Abstract

Interval consistency problems deal with events, each of which is assumed to be an interval on the real line or on any other linearly ordered set. This paper deals with problems in reasoning about such intervals when the precise topological relationships between them is unknown or only partially specified. This work unifies notions of interval algebras for temporal reasoning in artificial intelligence with those of interval orders and interval graphs in combinatorics, obtaining new algorithmic and complexity results of interest to both disciplines.

Several versions of the satisfiability, minimum labeling and all consistent solutions problems for temporal (interval) data are investigated. The satisfiability question is shown to be NP-complete even when restricting the possible interval relationships to subsets of the relations intersection and precedence only. On the other hand, we give efficient algorithm for several other restrictions of the problem. Many of these problems are also important in molecular biology, archaeology, and resolving mutual-exclusion constraints in circuit design.

1 Introduction

Reasoning about time is essential for applications in artificial intelligence and in many other disciplines. Given certain explicit relationships between a set of events, we would like to have the ability to infer additional relationships which are implicit in those given. For example, the transitivity of “before” and “contains” may allow us to infer information regarding the sequence of events. Such inferences are essential in story understanding, planning and causal reasoning. There are a great number of practical problems in which one is interested in constructing a timeline where each particular event or phenomenon corresponds to an interval representing its duration. These include seriation in archeology [23, 24], behavioral psychology [9], temporal reasoning [1], scheduling [30], circuit design [38, p. 184] and combinatorics [31]. Indeed, it was the intersection data of time intervals that lead Hajós [21] to define and ask for a characterization of interval graphs, and which provides the clues for solving the “Berge mystery story” [16, p. 20]. Other applications arise in non-temporal context: For example, in molecular biology, arrangement of DNA segments along a linear DNA chain involves similar problems [6].

In this paper, we relate the two notions of interval algebra from the temporal reasoning community and interval graphs from the combinatorics community, obtaining new algorithmic complexity results of interest to both disciplines. Allen [1] defined a fundamental model for temporal reasoning where the relative position of two time intervals is expressed by the relations (less than, equal or greater than) of their four endpoints, generating thirteen primitive relations (see Table 1). We call this 13-valued interval algebra \(A_{13} \). Our approach has been to simplify Allen’s model in order to study its complexity using graph theoretic techniques. The first of the two lines of specialization which we study in this paper is macro relations. Macro relations refers to partitioning the 13 primitive relations into more coarse relations by regarding a subset of primitive relations as a new basic relation. We let
Temporal reasoning as a constraint satisfiability problem

Temporal reasoning problems can be defined in the context of constraint satisfiability, where the variables will correspond to pairs of temporal events (i.e., intervals) and will take on values which represent the qualitative relationship between them (i.e., intersect, overlap, contain, less than, etc.) For each pair of events \(x \) and \(y \), let \(D(x, y) \) be a set of atomic relations in the algebra \(A_i \). The semantics here is that we do not know precisely the relationship between \(x \) and \(y \), but it must be one of those in the set \(D(x, y) \). (In the language of constraint satisfiability, there is a variable \(v(x, y) \) representing the relation between \(x \) and \(y \), and its value must be taken from those in the set \(D(x, y) \) corresponding to its domain.) For example, we read \(D(x, y) = \{ \prec, \subset \} \) as \(x \) is either before or contained in \(y \).

The interval satisfiability problem (ISAT), called consistent singleton labeling in [35], is determining the existence of (and finding) one interval representation that is consistent with the input data \(D(x, y) \). The minimal labeling problem (MLP) is to determine the minimal sets \(D'(x, y) \subseteq D(x, y) \) such that every remaining atomic relation participates in some solution.

Example. \(x \{ \prec, \subset \} y, y \{ \prec, \subset \} z, z \{ f, s \} x \).

Here \(xoz, yoz, zsz, \) and \(xoz, yoz, zsz \) are both consistent with the input, as shown in Figure 1. On the other hand, \(yoz \) and \(zsz \) are impossible. The minimum labeling for this problem is \(z \{ \prec, \subset \} y, yoz, z \{ f, s \} x \).

Figure 1: Two interval realizations for the above example

The all consistent solutions problem (ACSP), which we define here, is that of determining a polynomial representation structure \(\Sigma \) requiring \(O(p(n)) \) space and from which \(k \) distinct combinations of atomic relations consistent with the input can be produced in \(O(q(n, k)) \) time, where \(n \) is the number of variables, \(p \) and \(q \) are polynomial functions, and \(k \) is any number less than or equal to the number of solutions. The structure \(\Sigma \) thus represents all possible combinations of atomic relations consistent with the given data. Our contention is that the all consistent solutions problem is a more faithful closure problem for interval algebras than the minimal labeling problem, since not all tuples of the cross product of a minimal labeling are solutions. Consider the following simple example.

Example. \(a \{ \prec, \subset \} b, b \{ \prec, \subset \} c, a \{ \prec, \subset \} c \).

This is a minimal labeling, and yet only 6 of the possible 8 instantiations have interval representations.

The closely related endpoint sequence problem (ESP), is that of enumerating all the distinct interval realizations which are consistent with the given data. For \(A_{13} \) and \(A_8 \), ACSP and ESP are equivalent, but in \(A_7 \) and \(A_3 \) there may be several (or many) distinct endpoint sequences which realize the same combination of atomic relations.
An application in archaeology: The *seriation* problem in archaeology attempts to place a set of artifact types in their proper chronological order. This problem was formulated by Flinders Petrie, a well-known archaeologist at the turn of the century, while studying 800 types of pottery found in 900 Egyptian graves. To each artifact type there corresponds a time interval (unknown to us) during which it was in use. To each grave there is a point in time (also unknown) when its contents were interred. Each grave provides the intersection data for the intervals corresponding to its contents.

3 The relative complexity of ISAT, MLP and ACSP

In this section we show that the polynomiality of the ISAT problem implies the polynomiality of MLP and ACSP. These results are valid in the general context of constraint satisfaction problems, if the maximum number of labels in a domain is bounded by a constant. We present here the results for the algebras A_i, $i = 3, 6, 7, 13$, and they apply also to any restricted domain in these algebras.

Proposition 3.1 The minimum labeling problem and the interval satisfiability decision problem are polynomially equivalent for each of the algebras A_i, $i = 3, 6, 7, 13$.

Proof. Clearly a solution to the MLP gives an answer to the ISAT decision problem. For the converse, one can use an oracle for ISAT to solve MLP as follows: Replace one relation set by one of the atomic relations it contains, and keep the rest of the problem input unchanged. ISAT is satisfiable for the resulting problem if and only if that atomic relation is part of a minimum labeling of the original problem. Hence MLP can be solved by a number of calls to ISAT oracle which equals the number of atomic relations in the input. \blacksquare

Proposition 3.2 In any of the algebras A_i, $i = 3, 6, 7, 13$, if the interval satisfiability problem is polynomial, then there exists a polynomial representation structure for the corresponding all consistent solutions problem.

Proof. (Sketch) By Proposition 3.1, the polynomiality of ISAT implies the polynomiality of MLP. The algorithm for solving ACSP is an exhaustive depth-first search on the solution space defined by the cross product of the relation sets of the MLP solution. In each level of the search one more relation set is replaced by a singleton it contains, and the modified problem is checked for consistency using the ISAT oracle. This allows pruning partially restricted solutions which are already inconsistent at the root of their subtree without traversing it, and is the reason for the polynomiality of the algorithm. \blacksquare

4 Intractability of the complete algebras

Allen [1] originally provided a heuristic approach for solving the MLP in A_{13}. That algorithm is polynomial but does not always provide a minimal solution, and may give a false positive answer to ISAT. Vilain and Kautz [37] have shown that MLP is in fact NP-complete for A_{13}. Their proof relies on relations in which endpoints are equal, such as in the *meets* relation. We obtain a stronger result using macro relations to reduce the number of atomic relations from thirteen to three. Our first main result is to show that even in A_3, the interval satisfiability problem is NP-complete. Consequently, all four problems ISAT, MLP, ACSP and ESP are intractable for all four interval algebras A_i, $i = 3, 6, 7, 13$.

To prove that ISAT is NP-complete for A_3, we introduce a new combinatorial problem, called the *interval graph sandwich problem*, which we prove NP-complete and show to be a special case of ISAT. An undirected graph $G = (V, E)$ is called an interval graph if its vertices can be represented by intervals on the real line such that two vertices are adjacent if and only if their intervals intersect (see [12, 13, 15, 16, 17]). The interval graph sandwich (IGS) problem is the following:

Interval Graph Sandwich problem:

INPUT: Two disjoint edge-sets, E^1 and E^2 on the same vertex set V.

QUESTION: Is there a graph $G = (V, E)$ satisfying $E^1 \subseteq E \subseteq E^1 \cup E^2$ which is an interval graph?

When $E^1 = \emptyset$ or $E^1 \cup E^2$ is the complete graph on V, the answer is trivially yes. When $E^2 = \emptyset$, the problem is polynomial by the algorithm of Booth and Leuker [7]. The following new result shows that in the general case of the problem is NP Complete.

Theorem 4.1 The interval graph sandwich problem is NP-complete.

The proof (omitted in this abstract) relies on a reduction from the Not-All-Equal 3-Satisfiability problem (Schaefer [32]), and the observation by Lekkerkerker and Boland [28] that an interval graph cannot contain an asteriodal triplet of vertices. The detailed proof is given in [19]. (see also [20].)

Theorem 4.2 ISAT is NP-complete for A_3.
Proof. Define $F = \{V \times V\} - \{E^1 \cup E^2\}$. For a given instance of the IGS problem, construct an instance of ISAT on A_9 as follows: For each edge $(x, y) \in E^1, E^2$ or F, let $D(x, y) = \{\{\}, \{<, \cap, >\}, \{<, >\}\}$, respectively. It is clear that this ISAT problem has a solution if and only if the IGS has one.

Corollary 4.3 ISAT, MLP, ACSP and ESP are NP-hard for A_3, A_6, A_7 and A_{13}.

Proof. This follows from the observation that the algebra A_3 is contained in A_i and that for any $i = 3, 6, 7, 13$, ISAT has a solution if and only if MLP has a non-empty solution if and only if ACSP has a non-empty solution if and only if ESP has a non-empty solution.

An application in molecular biology: In physical mapping of DNA, information on intersection or non-intersection of pairs of segments originating from a certain DNA chain is known from experiments. The goal is to find out how the segments can be arranged as intervals along a line (the DNA chain), so that their pairwise intersections in that arrangement match the experimental data. In the graph presentation, vertices correspond to segments and two vertices are connected by an E^1-edge (resp., F-edge) if their segments are known to intersect (resp., not to intersect). E^2-edges correspond to the case where the experimental information on the intersections is inconclusive, or simply unavailable. The decision problem is thus equivalent to the IGS problem.

5 Restricted domain problems

Because of the intractability of the general versions of ISAT, MLP, ACSP and ESP, attention has been focused on the work of several authors who have studied polynomial time heuristic algorithms for MLP on A_{13} [1, 35, 36]. Solutions to several restricted cases of the interval satisfiability problem have been known for a long time. These will be extended by the new results presented in this section.

By suitably restricting the input domain of an NP-complete problem, one can often obtain a special class which admits a polynomial time algorithm. In the general case for an interval algebra A_i, each relation set $D(x, y)$ may take any of $2^2 - 1$ possible values (the empty subset of relations is not allowed). In this section, we restrict this by designating Δ to denote a particular family of relation sets in A_i and requiring that each set $D(x, y)$ be a member of Δ. To simplify notation we shall represent each relation set in A_9 by a concatenation of its atomic relations, omitting braces. Hence $\approx \cap \approx \cap \approx \cap \approx \cap \approx \cap \approx \cap \approx$. The seven possible relation sets in A_9 in this notation are:

$\approx \cap \approx \cap \approx \cap \approx \cap \approx \approx$.

ISAT(Δ) will denote the ISAT problem where all the relation sets are restricted to the set Δ. The proof of Theorem 4.2 shows that even when all relation sets are restricted to be from $\Delta_0 = \{\approx \cap \approx \cap \approx \cap \approx \cap \approx \cap \approx \approx\}$ (meaning intersect, disjoint or don’t care), ISAT(Δ_0) remains NP-complete.

A number of well-known recognition problems in graph theory and partially ordered sets may be viewed as restricted interval satisfiability problems. Five of these, all of which have polynomial time solutions, are given in Table 2 along with their appropriate Δ, see [12, 16, 31].

<table>
<thead>
<tr>
<th>Class</th>
<th>Restricted Domain</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval orders</td>
<td>${\approx \cap \approx \cap \approx \cap \approx \cap \approx \cap \approx \approx}$</td>
<td>[11]</td>
</tr>
<tr>
<td>Interval graphs</td>
<td>${\approx \cap \approx \approx \approx \approx \approx \approx \approx \approx}$</td>
<td>[15, 13, 7, 26]</td>
</tr>
<tr>
<td>Circle (or overlap)</td>
<td>${\approx \approx \approx \approx \approx \approx \approx \approx \approx}$</td>
<td>[14, 8]</td>
</tr>
<tr>
<td>Graphs</td>
<td>${\approx \approx \approx \approx \approx \approx \approx \approx \approx}$</td>
<td>[16]</td>
</tr>
<tr>
<td>Interval containment</td>
<td>${\approx \approx \approx \approx \approx \approx \approx \approx \approx}$</td>
<td>[10, 2, 18]</td>
</tr>
<tr>
<td>graphs</td>
<td>${\approx \approx \approx \approx \approx \approx \approx \approx \approx}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Polynomial interval satisfiability problems in graph theory.

Previous to the work of Belfer and Golombic [3, 5, 4], we do not know of any study which has investigated the ESP. Their results demonstrate polynomial time solutions for the ESP in A_3 restricted to (i) $\Delta = \{\approx \cap \approx \approx \approx \approx \approx \approx \approx \approx\}$ (interval orders) using the so called II structure and its associated construction algorithms, and (ii) $\Delta = \{\approx \approx \approx \approx \approx \approx \approx \approx \approx\}$ (interval graphs) using the endpoint-tree structure and its construction algorithms.

We describe here the results of a systematic study on the complexity of the restricted domains in A_3. Since we can assume that two converse relation sets (\approx and \approx, or $\approx \cap \approx \approx \approx \approx \approx \approx \approx \approx\$ and $\approx \approx \approx \approx \approx \approx \approx \approx \approx\$) always appear together in a restricted domain, there are 31 possible restrictions. We classify 27 out of them as either polynomial or NP-complete, leaving open a conjecture that would settle the remaining four. For certain restricted domains special polynomial algorithms are devised.

5.1 Algorithms for the domain $A_3 - \approx$.

In this section we deal with problems in the domain:

$\Delta_1 = \{\approx \approx \approx \approx \approx \approx \approx \approx \approx\}.$

that is, $A_3 - \approx$. We shall give efficient algorithms for ISAT, MLP and ACSP on this domain, and they will apply immediately to any subdomain of Δ_1. Hence by excluding just a single relation set from A_3 the problems become tractable.

We first prove that ISAT(Δ_1) is polynomial. Construct a graph with vertices corresponding to the endpoints of event intervals and arcs representing the relative order of endpoints. The key observation is that every relation in Δ_1 is equivalent to a certain order requirement between a pair (or two pairs) of such endpoints. This observation is stated below:
Lemma 5.1 Let i and j be the event intervals \([l_i, r_i]\) and \([l_j, r_j]\), respectively. In each of the following cases, the intervals satisfy the set of relations if and only if their endpoints satisfy the corresponding inequalities:

1. \(i \lessdot j \iff r_i < l_j\)
2. \(i \lessdot \neg j \iff l_i \leq r_j\)
3. \(i \iff j \iff l_i \leq r_j \text{ and } l_j \leq r_i\)

If \(i \lessdot \neg j\), no constraint is imposed.

The graph is now constructed as follows: For an instance \(J\) of ISAT(\(\Delta_1\)) with \(m\) events, form a directed graph \(G(J) = (V, E)\) with vertex set \(V = \{r_1, \ldots, r_n, l_1, \ldots, l_n\}\). The arc set \(E\) consists of two disjoint subsets, \(E_0\) and \(E_1\). The farmer will represent weak orders and the latter strict orders between pairs of endpoints. The arcs are defined as follows:

1. \((l_i, r_i) \in E_0\) for \(i = 1, \ldots, n\)
2. \((r_i, l_j) \in E_1\) for all \(i, j\) s.t. \(i \lessdot j\)
3. \((r_i, l_j) \in E_0\) for all \(i, j\) s.t. \(i \lessdot \neg j\)
4. \((l_i, r_j) \in E_0\) and \((l_j, r_i) \in E_0\) for all \(i, j\) s.t. \(i \iff j\)

For pairs \(i, j\) with the relation \(i \lessdot \neg j\), no arc is introduced. Define now \(E = E_0 \cup E_1\). We call the arcs in \(E_0\) (resp., \(E_1\)) the weak arcs (resp., strict arcs). Note that the graph \(G\) is bipartite. Denote the two parts of the vertex set by \(R = \{r_1, \ldots, r_n\}\) and \(L = \{l_1, \ldots, l_n\}\), and call an arc an RL-arc (resp., LR-arc) if it is directed from \(R\) to \(L\) (resp., from \(L\) to \(R\)). In the graph \(G\) all the RL-arcs are strict and all the LR-arcs are weak. Hence we need not record explicitly the type of each arc since it is implied by its direction. Since \(G\) is bipartite, a cycle must contain vertices both from \(R\) and from \(L\). In particular, it must contain an RL-arc, so we obtain the following.

Lemma 5.2 Every cycle in \(G(J)\) contains a strict arc. ■

Lemma 5.3 Suppose \(G(J) = (V, E)\) is acyclic. Then a linear order on \(V\) is consistent with the partial order \(G(J)\) if and only if it is a realization of \(J\).

Proof. Take any linear order \(P\) which extends the partial order \(G(J)\). \(P\) is an ordering of all the endpoints, which by Lemma 5.1 satisfies all the relations in the input, so \(P\) gives a realization for \(J\). On the other hand, every realization of \(J\) gives a linear order of the endpoints, in which each of the input relations must be satisfied, by Lemma 5.1. Hence the linear order must be consistent with the partial order \(G(J)\). ■

An algorithm for solving ISAT(\(\Delta_1\)) constructs \(G(J)\) according to rules (4)-(7), and checks if it is acyclic. \(J\) is determined to be satisfiable if and only if \(G(J)\) is acyclic.

Theorem 5.4 The above algorithm correctly recognizes if an instance of ISAT(\(\Delta_1\)) is satisfiable in linear time.

Proof. Validity: By Lemma 5.1, each arc reflects the order relation of a pair of interval endpoints as prescribed by the input relations. If \(G\) contains a cycle, then by Lemma 5.2 that cycle contains a strict arc. Hence that cycle must satisfy \(r_i < l_j \leq \ldots \leq r_i\), which implies that the input relations cannot be satisfied. In case \(G\) is acyclic, it represents a partial order on the vertices. By Lemma 5.3, it has a realization and hence \(J\) is satisfiable.

Complexity: Constructing \(G(J)\) requires \(O(m)\) steps, where \(m\) is the number of input relation sets, since the effort is constant per relation. Checking if \(G\) is acyclic can be done, for example, by depth first search, in time linear in \(|E|\), the number of arcs [33]. Since \(m \leq n(n - 1)/2\), and \(|E| \leq 2m + n\), the algorithm is linear. ■

Remark. Since all the constraints defining an instance of ISAT(\(\Delta_1\)) are linear inequalities, the satisfiability problem can be reformulated as a feasibility question for a system of linear inequalities. This can be solved by linear programming algorithms, and in fact, by specialized algorithms using the fact only two variables appear in each inequality [29, 22]. While this is less efficient than the method described above, it allows the natural introduction of additional linear constraints, outside the scope of \(A_3\) or even \(A_{13}\), like lengths of intervals, fixing endpoints to specific time values, etc.

Our next result solves the Minimum Labeling Problem efficiently for the domain \(\Delta_1\). Once \(G(J)\) has been constructed and shown to be acyclic, the MLP can be solved by forming the transitive closure of \(G(J)\), deducing from it additional (weak and strict) orders of endpoints, and then using the equivalence established in Lemma 5.1 between these orders and interval relations to create the minimum labeling. The total complexity of the procedure is \(O(mn)\) steps. A complete description appears in [19].

We finish this section by sketching a simple procedure to solve the ESP for \(\Delta_1\). The transitive closure of the graph \(G(J)\) generated in the previous paragraph corresponds to a partially ordered set. The ESP thus reduces to constructing all the linear orders consistent with a partial order. This can be done by placing a minimal element in all possible positions with respect to a previously ordered subset of elements and repeating recursively. Using this technique we can show that all the realizations consistent with an instance on \(\Delta_1\) can be computed in \(O(n)\) steps per each endpoint sequence produced. The distinction between strict and weak inequalities (following from the original distinction between strict and weak arcs) can also be maintained in such procedure.

5.2 The domain \(\langle \lessdot, \rhd, \setminus, \bowtie \rangle\).

Graph theoretic techniques provide a proof of the next result. An undirected graph is chordal if for every cycle of length greater than or equal to 4 there is an edge (chord) connecting two vertices which are not consecutive in the cycle. The complement \(\overline{G}\) of \(G\) is the undirected graph whose edges are the non-edges of \(G\); a graph is transitively orientable (TRO) if each undirected edge can be assigned a direction so that the resulting orientation satisfies the usual transitivity property. A classical characterization due to Gilmore and Hoffman [15] is that \(G\) is an interval graph if and only if \(\overline{G}\) is a chordal graph and its complement \(\overline{G}\) is transitively orientable.
Theorem 5.5 ISAT is solvable in $O(n^3)$ time for $\Delta_2 = \{\prec, \succ, \cap, \lor, \to\}$.

Proof. Without loss of generality, we may assume that for each pair of elements x and y, the relation sets $D(x,y)$ and $D(y,x)$ given as input are already consistent, i.e., for each atomic relation $R, R \in D(x,y) \iff R^{-1} \in D(y,x)$. Otherwise, it is a simple matter to restrict the relation sets further so that they satisfy these properties or are shown to be unsatisfiable. Thus, for each pair of elements x and y, exactly one of the following holds:

(i) $x \cap y$ (ii) $x \to y$ (iii) $x \prec y$ (iv) $x \succ y$.

We construct two complementary graphs G and H as follows. The graph $G = (V, E)$ has undirected edges where

$$\{x, y\} \in E \iff x \cap y.$$

The graph $H = (V, E')$ has both directed and undirected edges where

$$\{x, y\} \in E' \iff x \to y$$

$$\{x, y\} \in E' \iff x \prec y.$$

(An undirected edge between x and y is denoted by $\{x, y\}$. A directed edge from x to y is denoted by (x, y). It is an easy consequence of the Gilmore-Hoffman Theorem that ISAT has a solution if and only if G is chordal and H has a transitive orientation.

Testing whether G is chordal can be done in $O(|V| + |E|)$ time [7], and obtaining a transitive orientation for H can be achieved in $O(|V||E|)$ time by a variant of the TRO algorithm [16, p. 124] for undirected graphs. An alternative polynomial solution to this problem has been given in [25].

5.3 The domain $\{\prec, \succ, \langle\cap\rangle, \to\}$.

Theorem 5.6 ISAT is polynomial for $\Delta_3 = \{\prec, \succ, \langle\cap\rangle, \to\}$.

Proof. Form a directed graph $G(V, E)$ with vertices corresponding to events, and $(u, v) \in E$ if $u \rightarrow v$. If G contains a cycle, then the instance is clearly not satisfiable. If G is acyclic, then one can create an interval realization of G in which (1) all intervals are disjoint, and (2) $(u, v) \in E$ if $u \rightarrow v$. This can be done by taking any linear extension of G and ordering the intervals so that they are disjoint and ordered according to that order. In the resulting realization, (1) and (2) are satisfied. (2) guarantees that all \prec and \succ relations in the input are satisfied, and (1) guarantees that all other relations (\rightarrow and $\langle\cap\rangle$) are satisfied.

5.4 The domain $\{\langle\cap\rangle, \cap, \to\}$.

The final theorem obtained here uses a reduction from the interval sandwich problem, to show the following intractability result.

Theorem 5.7 ISAT is NP-complete for the restricted domain $\Delta_4 = \{\langle\cap\rangle, \cap, \to\}$.

6 Conclusion

In this paper we have dealt with the consistency of assertions about the relations between intervals. We have investigated three basic problems in temporal reasoning: determining satisfiability (ISAT), maximum strengthening of a satisfiable assertion (MLP), and producing all the consistent solutions via a polynomial representation structure (ACSP and ESP). ACSP and ESP were shown to be tractable whenever ISAT is. We have shown that even a major simplification of Allen's interval algebra - from thirteen relations to three only - leaves ISAT intractable. On the positive side, we have shown that in this simplified algebra Δ_3 many restricted domain problems are efficiently solvable. Of the 31 possible restrictions, we have classified 27 as either polynomial or NP-complete. A summary of the possible restrictions is presented in Figure 2. We conjecture that ISAT is NP-complete on $\Delta_5 = \{\langle\cap\rangle, \cap, \to\}$. A proof to this conjecture will resolve the remaining four cases. The tools we have used have been mainly from graph theory and complexity theory. We have hoped to demonstrate that the interconnection between these disciplines and reasoning problems in AI can be quite rich, and its investigation benefit both fields.

![Figure 2: The complexity of ISAT on restricted domains of Δ_3. Top sets are minimal NP-complete, bottom sets are maximal polynomial sets.](image)

References

