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bstract 

We consider the approach to game playing where 
one looks ahead in a game tree, evaluates heuristi- 
cally the probability of winning at the leaves, and 
then propagates this evaluation up the tree. We 
show that minimax does not make optimal use of 
information contained in the leaf evaluations, and 
in fact misvalues the position associated with all 
nodes. This occurs because when actually play- 
ing a position down the game tree, a player would 
be able to search beyond the boundaries of the 
original search, and so has access to additional in- 
formation. The remark that such extra informa- 
tion will exist, allows better use of the information 
contained in the leaf evaluations even though we 
do not have access to the extra information itself. 
Our analysis implies that, while minimax is ap- 
proximately correct near the top of the game tree, 
near the bottom a formula closer to the probabil- 
ity product formula is better. We propose a simple 
model of how deep search yields extra informa- 
tion about the chances of winning in a position. 
Within the context of this model, we write down 
the formula for propagating information up the 
tree which is correct at all levels. We generalize 
our results to the case when the outcomes at the 
leaves are correlated and also to games like chess 
where there are three possible outcomes: Win, 
Lose, and Draw. Experiments demonstrate our 
formula’s superiority to minimax and probability 
product in the game of Kalah. 

$1: Introduction 

It is well known that minimax is an optimal game 
playing strategy provided the whole game tree can be 
searched (Von Neumann & Morgenstern 1947). For 
complex games such as chess, limitations in computa- 
tional resources allow only a partial search. (Shannon 
1950) proposed that a computer might play chess by 
searching to a depth d, evaluating the positions found 
using some heuristic evaluation function, and then us- 
ing minimax to propagate values up the search tree. 

(Pearl 1984) proposed the probability product rule as 
an alternative to minimax. This proposal was based 
on the assumption that the heuristic evaluation func- 
tion estimates the probability that the position is a 
win against best play, and then follows from the re- 
mark that the correct way to combine (independent) 
probabilities is by probability product. This reasoning 
correctly asserts that a position with 100 alternative 
moves, each of which has independently .l probabil- 
ity of leading to a won game, is almost certainly a 
won position. We observe here that this offers little 
solace to the player in this position, if he can not fig- 
ure out which moves lead to wins, for he must choose 
one particular move, and then loses with probabity .9. 
This paper studies how optimal game play is affected 
by the computational limitations of the players. Due 
to these limitations, the game is effectively one of im- 
perfect information, and this information is effectively 
asymmetric. Neither Minimax nor Probability Prod- 
uct takes account of this. We describe a strategy which 
does. 

Imagine playing the following game, game 1. Player 
A makes either move Al or move A2. Then player 
I3 makes either move Bl or B2. Then player A pays 
player B $1 with probability Pij for i = Al or A2 
and j = Bl or B2. Let Prr = .5, I32 = .5, P21 = 
.6, P22 = .l. Now player A should follow the optimal 
minimax strategy and make move 1, and the expected 
payoff to player B will be .5. Now imagine a slightly 
different game. The rules of game 2 are the same as 
game 1 except that after player A moves, but before 
player B moves, the payoffs are generated according to 
Pij, and player B is told what the outcome of his moves 
would be. Now if player A chooses move 1, there will 
be probability 1 - (1 - .5)2 = .75 that player B will 
have a move which wins for him. If player A chooses 
move 2, however, then the expected payoff for player 
B is only 1 - .4 x .9 = .64. Accordingly player A must 
change his strategy from the first game. 

: 

Now consider playing a game like chess by construct- 
ing the game tree to a depth of (say) 10 ply, evaluating 
the leaves using a necessarily noisy evaluation func- 
tion, and then propagating the value up the tree by 
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minimax. We claim this minimax propagation makes 
suboptimal use of the information contained in the leaf 
evaluations. The notion of minimax is to assign values 
to the positions associated with the nodes 9 ply deep 
by taking the maximum value (to the opponent, player 
B) of the accessible positions 10 ply deep, just as we 
assigned a value to player B’s position at a depth of 1 
ply in game 1 above. But, just as in game 2 above, our 
opponent has much better information about whether 
the outcome is a win or a loss for him than is contained 
in our evaluation function. This is because, when he 
comes to play in this position, he will search it 10 ply 
deep! Thus we should assign a value to our opponent, 
of being in this position, according to a formula closer 
to the probability formula useful in game 2, than the 
minimax formula useful in game 1. In general we ex- 
pect a smooth interpolation between using a formula 
near probability product deep in the search tree and 
using a formula near minimax near the top of the tree. 

We assume the evaluation function estimates the 
probability of winning at a position in actual play. 
In minimax only rank ordering of positions matters, 
so standard evaluation functions may require mono- 
tonic but nonlinear resealing. One may train evalua- 
tion functions to represent probability by accumulating 
statistics (Pearl 1984). 

Besides (Pearl 1984) there have been other previ- 
ous studies of alternative propagation schemes. (Chi 
& Nau 1989) claimed, for the game of three hole kalah, 
that probability product outperforms minimax for the 
same depth of search. In our experiments, see $5, we 
found minimax far superior to probability product and 
attribute their result to the fact that they only worked 
at depth 2 ply. Another approach was that of (Sla- 
gle and Dixon 1969) who remarked that the evaluation 
function was a noisy version of the truth and that mini- 
max is suboptimal because it ignores the fact that “it is 
valuable to have several good alternatives in a planned 
course of action”. Their M&N procedure assigns to a 
max(min) node some heuristic function of the M(N) 
highest(lowest) valued successors. 

We will not have space here to discuss issues of time 
complexity beyond remarks in this paragraph. The 
alpha-beta pruning algorithm computes the exact re- 
sult of minimaxpropagation in time roughly the square 
root of that required by brute force calculation. Now 
we argue that ‘the exact result of minimax propaga- 
tion’ is only an approximation to the correct propa- 
gation. Nonetheless, approximate use of information 
from a larger tree might likely be better than opti- 
mal use of information from a smaller tree. For this 
reason one should not expect practical improvements 
from the propagation algorithms discussed in this pa- 
per without addressing the question of pruning. We 
are here concerned only in principle with optimal use 
of the information. Once we understand what calcu- 
lation is in principle optimal, we may consider how 
to efficiently approximate it. An expanded version of 

this paper (Baum 1991) shows that much of the com- 
putational benefit of alpha-beta pruning can be taken 
over into propagation using truncated versions of our 
formula. Thus one can efficiently compute a better ap- 
proximation than minimax to the information-optimal 
propagation. A still more promising approach is also 
under investigation. Recently a number of authors 
(McAllester 1988), (Rivest 1988), (Russell & Wefald 
1991), have proposed algorithms for growing a search 
tree including only relevant nodes. Ideas of these au- 
thors on pruning can be readily complemented by the 
results in the present paper on propagation. By com- 
bining ideas from these authors, some new algorith- 
mic ideas, and the information theoretic results of the 
present paper, we believe that improved search algo- 
rithms can be produced. This will be discussed else- 
where (Baum & Smith 1992). 

$2 derives a formula useful for propagating evalua- 
tions up game trees. 53 describes the approximations 
inherent in the formula of $2 and when it is optimal. 
$4 discusses generalization to the case of correlated 
probabilities. §5 describes experiments on the game 
of Kalah. $6 is a summary. 

52: An Interpolation 
and Probabillistic Combination 

Consider the following one person game, game 3. 
Player A has b possible moves. A referee declares move 
i E (1, . . . . . b} a Win with probability pi. He does not 
tell player A these outcomes, however, until after A 
moves. Instead he supplies to player A b bits of in- 
formation hi, where hi is 1 with probability p”h given 
that move i is a Win, and is 1 with probability 1 - pi 
given that, move i is a Loss. Player A knows the pi and 
pzw and pi. 

Game 3 is a model of deep search in a game like 
chess. Think of hi as a hint about the value of move 
i. For appropriate p*h and pi, ha models the extra in- 
formation,in deep search relative to simple evaluation. 
If paw = p; = 1, ha tells the exact outcome, and game 
3 is like game 2. If pi; = pi = i, there is no extra 
information, and game 3 is like game 1. 

What is the value V of game 3 to player A? By Bayes 
law, 

P(i = WI/& = a) = P(hi = 
ali = W)P(i = W) 
P(hi = a) ’ 

(2.1) 
Here a = 0,l. The notation should be evident. For 
example by P(i = Wlhi = 1) we mean the probability 
that move i leads to a win given that hi is 1. Now 

P(hi = 1) = P&Pi + (1 - z&)(1 - Pi) (2.2) 

P(hi = 0) = (1 -P”;v)(Pi) +&(I -Pi) (23 

so 

P(i = Wjha = 1) = Pi& Pi 
P&pi + (1 - p”,)( 1 - pi) (2’4) 
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P(i = Wlhi = 0) = (1 - Pk)Pi 
(1 - P&&i) + pi(l - pi) (2*5) 

We now calculate the probability V of winning 
for player A who uses Bayes optimal strategy. Let 
P(i,a) f P(i = WJhi = a). Order the moves so 
P(i, 1) 2 P(i + 1,l) for all i. Let c be the smallest 
number for which an i satisfies P(i, 0) 2 P(c+ 1,1) (if 
there is no such number let c = b). Let ic be arg max 
P(i, 0). Then 

(Pi0 - P”w) + (1 - Pi)(P”l)) 
j=l,c i=l,j-1 

(l-P%) 
+pio Pi,(l - &) + (1 - Pi,)(&) 

X (Pi(l - Pb) + (1 - Pi)(Pi)) (24 
i=l,c 

When hl = 1, the Bayes optimal choice is move 1 (i.e. 
eqn’s 2.4 and 2.5 imply move 1 is most likely to win, 
independent of hi for i # 1). The payoff then is pl. 
This is the first term in the sum. When hl = 0, ha = 1 
player A picks move 2. This has payoff p2 and occurs 
with probability (pl(l - pw) + (1 - pl)(p~))pw since 
h2 = 1 with probability pw when move 2 is a win and 
h = 0 with probability (1 -pw) when the first move is 
a Win or with probability pi when the first move is a 
Loss. This yields the second term in the sum. Finally 
if hi = 0 for i = 1,2, . . . . c, the Bayes optimal choice is 
move ie. This event yields the last term. 

Note that we recover the appropriate values in the 
limiting cases. When player A has no additional infor- 
mation beyond the pi, i.e. when Vi : psw = pi = 3, 
then c = 1 and V = PIPW t: PI(~ T PW) = PI, the 
minimax value. When Vi : pzw = pi = 1, the limit 
of perfect information, then c = b and we recover the 
probability formula V = 1 - n,=,,,(l - pi). Note also 
that formula 2.6 can easily be computed in time O(c) 
(once we sort the pi). 

In human chess play, consideration of drawing 
prospects is important, particularly in endgames. 
Many standard chess programs seem relatively weak 
in both their consideration of drawing prospects and 
their handling of endgames. The arguments of this 
section can be readily generalized to games with three 
outcomes: Win, Lose, or Draw. We compute at each 
position both the probability of Winning and of Draw- 
ing and can then make move decisions based on overall 
Utility of the prospects. Equations analagous to 2.6 
can be derived for propagating VW (the probability of 
winning) and Vr, (the probability of drawing) up the 
search tree. One may also perform calculations involv- 
ing conditional probabilities. (Humans will frequently 
enter into a line of play which they are confident can 
be drawn but preserves winning chances.) Details are 
contained in the long version (Baum 1991). 

53: A Model of Deep Search 
In this section we will first derive an exact formula, 
which optimally propagates leaf evaluations up a tree 
given essentially as much knowledge as one might in 
principle gather about how time for analysis improves 
evaluation of outcome. Formula 2.6 will arise as an ap- 
proximation, making more realistic assumptions about 
how much we know about how deen search and anal- 
ysis improves on simple heuristic e;aluation. Formula 
2.6 will be seen to be exact in a simple model of eval- 
uations studied by (Schriifer 1986), and for this model 
we will give the appropriate pw and pi. 

We wish first to calculate the probability V that our 
opponent will win in a position where he has b possi- 
ble moves and we have evaluated by using our simple 
heuristic evaluation function the probability that he 
wins if he makes move i as pi. For generality, let Xi de- 
note the value(s) of any (collection) of other functions 
of the positionwhich might be useful. So, e.g., X might 
include an estimate of how “tactical” the position is, 
if we believe deep search to be more informative rela- 
tive to simple evaluation in “tactical” positions than in 
more “positional” situations. We will thus evaluate V 
in terms of (1) our heuristic evaluation of the probabil- 
ity of winning of its successors, and (2) an estimator, 
which we may previously train on &me large set of 
games, of how much deep search improves evaluation 
relative to our simple heuristic evaluator, where we al- 
low this estimator to depend on a small number of fea- 
tures. This estimator will be called P(qlp+, Xi) which 
we define to be the probability that extended analy- 
sis when actually playing this position, say by depth 
d search, will lead to the estimate that the nrobabilitv 
of winning by playing move i is between q and q + di. 
Now we have 

s 

1 

v= dq q x (Probability highest evaluated move has 
0 

probability q). (34 
The highest evaluated move has probability estimate 
Q provided (a) none of the b alternatives has esti- 
mate higher than q> and 04 at least one has prob- 
ability estimate q . (Note this means between q and 
q + dq. For pedagogical clarity we omit epsilantics 
wherever possible.) The probability that none of the b 
moves is estimated to have probability higher than q is 
[niZl,*(l - s,’ dq’ P(q’Ipi, Xi))]. The probability that 
move .i has evaluation Q, given that it does not have -. - 
evaluation higher than q is P(&.Q,Xi) 

C1-JalW p(q'lPi,Xi))' 
Thus 

the probability that at least one of the b moves has 
probability q, given that none of them has evaluation 
higher than q, is {l-ni=l,a(l- p(q’pllxi) 

(1-J; w P(dlPlJi)) 
)}. 

Putting this together we find 

V=lldy q[iQa(l-ildd p(CtlPi,xi))l 
- 8 
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i=l,b 

f%lPi’ Xi> 
(1 - 1; 4’ fwlPa, w> 

>I (3.2) 

More generally, we must compute the probability of 
winning at a node at level I + 1 in the search tree, 
given that we have calculated, by propagation up from 
the leaves, that the probability of winning if we choose 
move i is pi. To do this we measure the distribution 
P(qlp{, Xi), and we have simply 

Unfortunately the utility of this formula is limited by 
any practical limitations in our ability to approximate 
P(qlpi, Xi). We propose equation 2.6 as a simple ap- 
proximation which is easy to use and reasonably accu- 
rate. The approximation inherent in 2.6 is that q can 
take on only one of two values, given pi and Xi, Thus 
P(qlpi,&) is simply the sum of two delta functions. 
These two values are given by eqns. 2.4 and 2.5. One 
value (corresponding to hi = 1) is a revised estimate 
from depth d search that the probability of winning is 
higher than depth 1 search estimates, and the other is 
a revised estimate that the probability is lower. 

In fact equation 2.6 can be seen to be exact in the 
widely studied model where the evaluation function is 
Boolean, returning either 0 or 1, and where our knowl- 
edge of correctness of our evaluation is dependent only 
on depth of search, and not on other features of the 
position. This second condition occurs, e.g., if we ne- 
glect (as is common in game programs) to estimate 
feature dependence of the accuracy of our calculation. 
Under these assumptions, if depth d search, returns 
a 1 (respectively a 0)) we assign a certain probability 
pz (respectively pi) that the position is Won. Accord- 
ingly P(qlpf) is bivalued and equation 2.6 exact. These 
conditions hold, e.g. in the model studied by (Schriifer 
1986) and in the related model of (Nau 1983). 

(Schriifer 1986) studied the following model. We 
build a game tree starting from the root, which may 
be either a Win or a Loss node, and grow a tree with 
uniform branching ratio b. Below every Win node there 
are n Loss nodes and b - n Win nodes (where we define 
node values with respect to the player on move). By 
definition, a Win node must have at least one winning 
option, so n 2 1. Below every Loss node, again by 
definition, all b children are Wins. The tree is built 
to depth d. A heuristic evaluation function returns a 
noisy estimate of the true value of the leaves as follows. 
If the leaf is a Win node, the evaluation is e = 1 with 
probability 1 - et (and thus 0 with probability et) 
and if the leaf is a Loss node, the evaluation is 0 with 
probability 1 - eo (and thus 1 with probability ei). 

Now (Schriifer 1986) derives recursion relations re- 
lating the probability of error at level I + 1 above the 

leaves to that at level 1 (denoted e:), assuming the 
evaluation is propagated up the tree by minimax: 

ef& = (eF)n(l-e;t)b-n ; e& = l-(l-e,+)b (3.4) 

Analyzing these equations, (Schriifer 1986) showed 
that deep search is pathological (i.e. gets worse the 
deeper you search) provided n = 1, but is at least ex- 
ponentially convergent to zero error (i.e. e+ h* 0 and 

- N 0) if n > 1 and e$ and ei are sufficiently small. 
TSchriifer 1986) 1 a so analyzed a somewhat more com- 
plex model, where n is an i.i.d. random variable at 
each Win node in the tree, chosen with probability pj 
to be j for j = 1 up to b. These results cast con- 
siderable light on the question, hotly debated in the 
theoretical AI literature for ten years, of when game 
search is pathological. 

In Schriifer’s model we may calculate how deep 
search improves the accuracy of our evaluation. Also, 
since the evaluation function is bivalued, and since ac- 
curacy depends only on depth of search (rather than 
say other parameters of the position or game tree) the 
evaluator P(qlel) is is in fact zero except for two val- 
ues of q. In (Baum 1991) we calculate explicitly in this 
model P(qlel) d h an s ow that equation 3.3 reduces ex- 
actly to equation 2.6 for appropriate values of pw and 
pi. One demands that pw and pi be chosen so that 
the probability of winning given by eqns 2.4-5 is equal 
to that given by depth d search. We omit the lengthy 
Bayesian calculation for reasons of space but state the 
values of pw and pi which emerge. We find 

P&4) = 
(1 - ed+)(l- er+ - ea + e;teg - e,e;f) 

(1 - el+)(l - e$ - eJ) 
(3.5) , , 

PN = 
(1 - - e, + e;ted - 

(e;)(l - ez - ed) 
e,e:) (3.6) 

P&4) = 
(1 - e$)(ef- -eJ+ele$- 

(e;t)(l - ed+ - ed) 
hi) (3.7) 

POLU) = 
(1 - ed)(l - er - ef + e,e$ - er+ea) 

(1- el)(l- e$ - ez) (3.8) 

These formulae tell us how to calculate the pw and 
pi and use formula 2.6. Here the superscripts on pw 
and pr, correspond to the superscripts i in eqn 2.6 as 
follows. One should use superscript 1 (eqns 3.5-6) in 
equation 2.6 for moves i with pi 2 $ and one should 
use superscript 0 (eqns 3.7-8) for moves with pi < a. 
Recall that et (resp. el) is defined as the probability 
that a depth I search predicts a state is lost (resp. 
won) when in fact it is won (resp. lost) (and ef is 
simply e: for I = d). The ef and e: are thus directly 
measurable by taking statistics. Alternatively, they 
may be calculated in Schrcfer’s model. If our search 
is accurate, it will be a good approximation to neglect 
both ef and ef with respect to 1. This yields: 

Ptv 
6 6 =l’p~=1---;p&=1---$‘p~=1 (3.9) 
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Thus convergence to perfect information is linear in 
the ratio of the accuracy of depth d search to depth 1 
search. (Schriifer 1986) shows that, when deep search 
is not pathological, it is typically at least exponentially 
convergent. Thus pw and pi are likely near one for 
many levels in a search tree. 

54: Correlations 
So far we have proceeded under the assumption that 
that probabilities pi of winning are independent. Since 
these are probabilities of winning of positions differing 
by only two moves, they more realistically should be 
considered correlated. Note that we are not concerned 
with correlations in the distribution of the values of 
the pi. This kind of correlation implies that if p = .9 
for a position, than a sibling position is likely to have 
p 2 .5. This must occur, for if nearby positions are 
not more likely to lead to similar results, we could not 
play using a heuristic evaluation function. Instead we 
are discussing now correlations between the outcomes, 
given the probabilities. This kind of correlation occurs 
when two siblings each have p = .8, but the probability 
that either sibling wins is less (or more) than 1 - .22. 

In (Baum 1991) we give a more general discussion 
of correllations. Here for conciseness we specialize to 
a simple assumption about the form of correlations. 
This assumption seems plausible as an approximation, 
and is simple enough to allow a readily computable 
formula. Since we have little idea about the nature 
of the correlations in practice it also seems reasonable 
to choose a model which allows a one parameter fit. 
Our simplified model follows. Correlation is specified 
by one parameter: y. Given pl 2 p2 1 ., . 2 pi, we 
determine which moves lead to a win as follows. A 
referee first draws a bit Bc which has probability ypk 
of being 1. If Bc is a 1, then all moves, l,..., L are 
W. If Bc is a 0, then move i : i = 1, . . . , k: is a W 
with probability pa - ypk, where all of these are now 
determined independently. Note we don’t care what 
happens for i > Ic, because we assume either that these 
moves are totally correlated with move 1, or because in 
any case the combination of their correlation plus low 
probability means the player should never select them, 
independent of the hi, or because we simply consider 
strategies which truncate after considering the Ic best 
moves. If we only consider strategies which truncate 
after 2 moves (i.e. if k=2) this model of correlations 
can be easily seen to be without loss of generality. 

Now it is easy to write down the analogue of equation 
2.6. Let V(pl,p2, . . . . pk) be defined by equation 2.6, 
where c --) Ic. For i = 1, . . . . Ic let 

(54 

Call the value of the position, in the model with cor- 
relations, V’. Then 

v’ = -/Pk + (1 - YPk)V(i? (5.2) 

This is evident since with probability TpI,, Bc = 1, 
and the position is a win. Otherwise, the probability 
of winning is V(g). Note that in the limit of perfect 
correlation, i.e. y = 1 and p!, = ~2, we recover the 
minimax value pl , since then pi = 0, and so we discover 
in computing V(g) that c = 1 and 5.2 reduces to 7~2+ 
(1 - TPa)P: = Pl* 

§5: Experiments with alah 
This section describes preliminary experiments’ com- 
paring performance of programs using minimax, prob- 
ability product, and formula 2.6 on the game of Kalah. 
Kalah has been described as a “moderately complex 
game, perhaps on a par with checkers” (Slagle & Dixon 
1970). See (Slagle & Dixon 1969) for a discussion of 
the rules. We mention here only that the object of 
Kalah is to capture stones. 

As evaluation function (Slagle & Dixon 1969) pro- 
posed and (Chi & Nau 1989) studied Kalah Advantage 
(KA) defined as the difference in number of stones cur- 
rently captured (scaled to be between 0 and 1 to esti- 
mate a probability of winning). We found this did not 
adequately estimate the probability of winning. In- 
stead we used the following. Define SrKA/NR where 
NR is the number of stones remaining on the board 
(and thus potentially winnable). Our evaluation func- 
tion then was El - (1 - S)/2. In head to head com- 
petition using depth 6 ply alpha-beta, E played a sub- 
stantially stronger game than KA. Note that when 
KA=NR (so that a mathematical win or loss has oc- 
curred) E is 1 or 0, and when KA=O, E = l/2. This is 
a reasonable estimate of the probability of winning for 
KA=O, but not precise since the side on move has an 
advantage (about 53% in our tournament). More com- 
prehensive experiments might take statistics to find a 
nonlinear, monotonic resealing of E which more closely 
estimated probability of winning. This would presum- 
ably increase the edge of formula 2.6. 

We simply chose to set, for E a parameter: 

Pw =PL=l-2 +cd-l) 

where d = 6 was the depth of our search and 1 = 
0 9 “‘> 4 was the level above the leaf. The exponential 
form was suggested by the dependence of pw and pi in 
equations 3.9 on el and ed and the exponential increase 
in accuracy of deep search in Schriifer’s model. Note 
that for this first cut we approximated by setting pw = 
pi and by setting both independent of all other factors, 
including pi, the probability the move will win. More 
accurate tuning up of the piw and pi would be possible 
with more work. Presumably this would improve the 
performance of formula 2.6. A small tournament was 
played on 400 games for values of E = .8,.85,.9, and .95. 
Formula 2.6 seemed to have an edge against minimax 

‘These experiments were performed by E. 
using code partially written by W. D. Smith. 

Wigderson 
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for each of these values, but the edge was largest for c = 
.9 so we then performed a tournament of 20,000 games 
for this value. Note E = .9 corresponds to relatively 
modest choices of pw and pi. By parametrizing pw 
and pi in this way and choosing E to maximize results, 
we implicitly tuned against the degree of correlation, 
and the modest values of pw and pi may reflect a fair 
degree of correlation. 

Tournaments were performed by choosing 10,000 
starting positions by making the first 6 moves at ran- 
dom. For each of these starting positions competitor 
A and B played both First and Second, where A and 
B could be any of minimax, formula 2.6, or probability 
product( All algorithms played to depth 6 ply (full 
width). Formula 2.6 won 9906 games against minimax, 
while minimax won 9171, and 923 were draws. Mini- 
max won 18359 games against PP, while PP won 1581, 
and 60 were drawn. 2.6 won 18882 against PP, while 
PP won 1040, and 78 were drawn. Note that probabil- 
ity product was awful, which is attributable to its poor 
treatment of correlations (Smith I992). Note that (ex- 
cluding draws) formula 2.6 beats minimax 52 f .03% of 
the games. This is a small but clear edge (significant 
at more than 50) which possibly could be improved by 
better tuning of the evaluation function to reflect prob- 
ability, better tuning of ptw and pk, and using a for- 
mula such as equation 5.2 which explicitly accounts for 
correlations. Note as discussed in $1, that this paper 
does not reflect time performance issues, but merely 
performance on equal depth trees. 

W : is@ussion 

We have remarked that minimax incorrectly values po- 
sitions since it does not account for extra information 
that players will have when they actually encounter 
the position. This extra information arises, for exam- 
ple, from their ability to do a deep search from the 
position. While it is not possible to know the “true” 
value of a position without actual possession of this 
extra information (and perhaps some in addition), the 
mere realization that the players will act based on ex- 
tra information allows more accurate estimation of the 
value of positions. A similar phenomenon will arise in 
search and planning contexts other than games. When 
computational or informational limitations force one 
to make a heuristic choice, one’s choice should take 
account of the relative computational advantages in 
future choices. 

We have given a formula (3.3) which correctly prop- 
agates up the tree the information contained in evalu- 
ations of the probability of winning at the leaves given 
detailed, but in principle available, information about 
the nature of extra information (under the assumption 
of independence of the leaf probabilities). Since this 
detailed information seems likely to be difficult to ob- 
tain in practice, we have proposed a simple formula for 
propagating information up the game tree. This model 
requires only limited, and readily obtainable estimates 

of the extra information. It is exact in widely studied 
models (e.g. Schriifer 1986.) Experiments in the game 
of Kalah exhibit the superiority of this formula to both 
minimax and probability product. 
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