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Abstract 

Problem solving with incomplete information is 
usually very costly, since multiple alternatives 
must be taken into account in the planning pro 
cess. In this paper, we present some pruning rules 
that lead to substantial cost savings. The rules are 
all based on the simple idea that, if goal achieve- 
ment is the sole criterion for performance, a plan- 
ner need not consider one “branch” in its search 
space when there is another “branch” character- 
ized by equal or greater information. The idea 
is worked out for the cases of sequential plan- 
ning, conditional planning, and interleaved plan- 
ning and execution. The rules are of special value 
in this last case, as they provide a way for the 
problem solver to terminate its search without 
planning all the way to the goal and yet be assured 
that no important alternatives are overlooked. 

* 

in a piece of stock, and it decides to do this by using 
a drill press. The complication is that there might or 
might not be some debris on the drill press table. 

In some cases, it may be possible to formulate a se- 
quential plan that solves the problem. One possibility 
is a sequential plan that covers many states by us- 
ing powerful operators with the same effects in those 
states. In our example, the robot might intend to use 
a workpiece fixture that fits into position whether or 
not there is debris on the table. Another possibility is 
a sequential plan that coerces many states into a single 
known state. For example, the robot could insert into 
its plan the action of sweeping the table. Whether or 
not there is debris, this action will result in a state in 
which there is no debris. 

A second possibility is for the planner to insert a 
conditional into the plan, so that the robot will exam- 
ine the table before acting, in one case (debris present) 
clearing the table, in the other case (table clear) pro- 
ceeding without delay. 

Introduction 
In much of the early literature on robot problem solv- 
ing, the problem solver is assumed to have complete 
information about the initial state of the world. In 
some cases, the information is provided to the robot 
by its programmer; in other cases, the information is 
obtained through a period of exploration and observa- 
tion. 

A more interesting possibility is for the planner to 
interleave planning and execution, deferring some plan- 
ning effort until more information is available. For ex- 
ample, the robot plans how to get its materials to the 
drill press but then suspends further planning until af- 
ter those steps are executed and further information 
about the state of the table is available. 

In fact, complete information is rarely available. In 
some cases, the models used by our robots are quan- 
titatively inaccurate (leading to errors in position, ve- 
locity, etc.). In some cases, the incompleteness of in- 
formation is more qualitative (e.g. the robot does not 
know the room in which an essential tool is located). 
In this paper, we concentrate on problem solving with 
incomplete information of the latter sort. 

The difficulty with all of these approaches is that, 
in the absence of any good pruning rules, the planning 
cost is extremely high. In the case of deferred planning, 
the absence of good termination rules means that the 
problem solver must plan all the way to the goal, thus 
eliminating the principal value of the approach. 

There are, of course, multiple ways to deal with qual- 
itatively incomplete information. To illustrate some of 
the alternatives, consider a robot in a machine shop. 
The robot’s goal is to fabricate a part by boring a hole 
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In this paper, we present some powerful pruning 
rules for planning in the face of incomplete informa- 
tion. The rules are all based on the simple idea that, if 
goal achievement is the sole criterion for performance, 
a planner need not consider one “branch” in its search 
space when there is another “branch” characterized by 
equal or greater information. 

Fikes introduced interleaved planning and execution 
in the limited instance of plan modification during ex- 
ecution [Fikes 19721. Rosenschein’s work on dynamic 
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logic formalized conditional planning but paid little at- 
tention to computational aspects [Bosenschein 19811. 
More recent works do provide domain dependent guid- 
ance, but have not uncovered methods that gen- 
eralize across domains [Hsu 19901, [Olawsky 19901, 
[Etzioni 19921. 

In the next section, we give our definition for prob- 
lem solving. In section 3, we present a traditional ap- 
proach to problem solving with complete information. 
In sections 46, we present pruning rules for the three 
approaches to problem solving mentioned above. Sec- 
tion 7 offers some experimental results on the use of 
our rules. The final section summarizes the main re- 
sults of the paper and describes some limitations of 
this work. 

Problem Solving 
Our definition of problem solving assumes a division of 
the world into two interacting parts - an agent and its 
environment. The outputs of the agent (its actions) are 
the inputs to the environment, and the outputs of the 
environment are the inputs to the agent (its percepts). 

Formally, we specify the behavior of our agent as a 
tuple (P, B, A, int, ezt, bl), where P is a set of input 
objects (the agent’s percepts), B is a set of internal 
states, A is a set of output objects (the agent’s actions), 
int is a function from P x B into B (the agent’s state 
transition function), ezt is a function from P x B into 
A (the agent’s action function), and br is a member of 
B (the agent’s initial internal state). 

We characterize the behavior of an agent’s environ- 
ment as a tuple (A, E, P, see, do, el), where A is a finite 
set of actions, E is a set of world states, P is a finite 
set of distinct percepts, see is a function that maps 
each world state into its corresponding percept, do is a 
function that maps an action and a state into the state 
that results from the application of the given action in 
the given state, and el is an initial state of the world. 

Note the strong similarity between our characteriza- 
tion of an agent’s behavior and that of its environment. 
There is only one asymmetry - the see function is a 
function only of the environment’s state, whereas the 
ezt function of an agent is a function of both the per- 
cept and the internal state. (For automata theorists, 
our agent is a Mealy machine, whereas our environ- 
ment is a Moore machine.) This asymmetry is of no 
real significance and can, with a little care, be elimi- 
nated; it just simplifies the analysis. 

The behavior of an agent in its environment is cycli- 
cal. At the outset, the agent has a particular state br, 
and the environment is in a particular state el. The en- 
vironment presents the agent with a percept pl (based 
on see), and the agent uses this percept and its inter- 
nal state to select an action al to perform (based on 
the ezt function). The agent then updates its internal 
state to b=~ (in accordance with int), and the environ- 
ment changes to a new state e2 (in accordance with 
do). The cycle then repeats. 

In what follows, we define a goal to be a set of states 
of an environment. We say that an agent achieves a 
goal G if and only if there is some time step n on which 
the environment enters a state in the goal set: 

3n e, E G 

In problem solving with complete information, the 
agent has the advantage of complete information about 
the environment and its goal. In problem solving with 
incomplete information, some of this information is 
missing or incomplete. The pruning rules presented 
here are fully general and apply equally well in cases 
of uncertainty about initial state, percepts, and ac- 
tions. However, for the sake of presentational simplic- 
ity, we restrict our attention to uncertainty about the 
robot’s initial state. In our version, the robot’s job is 
to achieve a goal G, when started in an environment 
(A, E, P, see, do, e), where e is any member of a set of 
states I C E. 

roblern Solving with Complete 
Information 

The traditional approach to problem solving with com- 
plete information is sequential planning and execution. 
An agent, given a description of an initial state and a 
set of goal states, first produces a plan of operation, 
then executes that plan. 

In single state sequential planning, information 
about the behavior of the agent’s environment is rep- 
resented in the form of a state graph, i.e. a labelled, 
directed graph in which nodes denote states of the 
agent’s environment, node labels denote percepts, and 
arc labels denote actions. There is an arc (sr, ~2) in 
the graph if and only if the action denoted by the label 
on the arc transforms the state denoted by sr into the 
state denoted by ~2. By convention, all labelled arcs 
that begin and end at the same state are omitted. 

To find a plan, the robot searches the environment’s 
state graph for a path connecting its single initial state 
to a goal state. If such a path exists, it forms a sequen- 
tial plan from the labels on the arcs along the path. 

Obviously, there are many ways to conduct this 
search - forward, backward, bidirectional, depth-first, 
breadth-first, iterative deepening, etc. If the search is 
done in breadth-first fashion or with iterative deepen- 
ing, the shortest path will be found first. 

As an illustration of this method, consider an appli- 
cation area known as the Square World. The geogra- 
phy of this world consists of a set of 4 cells laid out 
on a 2-by-2 square. The cells are labelled a, b , c , d in a 
clockwise fashion, starting at the upper left cell. There 
is a robot in one of the cells and some gold in another. 

One state of the Square World is shown on the left 
in Figure 1. The robot is in cell a and the gold is in cell 
c. The picture on the right illustrates another state. 
In this case, the robot is in cell b and the gold is in cell 
d. 
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Figure 1: Square World 

m V 

Figure 2: State Graph of Square World 

If we concentrate on the location of the robot and 
the gold only, then there are 20 possible states. The 
robot can be in any one of 4 cells, and the gold can 
be in any one of 4 cells or in the grasp of the robot (5 
possibilities in all). 

Given our point of view, we can distinguish every 
one of these states from every other state. By contrast, 
consider an agent with a single sensor that determines 
whether the gold is in the grip of the robot, in the same 
cell, or elsewhere. This sensory limitation induces a 
partition of the Square World’s 20 states into 3 subsets. 
The first subset contains the 4 states in which the robot 
grasps the gold. The second subset consists of the 4 
states in which the gold and the robot are in the same 
cell. The third subset consists of the 12 states in which 
the gold and the robot are located in different cells. 

The Square World has four possible actions. The 
agent has a single movement action move, which moves 
the robot around the square in a clockwise direction 
one cell at a time. In addition, the agent can grasp the 
gold if the gold is occupying the same cell, and it can 
drop the gold if it is holding the gold, leading to 2 more 
actions grub and drop. Finally, it can do nothing, i.e. 
execute the noop action. ” 

Our robot’s objective in the Square World problem 
is to get itself and the gold to the upper left cell. In 
this case, the goal G is a singleton set consisting of just 
this one state. 

Figure 2 presents the state graph for the Square 
World. The labels inside the nodes denote the states. 
The first letter of each label denotes the location of 

the 
the 
the 

Figure 3: State-set Graph of Square World 

robot. The second letter denotes the location of 
gold using the same notation as for the robot, with 
addition of i indicating that the gold is in the grip _ - _- _ 

of the robot. The structure of the graph clarifies the 
robot’s three percepts. The four inner states indicate 
that the robot is holding the gold. The next four states 
indicate that the gold is in the same cell as the robot 
(aa,bb, cc ,dd). The outermost twelve states indicate 
that the robot and the gold are in different locations. 

Looking at the graph in Figure 2, we see that there 
are multiple paths connecting the Square World state 
ac to state aa. Consequently, there are multiple plans 
for achieving aa from ac. It is a simple matter for sssp 
to find these paths. If the search is done in breadth- 
first fashion, the result will be the shortest path - the 
sequence move, move, grab, move, move, drop. 

Sequential Planning with Incomplete 
Information 

In problem solving with incomplete information, our 
robot knows that its initial state is a member of a set I 
of possible states. How can this robot reach the goal, 
given a state graph of the world and this set I? One 
approach is to derive a single sequential plan that is 
guaranteed to reach the goal no matter which state in 
1 is the actual initial state. The robot can execute such 
a plan with confidence. 

A multiple state sequential planner finds a sequen- 
tial plan if a sequential solution exists using a state-set 
graph instead of the state graph that sssp uses. In the 
state-set graph, a node is a set of states. An action 
arc connects node n1 to node n2 if n2 contains exactly 
the states obtained by performing the corresponding 
action in the states of nl. 

Figure 3 illustrates a partial state-set graph for the 
Square World. In this case, the robot knows at the 
outset that it is in the upper right cell. However, it 
does not know the whereabouts of the gold, other than 
that it is not in its grasp or in its cell. Therefore, the 
initial state set I consists of exactly three states: bb, 
bc, and bd. 
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Note that actions can change the state-set size, both 
increasing node size and coercing the world to decrease 
node size. The mssp architecture begins with node I 
and expands the state-set graph breadth-first until it 
encounters a node that is a subset of the goal node. 
Msspa expands nodes using Results(N), which returns 
all nodes that result from the application of each a E A 
to node N. The following is a simple version of such an 
algorithm. For a more thorough treatment of problem 
solving search algorithms, see [Genesereth 19921. 

MSSPA Algorithm 
1. graph= I, frontier= (I) 
2. S = Pop(frontier) 
3. If S C G go to 6. 
4. frontier = Append(frontier, Results(S)) 
5. Go to 2. 
6. Execute the actions of the path from I to S in 
graph. 

One nice property of this approach is that it is guar- 
anteed - the robot will achieve its goal if there is a 
guaranteed sequential plan. Furthermore, it will find 
the plan of minimal length. 

However, the cost of simple mssp is very high. Given 
i = III, g = ICI, a = IAl, and search depth I%, the cost 
cost nas3p of finding a plan is proportional to igak. 

Fortunately, many of the paths in the state-set graph 
can be ignored; these are useless partial plans. Any 
path reaching a node that is identical to some earlier 
node in that path is accomplishing nothing. Further- 
more, any path that leads to a state from which there 
is no escape is simply trapping the robot. Finally, if 
we compare two paths and can show that one path is 
always as good as the other path, we needn’t bother 
with the inferior path. We formally define useless in 
terms of any partial plan that begins at any node in 
the graph. Therefore, note the distinction between the 
root node, the current node being expanded, and node 
I, the node at which our solution plan must begin: 

A partial plan q is useless with respect to root (the 
current node) and result-node(q) (the resultant node 
of executing plan q from root) if (1) there is a node n 
on the path from I to root (inclusive) such that n is a 
subset of result-node(q), (2) there is a state s in result- 
node(q) that has no outgoing arcs in the state graph, 
or (3) there is a plan r such that q is not a sub-plan of r 
and result-node(r) is a proper subset of result-node(q). 

Pruning Rule 1: Sequential Planning 
Prune any branch of the state-set graph that leads only 
to useless plans. 

Theorem: Pruning Rule 1 preserves 
completeness. 
Furthermore, we can guarantee the minimal solution 
by modifying condition (3) to (3e): there is some plan 
r such that length(r) <length(q) and result-node(r) is 
a proper subset of result-node(q). 

Note that once the planner finds a useless partial 
plan, it can prune all extensions of that plan since any 
solution from the result-node of a useless plan must 
work either from an earlier node (1) or from some other 
plan’s result-node (3). 

This rule can lead to significant cost savings. Recall 
that cost,,,p was igak. If the pruning rule decreases 
the branching factor from a to a/b and searches to 
depth d for case 3, the cost of mssp including the cost 
of Pruning Rule I is proportional to (Hi2 + ai + adi + 
ig)ak/bk. We would have savings when: 

new cost = 
old cost 

ki+ a +adi+g < 1 

9bk 
As a result of the k term in the denominator, 

cost tnssp+heuristics will grow significantly more slowly 
than costmjsp as the solution length increases. 

Conditional 
Sequential planning has a serious flaw: some problems 
require perceptual input for success. In these cases, 
a sequential planner would fail to find a solution al- 
though the system can reach the goal if it consults its 
sensory input. We need a planner that will find such 
solutions. 

A multiple state conditional planner finds the min- 
imal conditional solution using a conditional state-set 
graph. This graph alternates perceptory and effectory 
nodes. An effectory node has action arcs emanating 
from it and percept arcs leading to it. A perceptory 
node has percept arcs emanating from it and action 
arcs leading to it. Action arcs connect nodes exactly 
as in state-set graphs. Percept arcs are labelled with 
percept names and lead to nodes representing the sub- 
set of the originating states that is consistent with the 
corresponding percept. Figure 4 illustrates part of a 
conditional state-set graph. 

lMscp begins with just the state set I and expands 
the conditional state-set graph in a breadth-first (or 
iterative deepening) manner until it finds a solution. 
The planner uses both Results and Sees, which expands 
a perceptory node into a set of nodes, to accomplish 
the construction. Searching this graph is much less 
trivial and often more costly than the state-set graph 
search that mssp conducts. This is basically an and-or 
graph search problem. 

Mscp returns a conditional plan. This plan specifies 
a sequence of actions for every possible sequence of in- 
puts. It is effectively a series of nested case statements 
that branch based upon perceptual inputs. Mscpa then 
executes the conditional plan by checking the robot’s 
percepts against case statements and executing the 
corresponding sub-plans. Below is a greatly simplified 
version of the mscp algorithm. 

MSCPA Algorithm 
1. graph = I (a perceptory node) 
2. Expand every unexpanded perceptory node n 
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using Sees(n). 
3. If there is a sub-graph of graph that specifies 
all action arcs and reaches a subset of G for every 
possible series of percept arcs, then go to 6. 
4. Expand every unexpanded effectory node m 
;i”cpo ltZzs;lis( m) . 

. . 
6. Execute that sub-graph as a conditional plan. 

Mscpa will reach the goal with a minimal action 
sequence provided that there is a conditional solution. 

Unfortunately, greater power has a price. At its 
worst, costnasep is even greater than cost,,Sp because 
the space contains perceptual branches: igpkak. To 
extend Pruning Rule 1 to mscp, remember that a se- 
quential plan has a single “result node” while a con- 
ditional plan has many possible “result nodes.” We 
define the result-nodes(q) to be the set of possible re- 
sultant nodes (depending upon perceptory inputs) of 
conditional plan q. Pruning Rule parts (I) and (2) re- 
quire trivial changes to take this into account. But part 
(3) now intends to compare two plans, which amounts 
to comparing two sets of result-nodes. 

We define domination such that if plan T dominates 
plan q, then if there is a solution from result-nodes(q), 
there must be a solution from result-nodes(r). Each 
node in result-nodes(r) is dominating if it is a proper 
subset of some node in result-nodes(q). But “result- 
nodes” that maintain goal-reachability and do not in- 
troduce infinite loops are also acceptable. Therefore, 
we also state that n is dominating if it has reached the 
goal or even if it is a proper subset of root. Below, 
we define domination and revisit useless in terms of 
conditional plans: 

Formally, conditional plan r dominates a conditional 
plan q if and only if 

(A) V(n, Eresult-nodes(q)) 
3(n,. Eresult-nodes(r)) n, c nq, and 

(B) V(n, Eresult-nodes(r))either 
1. 3(np Eresult-nodes(q))+ C nq, or 
2. n,CG,or 
3. n, C root. 

A partial conditional plan q is useless with respect 
to root and result-nodes(q) if: 
(1) There is a node n on the path from I to root (in- 
clusive) and there is a node np in result-nodes(q) such 
that n is a subset of n,, or 
(2) There is a node nq m result-nodes(q) such that there 
is a state in nnp with no outgoing action arcs in the state 
graph, or 
(3) There is a partial conditional plan r such that r 
dominates q. 

Pruning Rule 2: Conditional Planning 
Prune any branch of the conditional 
that leads only to useless plans. 

state-set graph 

Theorem: Pruning Rule 2 preserves 
completeness. 
Once again, we can reimpose the minimality guarantee 
by modifying condition (3): (3e) There is a plan r such 
that length(r) 5 length(q) and r dominates q without 
use of case B3. 

Cost analysis of mscp with Pruning Rule 2 yields re- 
sults identical to costmssD with the exception that all 
uk terms become akpk. &The pruning rule again pro- 
vides search space savings as solution length increases. 

Interleaved Planning and Execution 
Conditional planning is an excellent choice when the 
planner can extract a solution in reasonable time. But 
this is not an easy condition to meet. As the branching 
factor and solution length increase mildly, conditional 
planning becomes prohibitively expensive in short or- 
der. These are cases in which conditional planning 
wastes much planning energy by examining simply too 
much of the search space. 

What if the system could cut its search short and 
execute effective partial conditional plans? The sys- 
tem could track its perceptual inputs during execution 
and pinpoint its resultant fringe node at the end of 
execution. The planner could continue planning from 
this particular fringe node instead of planning for ev- 
ery possible fringe node. This twophase cycle would 
continue until the system found itself at the goal. 

DPA Algorithm 
1. states = I. 
2. if states C G exit (success!!!) 
3. Invoke t&ninating mscp from states and re- 
turn the resultant conditional plan. 
4. Execute the conditional plan, updating states 
during execution. 
5. Go to 2. 

Dpa will reach the goal provided that there is a con- 
ditional solution and the search termination rules pre- 
serve completeness. 
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Figure 5: Search Space Savings of DPA 

Assume for the moment that our search termination 
rules return sub-plans of the minimal conditional plan 
from I to G. We can quantify the dramatic search 
space savings of delayed planning in this case. Re- 
call that the cost of conditional planning is igpkak. 
The cost of delayed planning is the sum of the costs 
of each conditional planning episode. If there are j 
such episodes, then the total cost of delayed planning 
is jigp klj~k/3. Figure 5 demonstrates the savings, rep- 
resenting mscpa with a large triangle and dpa by suc- 
cessive small triangles. Note that if the system could 
terminate search at every step, the search cost would 
simplify to a linear one: kigpa. 

Let us return to the search termination problem: 
how can the planner tell that a particular plan is worth 
executing although it does not take the system to the 
goal? The intuition is clear in situations where all our 
actions are clearly inferior to one action: we might as 
well execute that one action before planning further. 
For example, suppose Sally the robot is trying to de- 
liver a package. She is facing the staircase and has 
two available actions: move forward and turn right 90 
degrees. The pruning rules would realize that flying 
down the stairs is useless (deadly) and the planner 
should immediately return the turn right action. We 
can generalize this rule from single actions to partial 
plans. 

Termination Rule 1 (Forced Plan)If there 
exists a plan r such that for all plans q either q is 
useless or r is a sub-plan of q, then return r as a 
forced plan. 

Theorem: Termination Rule I preserves 
completeness and provides a minimal solution. 
The forced plan rule has trivial cost when its condi- 
tional planner is using Pruning Rule 2. Unfortunately, 
the forced plan criterion can be difficult to satisfy. This 
rule requires that every non-useless solution from root 
share at least a common first action. This fails when 
there are two disparate solutions to the same problem. 
Still, complete conditional planning to the goal may be 
prohibitively expensive. 

We need a termination rule with weaker criteria. 
The viable plan rule will select a plan based upon its 
own merit, never comparing two plans. The foremost 
feature of any viable plan is reversibility. We want to 
insure that the plan does not destroy the ability of the 
system to reach the goal. This justifies the requirement 
that each fringe node of a viable plan be a subset of 

root. 
A viable plan must also guarantee some sort of 

progress toward the goal. We guarantee such progress 
by requiring every fringe node to be a proper subset 
of root. Each viable plan will decrease uncertainty by 
decreasing the root state set size. This can occur at 
most 111 - 1 times. 

Termination Rule 2 (Viable Plan) If there 
exists a plan r such that for all nodes n, in 
result-nodes(r): n, is a proper subset of root, 
then return r as a viable plan. 
Theorem: Termination Rule 2 preserves 
completeness. 
The fact that the viable plan rule does not preserve 
minimality introduces a new issue: how much of the 
viable plan should the system execute before returning 
to planning ? Reasonable choices range from the first 
action to the entire plan. Experimental and qualitative 
analysis indicates that this variable allows a very mild 
tradeoff between planning time and execution time. 

Average-case cost analysis of dpa using the Viable 
Plan Rule yields hopeful results. Recall that pure con- 
ditional planning would cost igpkak. Suppose a dpa 
system executes n partial plans of depth j, resulting 
in node I,, with size h. From In, there are no search 
termination opportunities and the planner must plan 
straight to the goal. Assume that there is some c such 
that i = 
is i2. 

ch. The cost per node of the Viable Plan Rule 

For case 1, assume g > h. The cost from I to I, is 
n(i2 + ig)$caj. The worst-case cost from In to the goal 
is (h2 + hg)p k ak when In is no closer to the goal than 
I. This can occur precisely when g > h and coercion 
is not necessary. When we divide the cost of dpa by 
the cost of mscp we are left with savings when: 

n(i + g)p’aj + h + h2 
gpkak i p 

For case 2, assume g 5 h. Then a number of co- 
ercive actions occur along the way from I to 6. If 
we assume that these coercives are distributed evenly, 
then there are (h - g)/2 coercives from In to the 
goal and k - (i - h)/2 total steps from In to the 
goal. The total cost changes to n(i2 + ig)piaj + 
(h2 + hg)pk-(‘-h)/2ak-(‘-h)/2. The third term, h2/ig, 
changes to h/(gp(“-h)/2a(‘-h)/2), which is now less 
than one since we assumed that g 5 h. 

Experimental 
We implemented these planners in four domains us- 
ing property space representations, in which sets of 
properties correspond to sets of states satisfying those 
properties. For DPA, we implemented both termi- 
nation criteria and executed the first step of viable 
plans. MJH World is a realistic indoor navigation 
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problem. Wumpus World is a traditional hero, gold, 
and monster game. The Bay Area Transit Problem 
[Hsu 19901 models an attempt to travel from Berkeley 
to Stanford despite traffic jams. The Tool Box Prob- 
lem [Olawsky 19901 d escribes two tool boxes that our 
robot must bolt. The following depicts p, a, i, and g: 

MJHl 
MJH2 
MJH3 
WUMl 
WUM2 
BAT 
TBOX 

Pa ’ 
24: : 
24 6 6 
24 6 6 
4 6 24 4 
4 6 44 4 
16 4 8172 8172 

I3144 4 

Below are running times (in seconds) and plan 
lengths, including average length in brackets, for all ar- 
chitectures with and without pruning rules. The DPA 
statistics were derived by running DPA on every initial 
state and averaging the running times. The dash (-) 
signifies no solution and the asterisk (*) indicates no 
solution after 24 hours running time. 

MJHl 
MJH2 
MJH3 
WUMl 
WUM2 
BAT 
TBOX 

SPA SPAh CPA CPAh DPA 
34.6 4.1 82.8 21.4 1.6 

74.6 24.6 1.5 
* 623.6 2.4 

877.7 104.5 1.3 
* 15111 1.7 
* * 3.6 
* * 73.1 

Lend,, Lenidd 
9-ll[lO] 
8-12[10] 6-l&] 
S-16[11] 6-12[10] 
7-15[9.2] 7-11[8.5] 
;2;;;;;] 7-15[9.8] 
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BAT introduces a huge initial state set and a high 
branching factor. DPA time results for BAT are 
based upon a random sampling of thirty actual ini- 
tial states. TBOX is the hardest problem because the 
action branching factor is so high that even sequential 
programming with complete information is impossible 
without pruning. The TBOX running times are based 
upon running DPA on every I possible in the Tool Box 
World. Our DPA planner never issued an unbolt com- 
mand in any TBOX solution. Olawsky regards the use 
of unbolt as a failure and, using that definition, our ter- 
mination rules produced zero failures in TBOX. A sur- 
prising result concerning both of these large domains 
is that the execution lengths were extremely similar to 
the ideal execution lengths. 

Conclusion 
This paper presents some powerful pruning rules for 
problem solving with incomplete information. These 
rules are all domain-independent and lead to substan- 
tial savings in planning cost, both in theoretical analy- 
sis and on practical problems. The rules are of special 
importance in the case of interleaved planning and ex- 
ecution in that they allow the planner to terminate 
search without planning to the goal. 

Although our analysis concentrates exclusively on 
uncertainty about initial states, the rules are equally 
relevant to uncertainty about percepts and actions. 

Our analysis also assumes that state sets are repre- 
sented explicitly, but the pruning rules apply equally 
well to planners based on explict enumerations of prop- 
erty sets (e.g. Strips) and logic-based methods (e.g. 
Green’s method). 

One substantial limitation of this work is our empha- 
sis on state goals. We have not considered the value 
of these methods or rules on problems involving con- 
ditional goals or process goals. We have also not con- 
sidered the interactions of our rules with methods for 
coping with numerical uncertainty. Further work is 
needed in both areas. 
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