on a wide variety of conditions:

whether or not delete lists are allowed;
whether or not negative preconditions are al-
lowed;
whether or not the predicates are restricted to
be propositions (i.e., 0-ary);
whether the planning operators are given as
part of the input to the planning problem, or
instead are fixed in advance.

Introduction
Despite the acknowledged difficulty of planning, it is
only recently that researchers have begun to exam-
ine the computational complexity of planning problems
and the reasons for that complexity (Chapman, 1987;
Bylander, 1991; Gupta & Nau, 1991; Gupta & Nau,
1992; Minton et al., 1991; McAllester and Rosen-
blitt, 1991). H ere, we examine how the complexity
of domain-independent planning depends on the na-
ture of the planning operators. We consider planning
problems in which the current state is a set of ground
atoms, and each planning operator is a STRIPS-style
operator consisting of three lists of atoms: a precondi-
tion list, an add list, and a delete list. So that it will
be decidable whether a plan exists (Erol et al., 1992;
Erol et al., 1991), we make the “datalog” restriction
that no function symbols are allowed and only finitely
many constant symbols are allowed. Our results are
summarized in Table 1. Examination of this table re-
veals several interesting properties:

*This work was supported in part by NSF Grant NSFD
CDR-88003012 to the University of Maryland Systems Re-
search Center, as well as NSF grants IRI-8907890 and IRI-
9109755.

+ Also in the Systems Research Center and the Institute
for Advanced Computer Studies.

*Also in the Institute for Advanced Computer Studies.

For PLAN EXISTENCE,~ comparing the propositional
case (in which all predicates are restricted to be O-
ary) with the datalog case (in which the predicates
may have constants or variables as arguments) re-
veals a regular pattern. In most cases, the complex-
ity in the datalog case is exactly one level harder
than the complexity in the corresponding propo-
sitional case. we have EXPSPACE-complete versus
PSPACE-complete, NEXPTIME-complete versus NP-
complete, EXPTIME-complete versus polynomial.

If delete lists are allowed, then PLAN EXISTENCE
is EXPSPACE-Complete but PLAN LENGTH is Only
NEXPTIME-complete. Normally, one would not ex-
pect PLAN LENGTH to be easier than PLAN EXIS-
TENCE. In this case, it happens because the length
of a plan can sometimes be doubly exponential in
the length of the input. hi PLAN LENGTH we are
given a bound k, encoded in binary, which confines
us to plans of length at most exponential in terms of
the input. Hence in the worst case, PLAN LENGTH is
easier than PLAN EXISTENCE.

We do not observe the same anomaly in the propo-
sitional case, because the lengths of the plans are
at most exponential in the length of the input.
Hence, giving an exponential bound on the length
of the plan does not reduce the complexity of PLAN
LENGTH. As a result, in the propositional case, both
PLAN EXISTENCE and PLAN LENGTH are PSPACE-
complete.

When the operator set is fixed in advance, any op-
erator whose predicates are not all propositions can
be mapped into a set of operators whose predicates
are all propositions. Thus, planning with a fixed set
of datalog operators has basically the same complex-
ity as planning with propositional operators that are
given as part of the input.

PLAN LENGTH has the same complexity regardless
of whether or not negated preconditions are allowed.

‘Informally, PLAN EXISTENCE is the problem of deter-
mining whether a plan exists, and PLAN LENGTH is the
problem of determining whether there is a plan of length
5 Ic. Formal definitions appear in the next section.

Erol, Nau, and Subrahmanian 381

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved.

1 Language
restrictions
dat alog
(no function
symbols,
and only
finitely
many
constant

1 symbols)

1 propositional
(all
predicates
are

1 0-ary)
QNo operator

Table 1: Complexity of domain-in Dependent phming.
How the oper- Allow de- Allow negated Telling if a Telling if there’s a
ators are given lete lists? preconditions? plan exists plan of length 5 k

given in
the input

I no”

fixed
yes/no
ves

no

Yes

60

noa

yes/no

given in

the input
Yes
no

I no noa /noP
fixed I ves/no I ves/no I

Las more than one precondition.

EXPSPACE-complete
NEXPTIME-complete
EXPTIME-complete

NEXPTIME-complete
NEXPTIME-complete
NEXPTIME-complete

PSPACE-complete
in PSPACE -Y

PSPACE-complete
in PSPACE r

in NP y 1 in NP -Y
in P
in NLOGSPACE

PSPACE-complete6

in NP y
in NP

PSPACE-complete 1
NP-complete ’ 1 NP-complete
in P 6 NP-complete
NLOGSPACE-complete NP-complete
constant time constant time

aEvery operator with more than one precondition is a composition of other operators.
TWith PSPACE- or NP-completeness for some sets of operators.
6These results are due to Bylander (1991). All other results are new.

This is because what makes the problem hard is the
task of choosing operators that achieve several sub-
goals in order to minimize the overall length of the
plan, and this task remains equally hard regardless
of whether negated preconditions are allowed.

5. Delete lists are more powerful than negated precon-
ditions. Thus, if the operators are allowed to have
delete lists, then whether or not they have negated
preconditions has no effect on the complexity.

Definitions
Let ,!Z be any datalog (i.e., function-free first-order)
language. Then a state is any nonempty set of ground
atoms in C. Intuitively, a state tells us which ground
atoms are currently true. Thus, if a ground atom A
is in state S, then A is true in state S; if B $ S,
then B is false in state S. Thus, a state is simply an
Herbrand interpretation for the language L, and hence
each formula of first-order logic is either satisfied or not
satisfied in S according to the usual first-order logic
definition of satisfaction.

Let ,!Z be any datalog language. A planning operu-
tor cy is a 4-tuple (Name(a), Pre(a), Add(a), Del(o)),
where

1. Name(a) is a syntactic expression of the form
Q(&,..., Xn) where each Xi is a variable symbol
0fL;

2. Pre(a) is a finite set of literals, called the precondi-
tion list of cy, whose variables are all from the set
Wl,...,&h

3. Add(o) and Del(o) are both finite sets of atoms
(possibly non-ground) whose variables are taken

382 Planning

Fig. 1: Initial
configuration

Fig. 2: Goal
configuration

from the set {Xl, . . . , X,}. Add(a) is called the add
list of o., and Del(a) is called the delete list of CY.

Observe that atoms and negated atoms may occur in
the precondition list, but negated atoms may not occur
in either the add list or the delete list.

A planning domain is a pair I? = (Se, O), where So
is the initial state and 0 is a finite set of operators.
A planning problem is a triple P = (SO, 0, G), where
(So, 0) is a planning domain and G is a goal (an exis-
tentially closed conjunction of atoms). In both cases,
the language of $ is the datalog language L generated
by the constant, predicate, and variable symbols ap-
pearing in P, along with an infinite number of variable
symbols.

Example 1 (Blocks World) Consider a blocks-
world domain containing three blocks a, b, c, along
with Nilsson’s “stack”, “unstack”, “pickup”, and “put-
down” operators (Nilsson, 1980). Suppose the initial
and goal configurations are as shown in Figs. 1 and 2.
This domain can be represented as follows:

* Language. The language ic contains a supply of vari-
able symbols X1, X2, . . . , and three constant sym-
bols a, b, c to represent the three blocks. ,C contains a
binary predicate symbol “on”, unary predicate sym-
bols “ontable”, “clear”, and “holding”, and a 0-ary

predicate symbol “handempty”. Operator names,
such as “stack”, “unstack”, etc., are not part of L.
Opercators. The “unstack” operator is the following
4-tuple (the “stack”, “pickup”, and “putdown” op-
erators are defined analogously):

Name : unstack(Xr , X2)
Pre : {on(Xl, XZ), clear(&), handempty
Del : {on(&, X2), clear(&), handempty

Add : {clear(Xz), holding(Xi)}

Planning Domain. The planning domain is (So, S),
where So and 0 are as follows:

s() = {clear(a), on(a, b), ontable(

clear(c), ontable(handempty(

0 = {stack, unstack, pickup, putdown).

Plannzng Problem. The planning problem is
(So, 0, G), where G = (on(b, c)}.

Let P = (Ss,O) b e a planning domain, LL be an _ _
operator in 0 whose name is cu(Xi, . . . , X,), and 0
be a substitution that assigns ground terms to each
Xi, 1 5 i < n. Suppose that the following conditions
hold:

(A6lA is an atom in Pre(cr)) c S;
(S0llB is a negated literal in Pre(a)} II S = 0;

S’ = (S - (Del(o)0)) U (Add(a)) 8.

Then we say that CY is tLexecutabZe in state S, resulting

in state S’. This is denoted symbolically as S 2 S’.
Suppose P = (So, 0, G) is a planning problem. A

plan in P that achieves G is a sequence

such that G is satisfied by S,, i.e. there exists a ground
instance of G that is true in Sn. The length of the above
plan is n.

Let P = (So, 0) be a planning domain or P =
(So, 0, G) be a planning problem; and let C be the
language of P. Then:

1. 0 and P are positive if for all cy E 0, Pre(a) is a
finite set of atoms (i.e. negations are not present in
Pre(a)).

2. f and P are deletion-free if for all CY E 0, Del(a) =
.

3. 0 and I? are context-free if for all a! E 0, IPre(c;u)l <
1, i.e., Pre(cu) contains at most one atom.

4. 0 and P are side-e$ect-free if for all Q E 0,
IAdd U Del(a)1 5 1, i.e., LY has at most one post-
condition.

5. 0 and P are propositional if every predicate P in
,C is a propositional symbol (i.e. a 0-ary predicate
symbol).

PLAN EXISTENCE is the following problem: “given a
planning problem I? = (So, 0, G), is there a plan in
I? that achieves G?” PLAN LENGTH is the following
problem: 2 “given a planning problem P = (Se, 0,G)
and an integer k: encoded in binary, is there a plan in
I? of length Ic or less that achieves G?”

in-hating Negated
w below that if delete list

can remove negations from preconditions of operators
in polynomial time. Thus, if delete lists are allowed,
negated preconditions do not affect the complexity of
planning.
Theorem 1 (Eliminating Negated Precondi-
tions) In polynomial time, given any planning domain
P = (So, 0) we can produce a positive planning do-
main P’ = (Sk, 0’) having the following properties:

1. For every goal G, a plan exists for G in P if and only
if a plan exists for G in

2. For every goal G and non-negative integer I, there
exists a plan of length I for G in P if and only if there
exists a plan of length d + 2”’ for G in P’, where Ic is
the maximum arity among the predicates of B and
v = [lg cl, where c is the number of constants in P
(i.e., w is the number of bits necessary to encode the
constants in binary).
Here is a sketch of P’. For each predicate in P,

we introduce a complementary predicate in P’, and
modify the operators such that whenever one is added,
the other is deleted and vita versa. Hence negated
preconditions can be replaced by their complementary
predicates. We use a chain of operators to assert the
instances of complementary predicates whose corre-
sponding instances are not in the initial state of P.
We set the preconditions such that any plan in P’ has
to start with this chain. This guarantees that property
2 is satisfied.

Note that P’ will not be deletion-free, even if P is.

rying Sets of
In this section, we consider the complexity of planning
in the “domain-independent” case, in which the oper-
ators are part of the input and thus different problem
instances may have different operator sets.

21n this definition, we follow the standard procedure
for converting optimization problems into yes/no decision
problems. What really interests us, of course, is the prob-
lem of finding the shortest plan that achieves G. This prob-
lem is at least as difficult as PLAN LENGTH, and in some
cases harder. For example, in the Towers of Hanoi problem
(Aho et al., 1976) an d certain generalizations of it (Graham
et QI., 1989), the length of the shortest plan can be found
in low-order polynomial time-but actually producing this
plan requires exponential time and space, since the plan
has exponential length. For further discussion of the rela-
tion between the complexity of optimization problems and
the corresponding decision problems, the reader is referred
to pp. 115-117 of Garey & Johnson (1979).

Ed, Nau, and Subrahmanian 383

Case 1: Propositional Operators
The following theorems deal with the special case in
which all predicates are propositions (i.e., 0-ary).

Theorem 2 (due to Bylander (1991))

1.

2.

3.

4.

5.

If we restrict P to be propositional, then PLAN EX-
ISTENCE is PSPACE-complete.
If we restrict P to be propositional and positive, then
PLAN EXISTENCE iS PSPACE-complete.
If we restrict P to be propositional and deletion-free,
then PLAN EXISTENCE is NP-complete.
If we restrict P to be propositional, deletion-free,
and positive then PLAN EXISTENCE is in P.
If we restrict P to be propositional, positive, and
side-effect-free, then PLAN EXISTENCE is in P.

Theorem 3 If we restrict P to be propositional, pos-
itive, context-free, and deletion-free, then PLAN EXIS-
TENCE is NLOGSPACE-complete.

Theorem 4 If we restrict P to be propositional, posi-
tive, context-free and deletion-free, then PLAN LENGTH
iS NP-complete.

Corollary 1 If we restrict P to be propositional, pos-
itive and deletion-free, then PLAN LENGTH is NP-
complete.

Corollary 2 If we restrict P to be propositional and
deletion-free, PLAN LENGTH is NP-complete.

Theorem 5 PLAN LENGTH is PSPACE-complete if we
restrict P to be propositional. It is still PSPACE-
complete if we restrict P to be propositional and pos-
itive.

Both Theorem 3 and Clause 5 of Theorem 2 require
restrictions on the number of clauses in the precondi-
tions and/or postconditions of the planning operators.
These restrictions can easily be weakened by allowing
the operators to be composed, as described below.

An operator cy is composable with another operator
,f3 if the positive preconditions of p and del(cr) are dis-
joint, and the negative preconditions of ,0 and add(o)
are disjoint.

If cy and ,f3 are composable, then the composition of
a! with /? is

Pre : Pre(ar) U (PI - Add(o)) u (P2 - de@))
Add : Add(P) U (Add(a) - Del(P))

Del : Del(p) U (Del(o) - Add(P))

where PI and P2, respectively, are ,0’s positive and
negative preconditions.

Theorem 6 (Composition Theorem) Let P =
(Se, 0) be a planning domain, and 0’ be a set of oper-
ators such that each operator in 0’ is the composition
of operators in 0. Then for any goal G, there is a plan
to achieve G in P iff there is a plan to achieve G in P’,
where P’ = (So, 0 u 0’).

The above lets us extend the scope of several previ-
ous theorems:
Corollary 3 Suppose we restrict P = (SO, 0, G) to
be such that 0 = 01 U 02, where 01 is propositional,
deletion-free, positive and context-free, and every op-
erator in 02 is the composition of operators in Or.
Then PLAN EXISTENCE is NLOGSPACE-complete.
Corollary 4 Suppose we restrict P = (SO, 0, G) to
be such that 0 = 01 U 02, where 01 is propositional,
positive, and side-effect-free, and every operator in 02
is the composition of operators in 01. Then PLAN EX-
ISTENCE is in P.
Example 2 (Reformulation of Blocks World)
Bylander (1991) reformulates the blocks world so that
each operator is restricted to positive preconditions
and one postcondition. Instead of the usual “on” and
“clear” predicates, he uses proposition o&j to denote
that block i is not on block j. For each pair of blocks
i and j, he has two operators: one that moves block
i from the top of block j to the table, and one that
moves block i from the table to the top of block j.
These operators are defined as follows:

Name : totableii

Pre : (ofh,i,off2,i,. . . , ofL,i, Offl,j, Off2,j,

. . . . O&--l,j, offa+1,j, . . .) Offn,j}

Del: 0

Add : Ioffi,j 1

Name : toblockij

Pre : {Offl,i,Off2,i,.~~,Oft~,i,OflFl,j,off2,j,

. . . . n,j,Offi,l,Off~,2,...,Offi,n}

Del : {Off;:
Add: 0

In Bylander’s formulation of blocks world, P is pos-
itive and side-effect-free. Thus as a consequence of
Clause 5 of Theorem 2, in Bylander’s formulation of
blocks world PLAN EXISTENCE can be solved in poly-
nomial time.

In Bylander’s formulation of the blocks world, it is
not possible for blocks to be moved directly from one
stack to another. This has two consequences, as de-
scribed below.

The first consequence is that in Bylander’s formu-
lation of blocks world, PLAN LENGTH can be solved
in polynomial time. To show this, below we describe
how to compute how many times each block b must be
moved in the optimal plan. Thus, to see whether or
not there is a plan of length k or less, all that is needed
is to compare k with

c how many times b must be moved.
b

Let S be the current state, and b be any block. If
the stack of blocks from b down to the table is consis-
tent with the goal conditions (whether or not this is so

384 Planning

can be determined in polynomial time (Gupta & Nau,
1992)), then b need not be moved. Otherwise, there
are three possibilities:

1. If b is on the table and the goal requires that b be
on some other block c, then in the shortest plan, b
must be moved exactly once: from the table to c.

2. If b is on some block c and the goal requires that b
be on the table, then in the shortest plan, b must be
moved once: from c to the table.

3. If b on some block c and the goal requires that b be
on some block d (which may be the same as c), then
in the shortest plan, b must be moved exactly twice:
from c to the table, and from the table to d.

The second consequence is that translating an or-
dinary blocks-world problem into Bylander’s formula-
tion will not always preserve the length of the optimal
plan. The reason for this is that in the ordinary for-
mulation of blocks world, the optimal plan will often
involve moving blocks directly from one stack to an-
other without first moving them to the table, and this
cannot be done in Bylander’s formulation. It appears
that Bylander’s formulation cannot be extended to al-
low this kind of move another without violating the
restriction that each has only positive preconditions
and one postcondition.

We can easily overcome the above problem by aug-
menting Bylander’s formulation to include all possi-
ble compositions of pairs of his operators. Theorem
2 does not apply to this formulation, but Corollary 4
does apply, and gives the same result as before: PLAN
EXISTENCE can be solved in polynomial time.

Since this extension to Bylander’s formulation allows
stack-to-stack moves, there is a one-to-one correspon-
dence between plans in this formulation and the more
usual formulations of the blocks world, such as those
given in (Charniak & McDermott, 1985; Warren, 1990;
Nilsson, 1980; Waldinger, 1990; Gupta & Nau, 1991;
Gupta & Nau, 1992). Thus, from results proved in
(Gupta & Nau, 1992), it follows that in this exten-
sion of Bylander’s formulation, PLAN LENGTH is NP-
complete.

Case 2: Datalog Operators

Below, we no longer restrict the predicates to be propo-
sitions. As a result, planning is much more complex
than in the previous case.

Theorem 7 If we restrict P to be positive and
deletion-free, then PLAN EXISTENCE is EXPTIME-
complete.

Theorem 8 If we restrict P to be deletion-free, then
PLAN EXISTENCE is NEXPTIME-complete.

Theorem 9 PLAN EXISTENCE is EXPSPACE-complete.
It is still EXPSPACE-Complete if we restrict P to be
positive.

We show below that when we restrict preconditions
of planning operators to contain at most one atom,
then the planning problem is PSPACE-Complete.

Theorem 10 If we restrict to be context-free,
positive, and deletion-free, then PLAN EXISTENCE is
PSPACE-complete.

Theorem 11 If we restrict P to be deletion-free, pos-
itive, and context-free, then PLAN LENGTH is PSPACE-
complete.

Theorem 12 PLAN LENGTHisNEXPTIME-completein
each of these cases:

P is deletion-free and positive;
P is deletion-free;
P is positive;
no restrictions on P.

Fixed Sets of Operators
The above results are for the case in which the set of
operators is part of the input. However, in many well
known planning problems, the set of operators is fixed.
For example, in the blocks world (see Example l), we
have only four operators: stack, unstack, pickup and
putdown.

In this section we will present complexity results
on planning problems in which the set of operators
is fixed, and only the initial state and goal are allowed
to vary. The problems we will consider will be of the
form: “given the initial state So and the goal 6, is
there a plan that achieves G?” We assume no predi-
cate/proposition that does not appear in the operators
appears in G or Se. Since the operators can neither add
nor delete atoms constructed from these predicates,
this is a reasonable restriction.

Case 1: Propositional Operators
Propositional planning with a fixed set of operators
is very restrictive. The number of possible plans is
constant. We include the following two results just for
the sake of completeness.

Theorem 13 PLAN EXISTENCE can be solvedin con-
stant time if we restrict P = (Se, 0,G) to be proposi-
tional and 0 to be a fixed set.

Corollary 5 PLAN LENGTH can be solved in constant
time if we restrict P = (Se, 0, G) to be propositional
and 0 to be a fixed set.

Case 2: Datalog Operators
When the set of operators is fixed, we can enumerate
all ground instances in polynomial time, reducing the
problem to propositional planning with a varying set of
operators.3 Thus, the following theorem follows from

3This is similar, but not identical, to the reformulation
of the Blocks World given in Example 2. The reformu-
lation in Example 2 also involved replacing the “on” and
“clear” predicates by a single “off” predicate, as well as
some changes to the nature of the planning operators.

Erol, Nau, and Subrahmanian 385

Theorems 2-5 and their corollaries.

Theorem 14

1.

2.

3.

4.

If we restrict P to be fixed, deletion-free, context-free
and positive, then PLAN EXISTENCE is in NLOGSPACE
and PLAN LENGTH is in NP.

If we restrict P to be fixed, deletion-free, and posi-
tive, then PLAN EXISTENCE is in P and PLAN LENGTH
is in NP.

If we restrict P to be fixed and deletion-free, then
PLAN EXISTENCE and PLAN LENGTH are in NP.

If we restrict P to be fixed, then PLAN EXISTENCE
and PLAN LENGTH are in PSPACE.

The above theorem puts a bound on how hard plan-
ning can be with a fixed set of operators. The following
theorems state that we can find fixed sets of operators
such that their corresponding planning problems are
complete for these complexity classes.

Theorem 15 There exists a fixed positive deletion-
free set of operators 0 for which PLAN LENGTH is NP-
hard.

Theorem 16 There exist fixed deletion-free sets of
operators 0 for which PLAN EXISTENCE and PLAN
LENGTH are NP-hard.

Theorem 17 There exists a fixed set of positive oper-
atorsO for which PLAN EXISTENCE and PLAN LENGTH
are PsPACE-hard.

Conclusion

The primary aim of this paper has been to develop
an exhaustive analysis of the complexity of planning
with STRIPS-style planning operators (i.e., operators
comprised of preconditions, add lists, and delete lists).
Based on various syntactic restrictions on the planning
operators, we have developed a comprehensive theory
of the complexity of planning.

In order to guarantee that PLAN EXISTENCE and
PLAN LENGTH are decidable, we have restricted the
planning language L to be a datalog language. Thus,
II: has no function symbols, as is the case in STRIPS and
many other planning systems. In (Erol et al., 1992;
Erol et al., 1991), we show that if Z is allowed to
contain function symbols (and thus contain infinitely
many ground terms), then PLAN EXISTENCE and PLAN
LENGTH are both undecidable in general.

In summary, planning is a hard problem even under
severe restrictions on the nature of planning operators.
Thus, in order to construct efficient planners, it is im-
portant to find other ways to prevent the complexity
from getting out of hand. For example, Yang et al.
(1990; 1992) h s ow how to develop efficient algorithms
for merging plans to achieve multiple goals, given cer-
tain kinds of restrictions on what kinds of goal and
subgoal interactions can occur.

eferences
Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1976.
The Design and Analysis of Computer Algorithms.
Addison- Wesley, Reading, MA.
Bylander, Tom 1991. Complexity results for planning.
In IJCAI- $1.
Chapman, David 1987. Planning for conjunctive
goals. Artificial Intelligence 32:333-378.
Charniak, Eugene and McDermott, Drew 1985. In-
troduction to Artifkial Intelligence. Addison-Wesley,
Reading, MA.
Erol, K.; Nau, D.; and Subrahmanian, V. S. 1991.
Complexity, decidability and undecidability results
for domain-independent planning. CS TR-2797, UMI-
ACS TR-91-154, and SRC TR 91-96; under review.

Erol, K.; Nau, D.; and Subrahmanian, V. S. 1992.
When is planning decidable? In Proc. First Internat.
Conf. AI Planning Systems. To appear.
Garey, Michael R. and Johnson, David S. 1979. Com-
puters and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
New York.
Graham, R. L.; Knuth, D. E.; and Patashnik, 0.
1989. Concrete Mathematics: a Foundation for Com-
puter Science. Addison-Wesley.
Gupta, Naresh and Nau, Dana S. 1991. Complexity
results for blocks-world planning. In Proc. AAAI-91.
Honorable mention for the best paper award.
Gupta, N. and Nau, D. 1992. On the complexity of
blocks-world planning. Artificial Intelligence. To ap-
pear.
McAllester, D. and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. AAAI-91.
Minton, S.; Bresna, J.; and Drummond, M. 1991.
Commitment strategies in planning. In Proc. IJCAI-
91.
Nilsson, N. J. 1980. Principles of Artificial Intelli-
gence. Tioga, Palo Alto.
Waldinger, R. 1990. Achieving several goals simulta-
neously. In Allen, James; Hendler, James; and Tate,
Austin, editors 1990, Readings in Planning. Morgan
Kaufman. 118-139. Originally appeared in Machine
Intelligence 8, 1977.
Warren, D. H. D. 1990. Extract from Kluzniak and
Szapowicz APIC studies in data processing, no. 24,
1974. In Allen, James; Hendler, James; and Tate,
Austin, editors 1990, Readings in Planning. Morgan
Kaufman. 140-153.
Yang, Q.; Nau, D. S.; and Hendler, J. 1990. Optimiza-
tion of multiple-goal plans with limited interaction. In
Proc. DARPA Workshop on Innovative Approaches to
Planning, Scheduling and Control.
Yang, Q.; Nau, D. S.; and Hendler, J. 1992. Merg-
ing separately generated plans with restricted inter-
actions. Computational Intelligence. To appear.

386 Planning

