
Eric awn
NEC Research Institute

4 Independence Way
Princeton NJ 0854

eric@research.nj .nec.com

bstract

We consider the approach to game playing where
one looks ahead in a game tree, evaluates heuristi-
cally the probability of winning at the leaves, and
then propagates this evaluation up the tree. We
show that minimax does not make optimal use of
information contained in the leaf evaluations, and
in fact misvalues the position associated with all
nodes. This occurs because when actually play-
ing a position down the game tree, a player would
be able to search beyond the boundaries of the
original search, and so has access to additional in-
formation. The remark that such extra informa-
tion will exist, allows better use of the information
contained in the leaf evaluations even though we
do not have access to the extra information itself.
Our analysis implies that, while minimax is ap-
proximately correct near the top of the game tree,
near the bottom a formula closer to the probabil-
ity product formula is better. We propose a simple
model of how deep search yields extra informa-
tion about the chances of winning in a position.
Within the context of this model, we write down
the formula for propagating information up the
tree which is correct at all levels. We generalize
our results to the case when the outcomes at the
leaves are correlated and also to games like chess
where there are three possible outcomes: Win,
Lose, and Draw. Experiments demonstrate our
formula’s superiority to minimax and probability
product in the game of Kalah.

$1: Introduction

It is well known that minimax is an optimal game
playing strategy provided the whole game tree can be
searched (Von Neumann & Morgenstern 1947). For
complex games such as chess, limitations in computa-
tional resources allow only a partial search. (Shannon
1950) proposed that a computer might play chess by
searching to a depth d, evaluating the positions found
using some heuristic evaluation function, and then us-
ing minimax to propagate values up the search tree.

(Pearl 1984) proposed the probability product rule as
an alternative to minimax. This proposal was based
on the assumption that the heuristic evaluation func-
tion estimates the probability that the position is a
win against best play, and then follows from the re-
mark that the correct way to combine (independent)
probabilities is by probability product. This reasoning
correctly asserts that a position with 100 alternative
moves, each of which has independently .l probabil-
ity of leading to a won game, is almost certainly a
won position. We observe here that this offers little
solace to the player in this position, if he can not fig-
ure out which moves lead to wins, for he must choose
one particular move, and then loses with probabity .9.
This paper studies how optimal game play is affected
by the computational limitations of the players. Due
to these limitations, the game is effectively one of im-
perfect information, and this information is effectively
asymmetric. Neither Minimax nor Probability Prod-
uct takes account of this. We describe a strategy which
does.

Imagine playing the following game, game 1. Player
A makes either move Al or move A2. Then player
I3 makes either move Bl or B2. Then player A pays
player B $1 with probability Pij for i = Al or A2
and j = Bl or B2. Let Prr = .5, I32 = .5, P21 =
.6, P22 = .l. Now player A should follow the optimal
minimax strategy and make move 1, and the expected
payoff to player B will be .5. Now imagine a slightly
different game. The rules of game 2 are the same as
game 1 except that after player A moves, but before
player B moves, the payoffs are generated according to
Pij, and player B is told what the outcome of his moves
would be. Now if player A chooses move 1, there will
be probability 1 - (1 - .5)2 = .75 that player B will
have a move which wins for him. If player A chooses
move 2, however, then the expected payoff for player
B is only 1 - .4 x .9 = .64. Accordingly player A must
change his strategy from the first game.

:

Now consider playing a game like chess by construct-
ing the game tree to a depth of (say) 10 ply, evaluating
the leaves using a necessarily noisy evaluation func-
tion, and then propagating the value up the tree by

Baum 507

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved.

minimax. We claim this minimax propagation makes
suboptimal use of the information contained in the leaf
evaluations. The notion of minimax is to assign values
to the positions associated with the nodes 9 ply deep
by taking the maximum value (to the opponent, player
B) of the accessible positions 10 ply deep, just as we
assigned a value to player B’s position at a depth of 1
ply in game 1 above. But, just as in game 2 above, our
opponent has much better information about whether
the outcome is a win or a loss for him than is contained
in our evaluation function. This is because, when he
comes to play in this position, he will search it 10 ply
deep! Thus we should assign a value to our opponent,
of being in this position, according to a formula closer
to the probability formula useful in game 2, than the
minimax formula useful in game 1. In general we ex-
pect a smooth interpolation between using a formula
near probability product deep in the search tree and
using a formula near minimax near the top of the tree.

We assume the evaluation function estimates the
probability of winning at a position in actual play.
In minimax only rank ordering of positions matters,
so standard evaluation functions may require mono-
tonic but nonlinear resealing. One may train evalua-
tion functions to represent probability by accumulating
statistics (Pearl 1984).

Besides (Pearl 1984) there have been other previ-
ous studies of alternative propagation schemes. (Chi
& Nau 1989) claimed, for the game of three hole kalah,
that probability product outperforms minimax for the
same depth of search. In our experiments, see $5, we
found minimax far superior to probability product and
attribute their result to the fact that they only worked
at depth 2 ply. Another approach was that of (Sla-
gle and Dixon 1969) who remarked that the evaluation
function was a noisy version of the truth and that mini-
max is suboptimal because it ignores the fact that “it is
valuable to have several good alternatives in a planned
course of action”. Their M&N procedure assigns to a
max(min) node some heuristic function of the M(N)
highest(lowest) valued successors.

We will not have space here to discuss issues of time
complexity beyond remarks in this paragraph. The
alpha-beta pruning algorithm computes the exact re-
sult of minimaxpropagation in time roughly the square
root of that required by brute force calculation. Now
we argue that ‘the exact result of minimax propaga-
tion’ is only an approximation to the correct propa-
gation. Nonetheless, approximate use of information
from a larger tree might likely be better than opti-
mal use of information from a smaller tree. For this
reason one should not expect practical improvements
from the propagation algorithms discussed in this pa-
per without addressing the question of pruning. We
are here concerned only in principle with optimal use
of the information. Once we understand what calcu-
lation is in principle optimal, we may consider how
to efficiently approximate it. An expanded version of

this paper (Baum 1991) shows that much of the com-
putational benefit of alpha-beta pruning can be taken
over into propagation using truncated versions of our
formula. Thus one can efficiently compute a better ap-
proximation than minimax to the information-optimal
propagation. A still more promising approach is also
under investigation. Recently a number of authors
(McAllester 1988), (Rivest 1988), (Russell & Wefald
1991), have proposed algorithms for growing a search
tree including only relevant nodes. Ideas of these au-
thors on pruning can be readily complemented by the
results in the present paper on propagation. By com-
bining ideas from these authors, some new algorith-
mic ideas, and the information theoretic results of the
present paper, we believe that improved search algo-
rithms can be produced. This will be discussed else-
where (Baum & Smith 1992).

$2 derives a formula useful for propagating evalua-
tions up game trees. 53 describes the approximations
inherent in the formula of $2 and when it is optimal.
$4 discusses generalization to the case of correlated
probabilities. §5 describes experiments on the game
of Kalah. $6 is a summary.

52: An Interpolation
and Probabillistic Combination

Consider the following one person game, game 3.
Player A has b possible moves. A referee declares move
i E (1, b} a Win with probability pi. He does not
tell player A these outcomes, however, until after A
moves. Instead he supplies to player A b bits of in-
formation hi, where hi is 1 with probability p”h given
that move i is a Win, and is 1 with probability 1 - pi
given that, move i is a Loss. Player A knows the pi and
pzw and pi.

Game 3 is a model of deep search in a game like
chess. Think of hi as a hint about the value of move
i. For appropriate p*h and pi, ha models the extra in-
formation,in deep search relative to simple evaluation.
If paw = p; = 1, ha tells the exact outcome, and game
3 is like game 2. If pi; = pi = i, there is no extra
information, and game 3 is like game 1.

What is the value V of game 3 to player A? By Bayes
law,

P(i = WI/& = a) = P(hi =
ali = W)P(i = W)
P(hi = a) ’

(2.1)
Here a = 0,l. The notation should be evident. For
example by P(i = Wlhi = 1) we mean the probability
that move i leads to a win given that hi is 1. Now

P(hi = 1) = P&Pi + (1 - z&)(1 - Pi) (2.2)

P(hi = 0) = (1 -P”;v)(Pi) +&(I -Pi) (23

so

P(i = Wjha = 1) = Pi& Pi
P&pi + (1 - p”,)(1 - pi) (2’4)

508 Problem Solving: Search and Expert Systems

P(i = Wlhi = 0) = (1 - Pk)Pi
(1 - P&&i) + pi(l - pi) (2*5)

We now calculate the probability V of winning
for player A who uses Bayes optimal strategy. Let
P(i,a) f P(i = WJhi = a). Order the moves so
P(i, 1) 2 P(i + 1,l) for all i. Let c be the smallest
number for which an i satisfies P(i, 0) 2 P(c+ 1,1) (if
there is no such number let c = b). Let ic be arg max
P(i, 0). Then

(Pi0 - P”w) + (1 - Pi)(P”l))
j=l,c i=l,j-1

(l-P%)
+pio Pi,(l - &) + (1 - Pi,)(&)

X (Pi(l - Pb) + (1 - Pi)(Pi)) (24
i=l,c

When hl = 1, the Bayes optimal choice is move 1 (i.e.
eqn’s 2.4 and 2.5 imply move 1 is most likely to win,
independent of hi for i # 1). The payoff then is pl.
This is the first term in the sum. When hl = 0, ha = 1
player A picks move 2. This has payoff p2 and occurs
with probability (pl(l - pw) + (1 - pl)(p~))pw since
h2 = 1 with probability pw when move 2 is a win and
h = 0 with probability (1 -pw) when the first move is
a Win or with probability pi when the first move is a
Loss. This yields the second term in the sum. Finally
if hi = 0 for i = 1,2, c, the Bayes optimal choice is
move ie. This event yields the last term.

Note that we recover the appropriate values in the
limiting cases. When player A has no additional infor-
mation beyond the pi, i.e. when Vi : psw = pi = 3,
then c = 1 and V = PIPW t: PI(~ T PW) = PI, the
minimax value. When Vi : pzw = pi = 1, the limit
of perfect information, then c = b and we recover the
probability formula V = 1 - n,=,,,(l - pi). Note also
that formula 2.6 can easily be computed in time O(c)
(once we sort the pi).

In human chess play, consideration of drawing
prospects is important, particularly in endgames.
Many standard chess programs seem relatively weak
in both their consideration of drawing prospects and
their handling of endgames. The arguments of this
section can be readily generalized to games with three
outcomes: Win, Lose, or Draw. We compute at each
position both the probability of Winning and of Draw-
ing and can then make move decisions based on overall
Utility of the prospects. Equations analagous to 2.6
can be derived for propagating VW (the probability of
winning) and Vr, (the probability of drawing) up the
search tree. One may also perform calculations involv-
ing conditional probabilities. (Humans will frequently
enter into a line of play which they are confident can
be drawn but preserves winning chances.) Details are
contained in the long version (Baum 1991).

53: A Model of Deep Search
In this section we will first derive an exact formula,
which optimally propagates leaf evaluations up a tree
given essentially as much knowledge as one might in
principle gather about how time for analysis improves
evaluation of outcome. Formula 2.6 will arise as an ap-
proximation, making more realistic assumptions about
how much we know about how deen search and anal-
ysis improves on simple heuristic e;aluation. Formula
2.6 will be seen to be exact in a simple model of eval-
uations studied by (Schriifer 1986), and for this model
we will give the appropriate pw and pi.

We wish first to calculate the probability V that our
opponent will win in a position where he has b possi-
ble moves and we have evaluated by using our simple
heuristic evaluation function the probability that he
wins if he makes move i as pi. For generality, let Xi de-
note the value(s) of any (collection) of other functions
of the positionwhich might be useful. So, e.g., X might
include an estimate of how “tactical” the position is,
if we believe deep search to be more informative rela-
tive to simple evaluation in “tactical” positions than in
more “positional” situations. We will thus evaluate V
in terms of (1) our heuristic evaluation of the probabil-
ity of winning of its successors, and (2) an estimator,
which we may previously train on &me large set of
games, of how much deep search improves evaluation
relative to our simple heuristic evaluator, where we al-
low this estimator to depend on a small number of fea-
tures. This estimator will be called P(qlp+, Xi) which
we define to be the probability that extended analy-
sis when actually playing this position, say by depth
d search, will lead to the estimate that the nrobabilitv
of winning by playing move i is between q and q + di.
Now we have

s

1

v= dq q x (Probability highest evaluated move has
0

probability q). (34
The highest evaluated move has probability estimate
Q provided (a) none of the b alternatives has esti-
mate higher than q> and 04 at least one has prob-
ability estimate q . (Note this means between q and
q + dq. For pedagogical clarity we omit epsilantics
wherever possible.) The probability that none of the b
moves is estimated to have probability higher than q is
[niZl,*(l - s,’ dq’ P(q’Ipi, Xi))]. The probability that
move .i has evaluation Q, given that it does not have -. -
evaluation higher than q is P(&.Q,Xi)

C1-JalW p(q'lPi,Xi))'
Thus

the probability that at least one of the b moves has
probability q, given that none of them has evaluation
higher than q, is {l-ni=l,a(l- p(q’pllxi)

(1-J; w P(dlPlJi))
)}.

Putting this together we find

V=lldy q[iQa(l-ildd p(CtlPi,xi))l
- 8

Baum 509

i=l,b

f%lPi’ Xi>
(1 - 1; 4’ fwlPa, w>

>I (3.2)

More generally, we must compute the probability of
winning at a node at level I + 1 in the search tree,
given that we have calculated, by propagation up from
the leaves, that the probability of winning if we choose
move i is pi. To do this we measure the distribution
P(qlp{, Xi), and we have simply

Unfortunately the utility of this formula is limited by
any practical limitations in our ability to approximate
P(qlpi, Xi). We propose equation 2.6 as a simple ap-
proximation which is easy to use and reasonably accu-
rate. The approximation inherent in 2.6 is that q can
take on only one of two values, given pi and Xi, Thus
P(qlpi,&) is simply the sum of two delta functions.
These two values are given by eqns. 2.4 and 2.5. One
value (corresponding to hi = 1) is a revised estimate
from depth d search that the probability of winning is
higher than depth 1 search estimates, and the other is
a revised estimate that the probability is lower.

In fact equation 2.6 can be seen to be exact in the
widely studied model where the evaluation function is
Boolean, returning either 0 or 1, and where our knowl-
edge of correctness of our evaluation is dependent only
on depth of search, and not on other features of the
position. This second condition occurs, e.g., if we ne-
glect (as is common in game programs) to estimate
feature dependence of the accuracy of our calculation.
Under these assumptions, if depth d search, returns
a 1 (respectively a 0)) we assign a certain probability
pz (respectively pi) that the position is Won. Accord-
ingly P(qlpf) is bivalued and equation 2.6 exact. These
conditions hold, e.g. in the model studied by (Schriifer
1986) and in the related model of (Nau 1983).

(Schriifer 1986) studied the following model. We
build a game tree starting from the root, which may
be either a Win or a Loss node, and grow a tree with
uniform branching ratio b. Below every Win node there
are n Loss nodes and b - n Win nodes (where we define
node values with respect to the player on move). By
definition, a Win node must have at least one winning
option, so n 2 1. Below every Loss node, again by
definition, all b children are Wins. The tree is built
to depth d. A heuristic evaluation function returns a
noisy estimate of the true value of the leaves as follows.
If the leaf is a Win node, the evaluation is e = 1 with
probability 1 - et (and thus 0 with probability et)
and if the leaf is a Loss node, the evaluation is 0 with
probability 1 - eo (and thus 1 with probability ei).

Now (Schriifer 1986) derives recursion relations re-
lating the probability of error at level I + 1 above the

leaves to that at level 1 (denoted e:), assuming the
evaluation is propagated up the tree by minimax:

ef& = (eF)n(l-e;t)b-n ; e& = l-(l-e,+)b (3.4)

Analyzing these equations, (Schriifer 1986) showed
that deep search is pathological (i.e. gets worse the
deeper you search) provided n = 1, but is at least ex-
ponentially convergent to zero error (i.e. e+ h* 0 and

- N 0) if n > 1 and e$ and ei are sufficiently small.
TSchriifer 1986) 1 a so analyzed a somewhat more com-
plex model, where n is an i.i.d. random variable at
each Win node in the tree, chosen with probability pj
to be j for j = 1 up to b. These results cast con-
siderable light on the question, hotly debated in the
theoretical AI literature for ten years, of when game
search is pathological.

In Schriifer’s model we may calculate how deep
search improves the accuracy of our evaluation. Also,
since the evaluation function is bivalued, and since ac-
curacy depends only on depth of search (rather than
say other parameters of the position or game tree) the
evaluator P(qlel) is is in fact zero except for two val-
ues of q. In (Baum 1991) we calculate explicitly in this
model P(qlel) d h an s ow that equation 3.3 reduces ex-
actly to equation 2.6 for appropriate values of pw and
pi. One demands that pw and pi be chosen so that
the probability of winning given by eqns 2.4-5 is equal
to that given by depth d search. We omit the lengthy
Bayesian calculation for reasons of space but state the
values of pw and pi which emerge. We find

P&4) =
(1 - ed+)(l- er+ - ea + e;teg - e,e;f)

(1 - el+)(l - e$ - eJ)
(3.5) , ,

PN =
(1 - - e, + e;ted -

(e;)(l - ez - ed)
e,e:) (3.6)

P&4) =
(1 - e$)(ef- -eJ+ele$-

(e;t)(l - ed+ - ed)
hi) (3.7)

POLU) =
(1 - ed)(l - er - ef + e,e$ - er+ea)

(1- el)(l- e$ - ez) (3.8)

These formulae tell us how to calculate the pw and
pi and use formula 2.6. Here the superscripts on pw
and pr, correspond to the superscripts i in eqn 2.6 as
follows. One should use superscript 1 (eqns 3.5-6) in
equation 2.6 for moves i with pi 2 $ and one should
use superscript 0 (eqns 3.7-8) for moves with pi < a.
Recall that et (resp. el) is defined as the probability
that a depth I search predicts a state is lost (resp.
won) when in fact it is won (resp. lost) (and ef is
simply e: for I = d). The ef and e: are thus directly
measurable by taking statistics. Alternatively, they
may be calculated in Schrcfer’s model. If our search
is accurate, it will be a good approximation to neglect
both ef and ef with respect to 1. This yields:

Ptv
6 6 =l’p~=1---;p&=1---$‘p~=1 (3.9)

510 Problem Solving: Search and Expert Systems

Thus convergence to perfect information is linear in
the ratio of the accuracy of depth d search to depth 1
search. (Schriifer 1986) shows that, when deep search
is not pathological, it is typically at least exponentially
convergent. Thus pw and pi are likely near one for
many levels in a search tree.

54: Correlations
So far we have proceeded under the assumption that
that probabilities pi of winning are independent. Since
these are probabilities of winning of positions differing
by only two moves, they more realistically should be
considered correlated. Note that we are not concerned
with correlations in the distribution of the values of
the pi. This kind of correlation implies that if p = .9
for a position, than a sibling position is likely to have
p 2 .5. This must occur, for if nearby positions are
not more likely to lead to similar results, we could not
play using a heuristic evaluation function. Instead we
are discussing now correlations between the outcomes,
given the probabilities. This kind of correlation occurs
when two siblings each have p = .8, but the probability
that either sibling wins is less (or more) than 1 - .22.

In (Baum 1991) we give a more general discussion
of correllations. Here for conciseness we specialize to
a simple assumption about the form of correlations.
This assumption seems plausible as an approximation,
and is simple enough to allow a readily computable
formula. Since we have little idea about the nature
of the correlations in practice it also seems reasonable
to choose a model which allows a one parameter fit.
Our simplified model follows. Correlation is specified
by one parameter: y. Given pl 2 p2 1 ., . 2 pi, we
determine which moves lead to a win as follows. A
referee first draws a bit Bc which has probability ypk
of being 1. If Bc is a 1, then all moves, l,..., L are
W. If Bc is a 0, then move i : i = 1, . . . , k: is a W
with probability pa - ypk, where all of these are now
determined independently. Note we don’t care what
happens for i > Ic, because we assume either that these
moves are totally correlated with move 1, or because in
any case the combination of their correlation plus low
probability means the player should never select them,
independent of the hi, or because we simply consider
strategies which truncate after considering the Ic best
moves. If we only consider strategies which truncate
after 2 moves (i.e. if k=2) this model of correlations
can be easily seen to be without loss of generality.

Now it is easy to write down the analogue of equation
2.6. Let V(pl,p2, pk) be defined by equation 2.6,
where c --) Ic. For i = 1, Ic let

(54

Call the value of the position, in the model with cor-
relations, V’. Then

v’ = -/Pk + (1 - YPk)V(i? (5.2)

This is evident since with probability TpI,, Bc = 1,
and the position is a win. Otherwise, the probability
of winning is V(g). Note that in the limit of perfect
correlation, i.e. y = 1 and p!, = ~2, we recover the
minimax value pl , since then pi = 0, and so we discover
in computing V(g) that c = 1 and 5.2 reduces to 7~2+
(1 - TPa)P: = Pl*

§5: Experiments with alah
This section describes preliminary experiments’ com-
paring performance of programs using minimax, prob-
ability product, and formula 2.6 on the game of Kalah.
Kalah has been described as a “moderately complex
game, perhaps on a par with checkers” (Slagle & Dixon
1970). See (Slagle & Dixon 1969) for a discussion of
the rules. We mention here only that the object of
Kalah is to capture stones.

As evaluation function (Slagle & Dixon 1969) pro-
posed and (Chi & Nau 1989) studied Kalah Advantage
(KA) defined as the difference in number of stones cur-
rently captured (scaled to be between 0 and 1 to esti-
mate a probability of winning). We found this did not
adequately estimate the probability of winning. In-
stead we used the following. Define SrKA/NR where
NR is the number of stones remaining on the board
(and thus potentially winnable). Our evaluation func-
tion then was El - (1 - S)/2. In head to head com-
petition using depth 6 ply alpha-beta, E played a sub-
stantially stronger game than KA. Note that when
KA=NR (so that a mathematical win or loss has oc-
curred) E is 1 or 0, and when KA=O, E = l/2. This is
a reasonable estimate of the probability of winning for
KA=O, but not precise since the side on move has an
advantage (about 53% in our tournament). More com-
prehensive experiments might take statistics to find a
nonlinear, monotonic resealing of E which more closely
estimated probability of winning. This would presum-
ably increase the edge of formula 2.6.

We simply chose to set, for E a parameter:

Pw =PL=l-2 +cd-l)

where d = 6 was the depth of our search and 1 =
0 9 “‘> 4 was the level above the leaf. The exponential
form was suggested by the dependence of pw and pi in
equations 3.9 on el and ed and the exponential increase
in accuracy of deep search in Schriifer’s model. Note
that for this first cut we approximated by setting pw =
pi and by setting both independent of all other factors,
including pi, the probability the move will win. More
accurate tuning up of the piw and pi would be possible
with more work. Presumably this would improve the
performance of formula 2.6. A small tournament was
played on 400 games for values of E = .8,.85,.9, and .95.
Formula 2.6 seemed to have an edge against minimax

‘These experiments were performed by E.
using code partially written by W. D. Smith.

Wigderson

Baum 511

for each of these values, but the edge was largest for c =
.9 so we then performed a tournament of 20,000 games
for this value. Note E = .9 corresponds to relatively
modest choices of pw and pi. By parametrizing pw
and pi in this way and choosing E to maximize results,
we implicitly tuned against the degree of correlation,
and the modest values of pw and pi may reflect a fair
degree of correlation.

Tournaments were performed by choosing 10,000
starting positions by making the first 6 moves at ran-
dom. For each of these starting positions competitor
A and B played both First and Second, where A and
B could be any of minimax, formula 2.6, or probability
product(All algorithms played to depth 6 ply (full
width). Formula 2.6 won 9906 games against minimax,
while minimax won 9171, and 923 were draws. Mini-
max won 18359 games against PP, while PP won 1581,
and 60 were drawn. 2.6 won 18882 against PP, while
PP won 1040, and 78 were drawn. Note that probabil-
ity product was awful, which is attributable to its poor
treatment of correlations (Smith I992). Note that (ex-
cluding draws) formula 2.6 beats minimax 52 f .03% of
the games. This is a small but clear edge (significant
at more than 50) which possibly could be improved by
better tuning of the evaluation function to reflect prob-
ability, better tuning of ptw and pk, and using a for-
mula such as equation 5.2 which explicitly accounts for
correlations. Note as discussed in $1, that this paper
does not reflect time performance issues, but merely
performance on equal depth trees.

W : is@ussion

We have remarked that minimax incorrectly values po-
sitions since it does not account for extra information
that players will have when they actually encounter
the position. This extra information arises, for exam-
ple, from their ability to do a deep search from the
position. While it is not possible to know the “true”
value of a position without actual possession of this
extra information (and perhaps some in addition), the
mere realization that the players will act based on ex-
tra information allows more accurate estimation of the
value of positions. A similar phenomenon will arise in
search and planning contexts other than games. When
computational or informational limitations force one
to make a heuristic choice, one’s choice should take
account of the relative computational advantages in
future choices.

We have given a formula (3.3) which correctly prop-
agates up the tree the information contained in evalu-
ations of the probability of winning at the leaves given
detailed, but in principle available, information about
the nature of extra information (under the assumption
of independence of the leaf probabilities). Since this
detailed information seems likely to be difficult to ob-
tain in practice, we have proposed a simple formula for
propagating information up the game tree. This model
requires only limited, and readily obtainable estimates

of the extra information. It is exact in widely studied
models (e.g. Schriifer 1986.) Experiments in the game
of Kalah exhibit the superiority of this formula to both
minimax and probability product.
Acknowledgement: I thank L.E. Baum for suggesting
that I consider games with draws, W. D. Smith for
helpful comments on a draft, and especially E. Wigder-
son and W. D. Smith for the experimental work re-
ported in $5.

eferences
Baum, E.B. 1991. “Minimax is not optimal for im-
perfect game players”, preprint, submitted for publi-
cation.
Baum, E.B., and W. D. Smith. In preparation.
Chi, P-C, D. S. Nau. 1989. ‘Comparison of the
Minimax and Product Back-up Rules in a Variety of
Games”, in Search in Artificial Intelligence, eds. L.
Kanal and V. Kumar, Springer Verlag, New York,
pp451-471.
McAllester, D. A. 1988. ‘Conspiracy numbers for min-
max search”, Artificial Intelligence v35 ~~287-310.
Nau, D. S. 1983. “Decision Quality as a Function of
Search Depth on Game Trees”, Journal of the ACM,
V 30, No. 4, pp 687-709.
Pearl, J. 1984. Heuristics, Intelligent Search Strate-
gies for Computer Problem Solving, Addison Wesley
Publishing Co, Reading MA.
Rivest, R. L. 1988. “Game Tree Searching by
Min/Max Approximation”, Artificial Intelligence 34
pp77-96.
Russell, S., and E. Wefald. 1991. Do the Right Thing,
Studies in Limited Rationality, MIT Press, Cambridge
MA.
Schriifer, G. 1986. “Presence and Absence of Pathol-
ogy on Game Trees”, in D.F. Beal, ed., Advances in
Computer Chess 4, (Pergamon, Oxford, 1986) pp lOl-
112.
Shannon, C. E. 1950. “Programming a Computer for
Playing Chess”, Philosophical Magazine 41(7): 256-75.
Slagle, J. R., and J. K. Dixon. 1969. “Experiments
with some programs that search game trees”, JACM
V16, No 2 pp 189-207.
Slagle, J. R., and J. K. Dixon. 1970. “Ex-
periements with the M&N Tree-Sear&in Program,
CACM 13(3)147-154.
Smith, W.D., 1992. personal communication.
Von Neumann, J., and 0. Morgenstern. 1947. Theory
of Games and Economic Behavior Princeton Univer-
sity Press, Princeton.

512 Problem Solving: Search and Expert Systems

