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Abstract 

Best-first search is a general search algorithm that, 
always expands next a frontier node of lowest cost. 
Its applicability, however, is limited by its expo- 
nential memory requirement. Iterative deepen- 
ing, a previous approach to this problem, does 
not expand nodes in best-first, order if t’he cost, 
function can decrease along a path. We present 
a linear-space best-first search algorithm (RBFS) 
that always explores new nodes in best-first or- 
der, regardless of the cost function, and expands 
fewer nodes than iterative deepening with a. non- 
decreasing cost function. On the sliding-tile puz- 
zles, RBFS with a weighted evaluation function 
dramatically reduces computation time with only 
a small penalty in solution cost. In general, RBFS 
reduces the space complexity of best-first search 
from exponential to linear, a.t the cost of only a 
constant factor in time complexity in our expcri- 
ments. 

Introduction: Best-First Search 
Best-first search is a very general heuristic search algo- 
rithm. It maintains an Open list of the frontier nodes 
of a partially expanded search graph, and a Closed list 
of the interior nodes. Every node has an associated 
cost value. At each cycle, an Open node of minimum 
cost is expanded, generating all of its children. The 
children are evaluated by the cost functfionY inserted 
into the Open list, and the pa.rent is placed on the 
Closed list. Initia.lly, the Open list contains just the 
initial node, and the algorithm terminates when a. goal 
node is chosen for expansion. 

If the cost of a node is its depth in the graph, then 
best-first search becomes breaclth-first search. If the 
-- 
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cost of node n is g(n), the sum of the edge costs from 
the root to node n, then best-first search becomes Di- 
jkstra’s single-source shortest-path algorithm[Dijkstra 
19591. If the cost function is f(n) = g(n)+ h(n), where 
h(lz) is a heuristic estimate of the cost of reaching a 
goal from node n, then best-first search becomes the 
A* algorithm[IIart, Nilsson, & Raphael 19681. 

Since best-first search stores all generated nodes in 
the Open or Closed lists, its space complexity is the 
same as its time complexity, which is typically expo- 
nential. Given the ratio of memory to processing speed 
on current computers, in practice best-first search ex- 
hausts the available memory on most machines in a 
matter of minutes, halting the algorithm. 

Previous Work: Iterative Deepening 
The memory limitation of best-first sea.rch was first 
addressed by iterative deepening[I<orf 19851. Itera- 
tive decpcning performs a series of depth-first searches, 
pruning branches when their cost exceeds a threshold 
for that iteration. The initial threshold is the cost 
of the root node, and the threshold for each succeed- 
ing iteration is the minimum node cost that exceeded 
the previous threshold. Since iterative deepening is a 
depth-first algorithm, it only stores the nodes on the 
current search path, requiring space that is only lin- 
ear in the search depth. As with best-first search, dif- 
ferent cost functions produce different iterative deep- 
cning algorit,hms, including depth-first iterative deep- 
ening (f( 12) = depth(n)) and iterative-deepening-A* 
(f(4 = m + 44)* 

If h(12) is consistent[Pearl 19841, all the cost func- 
tions described above are 7~2onutonic, in the sense that 
the cost of a child is always greater than or equal 
to the cost, of its parent. With a monotonic cost 
function, the order in which nodes are first expanded 
by iterative deepening is best first. Many importa.nt 
cost functions are non-monotonic, however, such as 
f(n) = g(n) + IV. h(n)[Pohl 1970] with CV > 1. The 
advantage of this cost function is that while it returns 
suboptimai solutions, it generates far fewer nodes thaa 
arc required to find optima.1 solutions. 

With a non-monotonic cost function, the cost of a 
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Figure 1: SRBFS with non-monotonic cost function 

child can be less than the cost of its parent, and iter- 
ative deepening no longer expands nodes in best-first 
order. For example, consider the tree fragment in Fig- 
ure lB, ignoring the caption and inequalities for now, 
where the numbers in the nodes represent their costs. 
A best-first search would expand these nodes in the 
order 5, 1, 2. With iterative deepening, the initial 
threshold would be the cost of the root node, 5. Af- 
ter generating the left child of the root, node 2, iter- 
ative deepening would expand all descendents of node 
2 whose costs did not exceed the threshold of 5, in 
depth-first order, before expanding node 1. Even if all 
the children of a node were generated at once, and or- 
dered by their cost values, so that uode 1 was expanded 
before node 2, iterative deepening would explore the 
subtrees below nodes 4 and 3 before expauding node 
2. The real problem here is that while searching nodes 
whose costs are less than the current threshold, itera- 
tive deepening ignores the information in the values of 
those nodes, and proceeds strictly depth first. 

Recursive Best-First Search 
Recursive best-firs-t search (RBFS) is a linear-space al- 
gorithm that always expands nodes in best-first order, 
even with a non-monotonic cost function. For ped- 
agogical reasons, we first present a simple version of 
the algorithm (SRBFS), and then consider the more 
efficient full algorithm (RBFS). These algorithms first 
appeared in [Korf 1991a], the main results were de- 
scribed in [Korf 1991b], and a full treatment appears 
in [Korf 1991c], including proofs of all the theorems. 

Simple Recursive Best-First Search 
While iterative-deepening uses a global cost t,hreshold, 
Simple Recursive Best-First Search (SRBFS) uses a 
local cost threshold for each recursive call. It takes 
two arguments, a node aud an upper bound 011 cost, 
and explores the subtree below the node as long as it 
contains frontier nodes whose costs do not exceed the 
upper bound. It then returns the minimum cost, of t,he 
frontier nodes of the explored subtree. Figure 1 shows 
how SRBFS searches the tree in Figure 1B in best- 
first order. The initial call on the root, is made with an 
upper bound of infinity. We expand the root, and com- 
pute the costs of the children as shown in Figure 1A. 
Since the right child has the lower cost, we recursively 

Figure 2: SRBFS example w th cost equal to depth 

call SRBFS ou the right child. The best Open nodes in 
the tree will be descendents of the right child as long 
as their costs do not exceed the value of the left child. 
Thus, the recursive call on the right child is made with 
an upper bound equal to the value of its best (only) 
brother , 2. SRBFS expands the right child, and eval- 
uates the grandchildren, as shown in Figure 1B. Since 
the values of both grandchildren, 4 and 3, exceed the 
upper bound on their parent, 2, the recursive call ter- 
minates. It returns as its result the minimum value of 
its children, 3. This backed-up value of 3 is stored as 
the new value of the right child (figure lC), indicating 
that the lowest-cost Open node below this node has a 
cost of 3. A recursive call is then made 011 the new 
best child, the left one, with an upper bound equal to 
3, which is the new value of its best brother, the right 
child. In general, the upper bound on a child node is 
equal to the minimum of the upper bound on its par- 
ent, and the current value of its lowest-cost brother. 

Figure 2 shows a more extensive example of SRBFS. 
In this case, the cost function is simply the depth of a 
node in the tree, corresponding to breadth-first search. 

Initially, the stored value of a node, F(n), equals its 
stntic value, f(n). After a recursive call on the node 
ret,urns, its stored value is equal to the minimum value 
of all frontier nodes in the subtree explored duriug the 
last call. SRBFS proceeds down a pakh until the stored 
values of all children of the last node expanded exceed 
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Figure 3: Inefficiency of SRBFS and its solution 

the stored value of one of the nodes further up the tree. 
It then returns back up the tree, replacing parent val- 
ues with the minimumof their children’s values, until it 
reaches the better node, and then proceeds down that 
path. The algorithm is purely recursive with no side 
effects, resulting in very low overhead per node gener- 
ation. In pseudo-code, the algorithm is as follows: 

SRBFS (node: N, bound: B) 
IF f(N)>B, RETURN f(N) 
IF N is a goal, EXIT algorithm 
IF N has no children, RETURN infinity 
FOR each child Ni of N, F[i] := f(Ni) 
sort Ni and F[il in increasing order of F[i] 
IF only one child, FL21 := infinity 
WHILE (F[l] C= B) 

FL11 := SRBFS(N1, MIN(B, F[23)) 
insert Ml and FE11 in sorted order 

return F Cl] 

Once a goal is reached, the actual solution path is 
on the recursion stack, and returning it involves simply 
recording the moves at each level. For simplicity, we 
omit this from the above description. 

SRBFS expands nodes in best-first order, even if the 
cost function is non-monotonic. IJnfortunately, how- 
ever, SRBFS is inefficient. If we continue the example 
from figure 2, where cost is equal to depth, eventu- 
ally we would reach the situation shown in figure 3A, 
for example, where the left child has been explored to 
depth 7 and the right child to depth 8. Next, a recur- 
sive call will be made on the left child, with an upper 
bound of 8, the value of its brother. The left child 
will be expanded, and its two children assigned their 
static values of2, as shown in figure 3B. At tllis point, 
a recursive call will be made on the right grandchild 
with an upper bound of 2, the minimum of it,s parent’s 
bound of 8, and its brother’s value of 2. Thus: the 
right grandchild will be explored to depth 3, the left 
grandchild to depth 4, the right to depth 5, the left to 
depth 6, and the right to depth 7, before new ground 
can finally be broken by exploring the left grandchild 
to depth 8. Most of this work is redundant, since t,he 
left child has alrea.dy been explored to depth 7. 

Full Recursive Best-First Search 
The way to avoid this inefficiency is for children to in- 
herit their parent’s values as their own, if the parent’s 

values are greater than the children’s values. In the 
above example, the children of the left child should 
inherit 7 as their stored value instead of 2, as shown 
in figure 3C. Then, the right grandchild would be ex- 
plored immediately to depth 8 before exploring the left 
grandchild. However, we must distinguish this case 
from that in figure 1, where the fact that the child’s 
value is smaller than its parent’s value is due to non- 
monotonicity of the cost function, rather than previous 
expansion of the parent node. In that case, the chil- 
dren should not inherit their parent’s value, but use 
their static values instead. 

The distinction is made by comparing the stored 
value of a node, F(n), to its static value, f(n). If 
a node’s stored value equals its static value, then it 
has never been expanded before, and its children’s val- 
ues should be set to their static values. If a node’s 
stored value exceeds its static value, then it has been 
expanded before, and its stored value is the minimum 
of its children’s last stored values. The stored value 
of such a node is thus a lower bound on the values of 
its children, and the values of the children should be 
set to the maximum of their parent’s stored value and 
their own static values. A node’s stored value cannot 
be less than its static value. 

The full recursive best-first search algorithm (RBFS) 
takes three arguments: a node N, its stored value V, 
and an upper bound B. The top-level call to RBFS 
is made on the start node s, with a value equal to the 
static value of s, f(s), and an upper bound of 00. In 
pseudo-code, the algorithm is as follows: 

RBFS (node: N, value: V, bound: B) 
IF f(N)>B, return f(N) 
IF N is a goal, EXIT algorithm 
IF N has no children, RETURN infinity 
FOR each child Ni of N, 

IF f(N)<V AND f(Ni)CV THEN F[i] := V 
ELSE F[i] := f(Ni) 

sort Ni and F[il in increasing order of F[i] 
IF only one child, FE21 := infinity 
WHILE (FL-11 <= B) 

FE11 := RBFS(N1, F[l], MIN(B, F[21)) 
insert Nl and F[l] in sorted order 

return F[l] 

Like SRBFS, RBFS explores new nodes in best-first 
order, even with a non-monotonic cost function. Its ad- 
vantage over SRBFS is that it is more efficient. While 
SRBFS expands all nodes in best-first order, RBFS 
only expands new nodes in best-first order, and ex- 
pands previously expanded nodes in depth-first order. 

If there are cycles in the graph, and cost does not 
always increase while traversing a cycle, as with a cost 
function such as f(n) = h(n), RBFS must be modified 
to avoid infinite loops. In particular, each new node 
must be compared against tile stack of nodes on the 
current path, and pruned if it is already on the stack. 
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Theoretical Results 
We briefly present the main theoretical properties of 
SRBFS and RBFS. Space limitations preclude the for- 
mal statements and proofs of the theorems found in 
[Korf 1991c]. The most important result, and the most 
difficult to establish, is that both SRBFS and RBFS 
are best-first searches. In other words, the first time a 
node is expanded, its cost is less than or equal to that 
of all other nodes that have been generated, but not 
yet expanded so far. What distinguishes these algo- 
rithms from classical best-first search is that the space 
complexity of both SRBFS and RBFS is O(M), where 
b is the branching factor, and d is the maximum search 
depth. The reason is that at any given point, the recur- 
sion stack only contains the path to the best frontier 
node, plus the brothers of all nodes on that p&h. If 
we assume a constant branching factor, the space com- 
plexity is linear in the search depth. 

While the time complexities of both algorithms are 
linear in the number of nodes generated, this num- 
ber is heavily dependent on the particular cost func- 
tion. In the worst case, all nodes have unique cost 
values, and the asymptotic time complexity of both al- 
gorithms is O(b2d). This is the same as the worst-case 
time complexity of IDA* on a tree[Patrick, Almulla, & 
Newborn]. This scenario is somewhat unrealistic, how- 
ever, since in order to maintain unique cost values in 
the face of an exponentially growing number of nodes, 
the number of bits used to represent the values must 
increase with each level of the tree. 

As a more realistic example of time complcxit$y, we 
examined the special case of a uniform tree where 
the cost of a node is its depth in the tree, corre- 
sponding to breadth-first search. In this case, the 
asymptotic time complexity of SRBFS is 0( xd), where 
z = (b+ l+ db2 + 2b - 3)/Z For large values of b, this 
approaches O((b+ l)d). The asymptotic time complex- 
ity of RBFS, however, is O(bd), showing that RBFS is 
asymptotically optimal in this case, but SR.BFS is not. 

Finally, for the important special cease of a mono- 
tonic cost function, RBFS generates fewer nodes than 
iterative deepening, up to tie-brea.king among nodes of 
equal cost. With a monotonic cost function, both algo- 
rithms expand all nodes of a given cost. before cspand- 
ing any nodes of greater cost. In itemtive deepeuing, 
each new iteration expands nodes of greater cost. Be- 
tween iterations, the search path collapses to just the 
root node, and the entire tree must be regenerated to 
find the nodes of next greater cost. For RBFS, we cau 
similarly define an “itera.tion” as the int,erval of t8ime 
when those nodes being expanded for the first time are 
all of the same cost. When the last node of a given cost 
is expanded, ending the current itera.tion, the recursion 
stack contains the path to that node, plus the brothers 
of all nodes on that path. Many of these brother nodes 
will have stored values equa,l to the next greater cost, 
and the subtrees below these nodes will be explored in 
the next iteration. Other nodes attached to this path 
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Figure 4: Solutions Lengths vs. Weight on h(n) 

ma.y have greater costs associated with them, a.nd will 
not be searched in the next iteration. Thus, while it- 
erative deepening must regenerate the entire previous 
tree during each new iteration, RBFS will only explore 
the subtrees of brother nodes on the last path of the 
previous iteration whose stored values equal the up- 
per bound for the next iteration. If nodes of similar 
cost are highly clustered in the tree, this will result in 
significant savings. Even in those situations where the 
entire tree must be explored in each iteration, as in the 
case of brea.dth-first search, RBFS avoids regenerating 
the last path of the previous iteration, although the 
savings is not significant in that case. 

Experimental Results 
We implemented RBFS on the Travelling Salesman 
Problem (TSP) and the sliding-t,ile puzzles. For TSP, 
using the monotonic A* cost function f(n) = g(n) + 
h(?b), with the minimumspa.nning tree heuristic, RBFS 
genera.tes only one-sixth as many nodes as IDA*, 
while finding optimal solutions. Both algorithms, how- 
ever, generate more nodes than depth-first branch-and- 
bound, another linear-space algorithm. 

On the Eight Puzzle, with the A* cost function and 
the Manhattan Distance heuristic, RBFS finds optimal 
solutions while generating slightly fewer nodes than 
IDA*. Depth-first branch-and-bound doesn’t work on 
this problem, since finding any solution is difficult. 

In order to find sub-optimal solutions more quickly, 
we used the weighted non-monotonic cost function, 
m-4 = g(n) + W - h(n), with FV > l[Pohl 19701. 
M7e ran three different algorithms on the Fifteen Puz- 
zle with this function: weighted-A* (WA*), weighted- 
IDA* (WIDA*), and RBFS. The solutions returned are 
guaranteed to be within a factor of CV of optimal[Davis, 
Bramanti-Gregor, & Wang 19891, but in practice a.11 
three algorithms produce significantly better solutions, 
as shown in figure 4. The horizontal a.xis is the rel- 
ative weight on 12.(n), or lOOFV/(IV + l), while the 
vert+al axis shows the solution lengths in moves. All 
data points are averages of the 100 problem instances 
in [Korf 1985]. The bottom line shows the solution 
lengths returned by WA* and RBFS. Since both algo- 
rithms are best-first searches, they produce solutions 
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Figure 5: Nodes Generated vs. Solution Length 

of the same average quality, with individual differences 
due to tie-breaking among nodes of equal cost. VVe 
were not able to run WA* with less than 75% of the 
weight on h(n), since it exhausted the a.vailable mem- 
ory of 100,000 nodes. The middle line shows that, 
WIDA* produces significantly longer solutions as the 
the weight on h(n) increases, since it explores nodes 
in depth-first order rather than best-first order. As 
the weight approaches lOO%, the solution lengths re- 
turned by WIDA* grow to infinity. The top line shows 
the guaranteed bound on solution quality, which is IV 
times the optimal solution length of 53 moves. 

Figure 5 shows the average number of nodes gener- 
ated as a function of solution length by RBFS and 
WIDA*, with relative weights on h(lz) of less than 
75%. Small weights on h(n) reduce the node gen- 
erations by orders of magnitude, with only small in- 
creases in the resulting solution lengths. Neither algo- 
rithm dominates the other in this particular problem 
domain. While the utility of f(n) = g(n) + W l h(n) 
has previously been demonstrated on problems small 
enough to fit the search space in memory, such as the 
Eight Puzzle[Gaschnig 1979; Davis, Bramanti-Gregor, 
& Wang 19891, these experiments show tha,t the benefit 
is even greater on larger problems. 

Finally, we ran RBFS and WIDA* on 1000 different 
5 x 5 Twenty-Four Puzzle problem instances with TV = 
3. RBFS returned solutions that avera.ged 169 moves, 
while generating an avera.ge of 93891,942 nodes, com- 
pared to an average of 216 moves and 44,324,205 nodes 
for WIDA*. In both cases, however, t.he variation 
in nodes generated over individual problem instances 
was over six orders of ma.gnitude. Wit,11 IT/’ = 3, 
RISFS outperforms RTA*[I<orf 1990a], heuristic sub- 
goal search[Korf 1990b], and Stepping Stone[Ruby S: 
Kibler 1989]. With Iv < 3, the running times of both 
RBFS and WIDA* precludecl solving sufkient num- 
bers of problems to draw meaningful conclusions. 

An important feature of RBFS is that it can clistin- 
guish a node being expanded for the first. time, from 
one being reexpanded, by comparing its stored value to 
its static value. If they are equal, it, is a. new node, and 
otherwise it has previously been expanded. This allows 
us to determine the overhead due to node rcgcneration. 
In our sliding-tile experiments, for a given value of CTr, 

the total nodes generated by RBFS were a constant 
times the number that would be generated by standard 
best-first search on a tree, in spite of enormous vari- 
ation in the number of nodes generated in individual 
problem instances. For example, with i;V = 3 RBFS 
incurred an 85% node regeneration overhead, which 
remained constant over different problem instances of 
both the Fifteen and Twenty-Four Puzzles. The node 
regeneration overhead varied from a low of 20% with 
w = 1, to a high of 1671% with 61% of the weight 
on h(n). The variation is due to the number of ties 
among nodes with the same f(fa) value. For efficiency, 
the weighted cost function is actually implemented by 
multiplying both g(n) and h(n) by relatively prime in- 
tegers Iv, and Ivb, respectively, where Iv = wh/I’vg. 
M’it h iv = is> = i%‘h = 1, many nodes with different 
g(n) and It(n) values have the same f(?z) value, whereas 
with IIrg = 39 and IITh = 61, most nodes with the same 
f(n) value have the same g(n) and h(n.) values as well, 
resulting in far fewer ties among f(n) values. 

In terms of time per node generation, RBFS is about 
29% slower tl1a.n WIDA*, and about a factor of three 
faster than WA*. The reason that RBFS and WIDA* 
are faster than WA* is that they are purely recursive 
algorithms with no Open or Closed lists to maintain. 
The magnitude of these differences is due to the fact 
that node generation and evaluation is very efficient 
for the sliding-tile puzzles, and these d ifferences would 
be smaller on more complex problems. 

Related Work 
In comparing RBFS to other memory-limited al- 
gorithms such as hfR.EC[Sen & Bagchi 1989], 
hIA*[Chakrabarti et al. 19891, DFS*[Rao, Kumar, & 
Iiorf 19911, IDA*-CR[Sarkar et a.1. 19911, hIIDA*[Wah 
1991], ITS[hIahanti et al. 19921, IE[Russell 19921, 
and ShIA*[Russell 19921, the most important differ- 
ence is that none of these other algorithms expand 
nodes in best-first order when the cost function is non- 
monotonic. IIowever, many of the techniques in these 
algorithms can be applied to RBFS as well, in order to 
reduce the node regeneration overhead. 

Recently, we became aware of the Iterative Expan- 
sion (II?,) algorit~hm[Russell 19921, which was developed 
independently. IE is virtually identical to SRBFS, ex- 
cept that, A node always inherits its parent’s cost if the 
parent’s cost is great’er than the child’s cost. As a. re- 
sult, IE is not a best-first search with a non-monotonic 
cost function, but, behaves the same as RBFS for the 
special ca.se of a monotonic cost function. The per- 
formance of IE on our sliding-tile puzzle experiments 
should be very similar to that of WIDA*. 

Some of the ideas in RBFS, IE, hIA*, and RIREC, in 
particular using the value of the next best brother as an 
upper bound, and backing up the minimum values of 
children to their parents, can be found in Bra.tko’s for- 
mulation of best-first search[BratBo 19861, which uses 
es1~0nentia.1 space, however. 
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Conclusions 
RBFS is a linear-space algorithm that a.lways ex- 
pands new nodes in best-first order, even with a non- 
monotonic cost function. While its time complexity 
depends on the cost function, for the special case where 
cost is equal to depth, corresponding to breadth-first, 
search, RBFS is asymptotically optimal, generating 
O(bd) nodes. With a monotonic cost function, it finds 
optimal solutions, while expanding fewer nodes than 
iterative-deepening. With a non-monotonic cost func- 
tion on the sliding-tile puzzles, both RBFS and iter- 
ative deepening generate orders of magnitude fewer 
nodes than required to find optimal solutions, with 
only small increases in solution lengths. RBFS consis- 
tently finds shorter solutions than iterative deepening 
with the same cost function, but also generates more 
nodes in this domain. The number of nodes generated 
by RBFS was a constant multiple of the nodes t1la.t 
would be generated by standard best-first search on a 
tree, if sufficient memory were available to execute it. 
Thus, RBFS reduces the space complexity of best-first 
search from exponential to linear in general, while in- 
creasing the time complexity by only a constant factor 
in our experiments and analyses. 
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