
Linear-Space est-First Search:
Summary of

Richard E. Korf”
Computer Science Department

University of California, Los Angeles
Los Angeles, Ca. 90024

korf@ks.ucla.edu

Abstract

Best-first search is a general search algorithm that,
always expands next a frontier node of lowest cost.
Its applicability, however, is limited by its expo-
nential memory requirement. Iterative deepen-
ing, a previous approach to this problem, does
not expand nodes in best-first, order if t’he cost,
function can decrease along a path. We present
a linear-space best-first search algorithm (RBFS)
that always explores new nodes in best-first or-
der, regardless of the cost function, and expands
fewer nodes than iterative deepening with a. non-
decreasing cost function. On the sliding-tile puz-
zles, RBFS with a weighted evaluation function
dramatically reduces computation time with only
a small penalty in solution cost. In general, RBFS
reduces the space complexity of best-first search
from exponential to linear, a.t the cost of only a
constant factor in time complexity in our expcri-
ments.

Introduction: Best-First Search
Best-first search is a very general heuristic search algo-
rithm. It maintains an Open list of the frontier nodes
of a partially expanded search graph, and a Closed list
of the interior nodes. Every node has an associated
cost value. At each cycle, an Open node of minimum
cost is expanded, generating all of its children. The
children are evaluated by the cost functfionY inserted
into the Open list, and the pa.rent is placed on the
Closed list. Initia.lly, the Open list contains just the
initial node, and the algorithm terminates when a. goal
node is chosen for expansion.

If the cost of a node is its depth in the graph, then
best-first search becomes breaclth-first search. If the
--

*This research was supported by an NSF Presidential
\Cung Investigator Award, No. IRI-8553925, and a grant
from Rockwell International. Tlla.nks to Valerie Aylett for
drawing the graphs and figures, to Cindy Mason, Jot Pem-
berton, and Ed Purcell for their cornmcnt.s on an early draft
of this manuscript, and to Stuart Russell for discussions on
related work.

cost of node n is g(n), the sum of the edge costs from
the root to node n, then best-first search becomes Di-
jkstra’s single-source shortest-path algorithm[Dijkstra
19591. If the cost function is f(n) = g(n)+ h(n), where
h(lz) is a heuristic estimate of the cost of reaching a
goal from node n, then best-first search becomes the
A* algorithm[IIart, Nilsson, & Raphael 19681.

Since best-first search stores all generated nodes in
the Open or Closed lists, its space complexity is the
same as its time complexity, which is typically expo-
nential. Given the ratio of memory to processing speed
on current computers, in practice best-first search ex-
hausts the available memory on most machines in a
matter of minutes, halting the algorithm.

Previous Work: Iterative Deepening
The memory limitation of best-first sea.rch was first
addressed by iterative deepening[I<orf 19851. Itera-
tive decpcning performs a series of depth-first searches,
pruning branches when their cost exceeds a threshold
for that iteration. The initial threshold is the cost
of the root node, and the threshold for each succeed-
ing iteration is the minimum node cost that exceeded
the previous threshold. Since iterative deepening is a
depth-first algorithm, it only stores the nodes on the
current search path, requiring space that is only lin-
ear in the search depth. As with best-first search, dif-
ferent cost functions produce different iterative deep-
cning algorit,hms, including depth-first iterative deep-
ening (f(12) = depth(n)) and iterative-deepening-A*
(f(4 = m + 44)*

If h(12) is consistent[Pearl 19841, all the cost func-
tions described above are 7~2onutonic, in the sense that
the cost of a child is always greater than or equal
to the cost, of its parent. With a monotonic cost
function, the order in which nodes are first expanded
by iterative deepening is best first. Many importa.nt
cost functions are non-monotonic, however, such as
f(n) = g(n) + IV. h(n)[Pohl 1970] with CV > 1. The
advantage of this cost function is that while it returns
suboptimai solutions, it generates far fewer nodes thaa
arc required to find optima.1 solutions.

With a non-monotonic cost function, the cost of a

Korf 533

From: AAAI-92 Proceedings. Copyright ©1992, AAAI (www.aaai.org). All rights reserved.

Figure 1: SRBFS with non-monotonic cost function

child can be less than the cost of its parent, and iter-
ative deepening no longer expands nodes in best-first
order. For example, consider the tree fragment in Fig-
ure lB, ignoring the caption and inequalities for now,
where the numbers in the nodes represent their costs.
A best-first search would expand these nodes in the
order 5, 1, 2. With iterative deepening, the initial
threshold would be the cost of the root node, 5. Af-
ter generating the left child of the root, node 2, iter-
ative deepening would expand all descendents of node
2 whose costs did not exceed the threshold of 5, in
depth-first order, before expanding node 1. Even if all
the children of a node were generated at once, and or-
dered by their cost values, so that uode 1 was expanded
before node 2, iterative deepening would explore the
subtrees below nodes 4 and 3 before expauding node
2. The real problem here is that while searching nodes
whose costs are less than the current threshold, itera-
tive deepening ignores the information in the values of
those nodes, and proceeds strictly depth first.

Recursive Best-First Search
Recursive best-firs-t search (RBFS) is a linear-space al-
gorithm that always expands nodes in best-first order,
even with a non-monotonic cost function. For ped-
agogical reasons, we first present a simple version of
the algorithm (SRBFS), and then consider the more
efficient full algorithm (RBFS). These algorithms first
appeared in [Korf 1991a], the main results were de-
scribed in [Korf 1991b], and a full treatment appears
in [Korf 1991c], including proofs of all the theorems.

Simple Recursive Best-First Search
While iterative-deepening uses a global cost t,hreshold,
Simple Recursive Best-First Search (SRBFS) uses a
local cost threshold for each recursive call. It takes
two arguments, a node aud an upper bound 011 cost,
and explores the subtree below the node as long as it
contains frontier nodes whose costs do not exceed the
upper bound. It then returns the minimum cost, of t,he
frontier nodes of the explored subtree. Figure 1 shows
how SRBFS searches the tree in Figure 1B in best-
first order. The initial call on the root, is made with an
upper bound of infinity. We expand the root, and com-
pute the costs of the children as shown in Figure 1A.
Since the right child has the lower cost, we recursively

Figure 2: SRBFS example w th cost equal to depth

call SRBFS ou the right child. The best Open nodes in
the tree will be descendents of the right child as long
as their costs do not exceed the value of the left child.
Thus, the recursive call on the right child is made with
an upper bound equal to the value of its best (only)
brother , 2. SRBFS expands the right child, and eval-
uates the grandchildren, as shown in Figure 1B. Since
the values of both grandchildren, 4 and 3, exceed the
upper bound on their parent, 2, the recursive call ter-
minates. It returns as its result the minimum value of
its children, 3. This backed-up value of 3 is stored as
the new value of the right child (figure lC), indicating
that the lowest-cost Open node below this node has a
cost of 3. A recursive call is then made 011 the new
best child, the left one, with an upper bound equal to
3, which is the new value of its best brother, the right
child. In general, the upper bound on a child node is
equal to the minimum of the upper bound on its par-
ent, and the current value of its lowest-cost brother.

Figure 2 shows a more extensive example of SRBFS.
In this case, the cost function is simply the depth of a
node in the tree, corresponding to breadth-first search.

Initially, the stored value of a node, F(n), equals its
stntic value, f(n). After a recursive call on the node
ret,urns, its stored value is equal to the minimum value
of all frontier nodes in the subtree explored duriug the
last call. SRBFS proceeds down a pakh until the stored
values of all children of the last node expanded exceed

534 Problem Solving: Search and Expert Systems

Figure 3: Inefficiency of SRBFS and its solution

the stored value of one of the nodes further up the tree.
It then returns back up the tree, replacing parent val-
ues with the minimumof their children’s values, until it
reaches the better node, and then proceeds down that
path. The algorithm is purely recursive with no side
effects, resulting in very low overhead per node gener-
ation. In pseudo-code, the algorithm is as follows:

SRBFS (node: N, bound: B)
IF f(N)>B, RETURN f(N)
IF N is a goal, EXIT algorithm
IF N has no children, RETURN infinity
FOR each child Ni of N, F[i] := f(Ni)
sort Ni and F[il in increasing order of F[i]
IF only one child, FL21 := infinity
WHILE (F[l] C= B)

FL11 := SRBFS(N1, MIN(B, F[23))
insert Ml and FE11 in sorted order

return F Cl]

Once a goal is reached, the actual solution path is
on the recursion stack, and returning it involves simply
recording the moves at each level. For simplicity, we
omit this from the above description.

SRBFS expands nodes in best-first order, even if the
cost function is non-monotonic. IJnfortunately, how-
ever, SRBFS is inefficient. If we continue the example
from figure 2, where cost is equal to depth, eventu-
ally we would reach the situation shown in figure 3A,
for example, where the left child has been explored to
depth 7 and the right child to depth 8. Next, a recur-
sive call will be made on the left child, with an upper
bound of 8, the value of its brother. The left child
will be expanded, and its two children assigned their
static values of2, as shown in figure 3B. At tllis point,
a recursive call will be made on the right grandchild
with an upper bound of 2, the minimum of it,s parent’s
bound of 8, and its brother’s value of 2. Thus: the
right grandchild will be explored to depth 3, the left
grandchild to depth 4, the right to depth 5, the left to
depth 6, and the right to depth 7, before new ground
can finally be broken by exploring the left grandchild
to depth 8. Most of this work is redundant, since t,he
left child has alrea.dy been explored to depth 7.

Full Recursive Best-First Search
The way to avoid this inefficiency is for children to in-
herit their parent’s values as their own, if the parent’s

values are greater than the children’s values. In the
above example, the children of the left child should
inherit 7 as their stored value instead of 2, as shown
in figure 3C. Then, the right grandchild would be ex-
plored immediately to depth 8 before exploring the left
grandchild. However, we must distinguish this case
from that in figure 1, where the fact that the child’s
value is smaller than its parent’s value is due to non-
monotonicity of the cost function, rather than previous
expansion of the parent node. In that case, the chil-
dren should not inherit their parent’s value, but use
their static values instead.

The distinction is made by comparing the stored
value of a node, F(n), to its static value, f(n). If
a node’s stored value equals its static value, then it
has never been expanded before, and its children’s val-
ues should be set to their static values. If a node’s
stored value exceeds its static value, then it has been
expanded before, and its stored value is the minimum
of its children’s last stored values. The stored value
of such a node is thus a lower bound on the values of
its children, and the values of the children should be
set to the maximum of their parent’s stored value and
their own static values. A node’s stored value cannot
be less than its static value.

The full recursive best-first search algorithm (RBFS)
takes three arguments: a node N, its stored value V,
and an upper bound B. The top-level call to RBFS
is made on the start node s, with a value equal to the
static value of s, f(s), and an upper bound of 00. In
pseudo-code, the algorithm is as follows:

RBFS (node: N, value: V, bound: B)
IF f(N)>B, return f(N)
IF N is a goal, EXIT algorithm
IF N has no children, RETURN infinity
FOR each child Ni of N,

IF f(N)<V AND f(Ni)CV THEN F[i] := V
ELSE F[i] := f(Ni)

sort Ni and F[il in increasing order of F[i]
IF only one child, FE21 := infinity
WHILE (FL-11 <= B)

FE11 := RBFS(N1, F[l], MIN(B, F[21))
insert Nl and F[l] in sorted order

return F[l]

Like SRBFS, RBFS explores new nodes in best-first
order, even with a non-monotonic cost function. Its ad-
vantage over SRBFS is that it is more efficient. While
SRBFS expands all nodes in best-first order, RBFS
only expands new nodes in best-first order, and ex-
pands previously expanded nodes in depth-first order.

If there are cycles in the graph, and cost does not
always increase while traversing a cycle, as with a cost
function such as f(n) = h(n), RBFS must be modified
to avoid infinite loops. In particular, each new node
must be compared against tile stack of nodes on the
current path, and pruned if it is already on the stack.

Korf 535

Theoretical Results
We briefly present the main theoretical properties of
SRBFS and RBFS. Space limitations preclude the for-
mal statements and proofs of the theorems found in
[Korf 1991c]. The most important result, and the most
difficult to establish, is that both SRBFS and RBFS
are best-first searches. In other words, the first time a
node is expanded, its cost is less than or equal to that
of all other nodes that have been generated, but not
yet expanded so far. What distinguishes these algo-
rithms from classical best-first search is that the space
complexity of both SRBFS and RBFS is O(M), where
b is the branching factor, and d is the maximum search
depth. The reason is that at any given point, the recur-
sion stack only contains the path to the best frontier
node, plus the brothers of all nodes on that p&h. If
we assume a constant branching factor, the space com-
plexity is linear in the search depth.

While the time complexities of both algorithms are
linear in the number of nodes generated, this num-
ber is heavily dependent on the particular cost func-
tion. In the worst case, all nodes have unique cost
values, and the asymptotic time complexity of both al-
gorithms is O(b2d). This is the same as the worst-case
time complexity of IDA* on a tree[Patrick, Almulla, &
Newborn]. This scenario is somewhat unrealistic, how-
ever, since in order to maintain unique cost values in
the face of an exponentially growing number of nodes,
the number of bits used to represent the values must
increase with each level of the tree.

As a more realistic example of time complcxit$y, we
examined the special case of a uniform tree where
the cost of a node is its depth in the tree, corre-
sponding to breadth-first search. In this case, the
asymptotic time complexity of SRBFS is 0(xd), where
z = (b+ l+ db2 + 2b - 3)/Z For large values of b, this
approaches O((b+ l)d). The asymptotic time complex-
ity of RBFS, however, is O(bd), showing that RBFS is
asymptotically optimal in this case, but SR.BFS is not.

Finally, for the important special cease of a mono-
tonic cost function, RBFS generates fewer nodes than
iterative deepening, up to tie-brea.king among nodes of
equal cost. With a monotonic cost function, both algo-
rithms expand all nodes of a given cost. before cspand-
ing any nodes of greater cost. In itemtive deepeuing,
each new iteration expands nodes of greater cost. Be-
tween iterations, the search path collapses to just the
root node, and the entire tree must be regenerated to
find the nodes of next greater cost. For RBFS, we cau
similarly define an “itera.tion” as the int,erval of t8ime
when those nodes being expanded for the first time are
all of the same cost. When the last node of a given cost
is expanded, ending the current itera.tion, the recursion
stack contains the path to that node, plus the brothers
of all nodes on that path. Many of these brother nodes
will have stored values equa,l to the next greater cost,
and the subtrees below these nodes will be explored in
the next iteration. Other nodes attached to this path

50% 60% 70% 80% 90% 100%

relative weight of h(n) term

I ----- Bound - - - WIDA’ - RBFS/WA’
I

Figure 4: Solutions Lengths vs. Weight on h(n)

ma.y have greater costs associated with them, a.nd will
not be searched in the next iteration. Thus, while it-
erative deepening must regenerate the entire previous
tree during each new iteration, RBFS will only explore
the subtrees of brother nodes on the last path of the
previous iteration whose stored values equal the up-
per bound for the next iteration. If nodes of similar
cost are highly clustered in the tree, this will result in
significant savings. Even in those situations where the
entire tree must be explored in each iteration, as in the
case of brea.dth-first search, RBFS avoids regenerating
the last path of the previous iteration, although the
savings is not significant in that case.

Experimental Results
We implemented RBFS on the Travelling Salesman
Problem (TSP) and the sliding-t,ile puzzles. For TSP,
using the monotonic A* cost function f(n) = g(n) +
h(?b), with the minimumspa.nning tree heuristic, RBFS
genera.tes only one-sixth as many nodes as IDA*,
while finding optimal solutions. Both algorithms, how-
ever, generate more nodes than depth-first branch-and-
bound, another linear-space algorithm.

On the Eight Puzzle, with the A* cost function and
the Manhattan Distance heuristic, RBFS finds optimal
solutions while generating slightly fewer nodes than
IDA*. Depth-first branch-and-bound doesn’t work on
this problem, since finding any solution is difficult.

In order to find sub-optimal solutions more quickly,
we used the weighted non-monotonic cost function,
m-4 = g(n) + W - h(n), with FV > l[Pohl 19701.
M7e ran three different algorithms on the Fifteen Puz-
zle with this function: weighted-A* (WA*), weighted-
IDA* (WIDA*), and RBFS. The solutions returned are
guaranteed to be within a factor of CV of optimal[Davis,
Bramanti-Gregor, & Wang 19891, but in practice a.11
three algorithms produce significantly better solutions,
as shown in figure 4. The horizontal a.xis is the rel-
ative weight on 12.(n), or lOOFV/(IV + l), while the
vert+al axis shows the solution lengths in moves. All
data points are averages of the 100 problem instances
in [Korf 1985]. The bottom line shows the solution
lengths returned by WA* and RBFS. Since both algo-
rithms are best-first searches, they produce solutions

536 Problem Solving: Search and Expert Systems

n 1 ,ooo,ooo,ooo

0 1 oo,ooo,ooo

d 1 o,ooo,ooo

e 1 ,ooo,ooo
s 100,000

53 58 83 68 73 78

moves

I --- WIDA’ - RBFS
I

Figure 5: Nodes Generated vs. Solution Length

of the same average quality, with individual differences
due to tie-breaking among nodes of equal cost. VVe
were not able to run WA* with less than 75% of the
weight on h(n), since it exhausted the a.vailable mem-
ory of 100,000 nodes. The middle line shows that,
WIDA* produces significantly longer solutions as the
the weight on h(n) increases, since it explores nodes
in depth-first order rather than best-first order. As
the weight approaches lOO%, the solution lengths re-
turned by WIDA* grow to infinity. The top line shows
the guaranteed bound on solution quality, which is IV
times the optimal solution length of 53 moves.

Figure 5 shows the average number of nodes gener-
ated as a function of solution length by RBFS and
WIDA*, with relative weights on h(lz) of less than
75%. Small weights on h(n) reduce the node gen-
erations by orders of magnitude, with only small in-
creases in the resulting solution lengths. Neither algo-
rithm dominates the other in this particular problem
domain. While the utility of f(n) = g(n) + W l h(n)
has previously been demonstrated on problems small
enough to fit the search space in memory, such as the
Eight Puzzle[Gaschnig 1979; Davis, Bramanti-Gregor,
& Wang 19891, these experiments show tha,t the benefit
is even greater on larger problems.

Finally, we ran RBFS and WIDA* on 1000 different
5 x 5 Twenty-Four Puzzle problem instances with TV =
3. RBFS returned solutions that avera.ged 169 moves,
while generating an avera.ge of 93891,942 nodes, com-
pared to an average of 216 moves and 44,324,205 nodes
for WIDA*. In both cases, however, t.he variation
in nodes generated over individual problem instances
was over six orders of ma.gnitude. Wit,11 IT/’ = 3,
RISFS outperforms RTA*[I<orf 1990a], heuristic sub-
goal search[Korf 1990b], and Stepping Stone[Ruby S:
Kibler 1989]. With Iv < 3, the running times of both
RBFS and WIDA* precludecl solving sufkient num-
bers of problems to draw meaningful conclusions.

An important feature of RBFS is that it can clistin-
guish a node being expanded for the first. time, from
one being reexpanded, by comparing its stored value to
its static value. If they are equal, it, is a. new node, and
otherwise it has previously been expanded. This allows
us to determine the overhead due to node rcgcneration.
In our sliding-tile experiments, for a given value of CTr,

the total nodes generated by RBFS were a constant
times the number that would be generated by standard
best-first search on a tree, in spite of enormous vari-
ation in the number of nodes generated in individual
problem instances. For example, with i;V = 3 RBFS
incurred an 85% node regeneration overhead, which
remained constant over different problem instances of
both the Fifteen and Twenty-Four Puzzles. The node
regeneration overhead varied from a low of 20% with
w = 1, to a high of 1671% with 61% of the weight
on h(n). The variation is due to the number of ties
among nodes with the same f(fa) value. For efficiency,
the weighted cost function is actually implemented by
multiplying both g(n) and h(n) by relatively prime in-
tegers Iv, and Ivb, respectively, where Iv = wh/I’vg.
M’it h iv = is> = i%‘h = 1, many nodes with different
g(n) and It(n) values have the same f(?z) value, whereas
with IIrg = 39 and IITh = 61, most nodes with the same
f(n) value have the same g(n) and h(n.) values as well,
resulting in far fewer ties among f(n) values.

In terms of time per node generation, RBFS is about
29% slower tl1a.n WIDA*, and about a factor of three
faster than WA*. The reason that RBFS and WIDA*
are faster than WA* is that they are purely recursive
algorithms with no Open or Closed lists to maintain.
The magnitude of these differences is due to the fact
that node generation and evaluation is very efficient
for the sliding-tile puzzles, and these d ifferences would
be smaller on more complex problems.

Related Work
In comparing RBFS to other memory-limited al-
gorithms such as hfR.EC[Sen & Bagchi 1989],
hIA*[Chakrabarti et al. 19891, DFS*[Rao, Kumar, &
Iiorf 19911, IDA*-CR[Sarkar et a.1. 19911, hIIDA*[Wah
1991], ITS[hIahanti et al. 19921, IE[Russell 19921,
and ShIA*[Russell 19921, the most important differ-
ence is that none of these other algorithms expand
nodes in best-first order when the cost function is non-
monotonic. IIowever, many of the techniques in these
algorithms can be applied to RBFS as well, in order to
reduce the node regeneration overhead.

Recently, we became aware of the Iterative Expan-
sion (II?,) algorit~hm[Russell 19921, which was developed
independently. IE is virtually identical to SRBFS, ex-
cept that, A node always inherits its parent’s cost if the
parent’s cost is great’er than the child’s cost. As a. re-
sult, IE is not a best-first search with a non-monotonic
cost function, but, behaves the same as RBFS for the
special ca.se of a monotonic cost function. The per-
formance of IE on our sliding-tile puzzle experiments
should be very similar to that of WIDA*.

Some of the ideas in RBFS, IE, hIA*, and RIREC, in
particular using the value of the next best brother as an
upper bound, and backing up the minimum values of
children to their parents, can be found in Bra.tko’s for-
mulation of best-first search[BratBo 19861, which uses
es1~0nentia.1 space, however.

Korf 537

Conclusions
RBFS is a linear-space algorithm that a.lways ex-
pands new nodes in best-first order, even with a non-
monotonic cost function. While its time complexity
depends on the cost function, for the special case where
cost is equal to depth, corresponding to breadth-first,
search, RBFS is asymptotically optimal, generating
O(bd) nodes. With a monotonic cost function, it finds
optimal solutions, while expanding fewer nodes than
iterative-deepening. With a non-monotonic cost func-
tion on the sliding-tile puzzles, both RBFS and iter-
ative deepening generate orders of magnitude fewer
nodes than required to find optimal solutions, with
only small increases in solution lengths. RBFS consis-
tently finds shorter solutions than iterative deepening
with the same cost function, but also generates more
nodes in this domain. The number of nodes generated
by RBFS was a constant multiple of the nodes t1la.t
would be generated by standard best-first search on a
tree, if sufficient memory were available to execute it.
Thus, RBFS reduces the space complexity of best-first
search from exponential to linear in general, while in-
creasing the time complexity by only a constant factor
in our experiments and analyses.

References
Bratko, I., PROLOG: Programming for Artificial In-
telligence, Addison-Wesley, 1986, pp. 2G5-273.
Chakrabarti, P.P., S. Ghose, A. Acharya, and S.C. de
Sarkar, Heuristic search in restricted memory, Artifi-
cial Intelligence, Vol. 41, No. 2, Dec. 1989, pp. 197-
221.
Davis, H.W., A. Bramanti-Gregor, and J. Wang, The
advantages of using depth and breadth components
in heuristic search, in Methodologies for Intelligent
Systems 3, Z.W. Ras and L. Saitta (Eds.), North-
Holland, Amsterdam, 1989, pp. 19-28.
Dijkstra, E.W., A note on two problems in connexion
with graphs, Numerische Mathematih, Vol. 1, 1959,
pp. 269-71.
Gaschnig, J. Performance measurement and an.aly-
sis of certain search algorithms, Ph.D. thesis, Depart-
ment of Computer Science, Carnegie-hlellon Univer-
sity, Pittsburgh, Pa, 1979.
Hart, P.E., N.J. Nilsson, and B. Raphael, A formal
basis for the heuristic determination of minimum cost
paths, IEEE Transactions on Systems Science and
Cybernetics, Vol. 4, No. 2, 1968, pp. 100-3.07.
Korf, R.E., Depth-first itera.tive-deepening: A11 optsi-
oral admissible tree search, Artificial Intelligence, j’ol.
37, No. 1, 1985, pp. 97-109.
korf, R.E., Real-time heuristic search, Arl$cinl In-
telligence, Vol. 4-, 3 No. 3-3, hlarcll 1990, pp. 189-311.
Korf, R.E., Real-Time search for dynamic planning,
Proceedings of the AAAI Symposium on Plwning

in Uncertain, Unpredictable, or Changing Environ-
ments, Stanford, Ca., March 1990, pp. 72-76.
Korf, R.E., Best-first search in limited memory, in
UCLA Computer Science Annual, University of Cal-
ifornia, Los Angeles, Ca., April, 1991, pp. 5-22.
Korf, R.S., Linear-Space Best-First Search: Extended
Abstra.ct, Proceedings of the Sixth International Sym-
posium on Computer and Information Sciences, An-
talya, Turkey, October 30, 1991, pp. 581-584.
Korf, R.E., Linear-space best-first search, submitted
for publication, August 1991.
RJahanti, A., D.S. Nau, S. Ghosh, and L.N. Kanal,
An Efficient Iterative Threshold Heuristic Tree Search
Algorithm, Technical Report UMIACS TR 92-29, CS
TR 2853, Computer Science Department, University
of hlaryland, College Park, Md, March 1992.
Patrick, B.G., M. Almulla, and M.M. Newborn,
An upper bound on the complexity of iterative-
deepening-A*, in Proceedings of the Symposium on
Artificial Intelligence and Mathematics, Ft. Laud-
erdale, Fla., Dec. 1989.
Pearl, J. Heuristics, Addison-Wesley, Reading, Mass,
1984.
Pohl, I., Heuristic search viewed as path finding in a
graph, Artificial Intelligence, Vol. 1, 1970, pp. 193-
204.

Rao, V.N., V. Kumar, and R.E. Korf, Depth-first vs.
best-first search, Proceedings of the National Confer-
ence 011 Artifkial Intelligence, (AAAI-91), Anaheim,
Ca., July, 1991, pp. 434-440.
Ruby, D., and D. Kibler, Learning subgoal se-
quences for planning, Proceedings of the Eleventh In-
tern.ational Joint Conference on Artificial Intelligence
(IJCAI-89), Detroit, Mich, Aug. 1989, pp. 609-614.
Russell, S., Efficient memory-bounded search meth-
ods, Proceedings of the Tenth European Conference
on Artilfcial Intelligence (ECAI-92), Vienna, Austria,
Aug., 1992.
Sarkar, U.K., P.P. Chakrabarti, S. Ghose, and
S.C. DeSarkar, Reducing reexpansions in iterative-
deepening search by controlling cutoff bounds, Ar-
tificial Intelligence, Vol. 50, No. 2, July, 1991, pp.
207-221.
Sen, A.K., and A. Ba.gchi, Fast recursive formulations
For best-first search that allow controlled use of mem-
ory, Proceedings of the 11th International Joint Con-
ference on Artificial Intelligence (IJCAI-89), Detroit,
h$ichigan, Aug., 1989, pp. 297-302.
Wall, B.W., MIDA*, An IDA* search with dy-
namic control, Technical Report UILIJ-ENG-91-
2216, CRIIC-91-9, Center for Reliable and High-
Performance Computing, Coordinated Science Labo-
ratory, IJniversity of Illinois, Urbana, Ill., April, 1991.

538 Problem Solving: Search and Expert Systems

