
Time-Saving Tips for Problem olving wit Incomplete
Informat ion

Michael R. Genesereth Illah R. Nourbakhsh
Computer Science Department Computer Science Department

Stanford University Stanford University
Stanford CA 94305 Stanford CA 94305

Abstract

Problem solving with incomplete information is
usually very costly, since multiple alternatives
must be taken into account in the planning pro
cess. In this paper, we present some pruning rules
that lead to substantial cost savings. The rules are
all based on the simple idea that, if goal achieve-
ment is the sole criterion for performance, a plan-
ner need not consider one “branch” in its search
space when there is another “branch” character-
ized by equal or greater information. The idea
is worked out for the cases of sequential plan-
ning, conditional planning, and interleaved plan-
ning and execution. The rules are of special value
in this last case, as they provide a way for the
problem solver to terminate its search without
planning all the way to the goal and yet be assured
that no important alternatives are overlooked.

*

in a piece of stock, and it decides to do this by using
a drill press. The complication is that there might or
might not be some debris on the drill press table.

In some cases, it may be possible to formulate a se-
quential plan that solves the problem. One possibility
is a sequential plan that covers many states by us-
ing powerful operators with the same effects in those
states. In our example, the robot might intend to use
a workpiece fixture that fits into position whether or
not there is debris on the table. Another possibility is
a sequential plan that coerces many states into a single
known state. For example, the robot could insert into
its plan the action of sweeping the table. Whether or
not there is debris, this action will result in a state in
which there is no debris.

A second possibility is for the planner to insert a
conditional into the plan, so that the robot will exam-
ine the table before acting, in one case (debris present)
clearing the table, in the other case (table clear) pro-
ceeding without delay.

Introduction
In much of the early literature on robot problem solv-
ing, the problem solver is assumed to have complete
information about the initial state of the world. In
some cases, the information is provided to the robot
by its programmer; in other cases, the information is
obtained through a period of exploration and observa-
tion.

A more interesting possibility is for the planner to
interleave planning and execution, deferring some plan-
ning effort until more information is available. For ex-
ample, the robot plans how to get its materials to the
drill press but then suspends further planning until af-
ter those steps are executed and further information
about the state of the table is available.

In fact, complete information is rarely available. In
some cases, the models used by our robots are quan-
titatively inaccurate (leading to errors in position, ve-
locity, etc.). In some cases, the incompleteness of in-
formation is more qualitative (e.g. the robot does not
know the room in which an essential tool is located).
In this paper, we concentrate on problem solving with
incomplete information of the latter sort.

The difficulty with all of these approaches is that,
in the absence of any good pruning rules, the planning
cost is extremely high. In the case of deferred planning,
the absence of good termination rules means that the
problem solver must plan all the way to the goal, thus
eliminating the principal value of the approach.

There are, of course, multiple ways to deal with qual-
itatively incomplete information. To illustrate some of
the alternatives, consider a robot in a machine shop.
The robot’s goal is to fabricate a part by boring a hole

‘Funding was provided by the Office of Naval Research
under contract number N0001490-J-1533.

In this paper, we present some powerful pruning
rules for planning in the face of incomplete informa-
tion. The rules are all based on the simple idea that, if
goal achievement is the sole criterion for performance,
a planner need not consider one “branch” in its search
space when there is another “branch” characterized by
equal or greater information.

Fikes introduced interleaved planning and execution
in the limited instance of plan modification during ex-
ecution [Fikes 19721. Rosenschein’s work on dynamic

724 Genesereth

From: AAAI-93 Proceedings. Copyright © 1993, AAAI (www.aaai.org). All rights reserved.

logic formalized conditional planning but paid little at-
tention to computational aspects [Bosenschein 19811.
More recent works do provide domain dependent guid-
ance, but have not uncovered methods that gen-
eralize across domains [Hsu 19901, [Olawsky 19901,
[Etzioni 19921.

In the next section, we give our definition for prob-
lem solving. In section 3, we present a traditional ap-
proach to problem solving with complete information.
In sections 46, we present pruning rules for the three
approaches to problem solving mentioned above. Sec-
tion 7 offers some experimental results on the use of
our rules. The final section summarizes the main re-
sults of the paper and describes some limitations of
this work.

Problem Solving
Our definition of problem solving assumes a division of
the world into two interacting parts - an agent and its
environment. The outputs of the agent (its actions) are
the inputs to the environment, and the outputs of the
environment are the inputs to the agent (its percepts).

Formally, we specify the behavior of our agent as a
tuple (P, B, A, int, ezt, bl), where P is a set of input
objects (the agent’s percepts), B is a set of internal
states, A is a set of output objects (the agent’s actions),
int is a function from P x B into B (the agent’s state
transition function), ezt is a function from P x B into
A (the agent’s action function), and br is a member of
B (the agent’s initial internal state).

We characterize the behavior of an agent’s environ-
ment as a tuple (A, E, P, see, do, el), where A is a finite
set of actions, E is a set of world states, P is a finite
set of distinct percepts, see is a function that maps
each world state into its corresponding percept, do is a
function that maps an action and a state into the state
that results from the application of the given action in
the given state, and el is an initial state of the world.

Note the strong similarity between our characteriza-
tion of an agent’s behavior and that of its environment.
There is only one asymmetry - the see function is a
function only of the environment’s state, whereas the
ezt function of an agent is a function of both the per-
cept and the internal state. (For automata theorists,
our agent is a Mealy machine, whereas our environ-
ment is a Moore machine.) This asymmetry is of no
real significance and can, with a little care, be elimi-
nated; it just simplifies the analysis.

The behavior of an agent in its environment is cycli-
cal. At the outset, the agent has a particular state br,
and the environment is in a particular state el. The en-
vironment presents the agent with a percept pl (based
on see), and the agent uses this percept and its inter-
nal state to select an action al to perform (based on
the ezt function). The agent then updates its internal
state to b=~ (in accordance with int), and the environ-
ment changes to a new state e2 (in accordance with
do). The cycle then repeats.

In what follows, we define a goal to be a set of states
of an environment. We say that an agent achieves a
goal G if and only if there is some time step n on which
the environment enters a state in the goal set:

3n e, E G

In problem solving with complete information, the
agent has the advantage of complete information about
the environment and its goal. In problem solving with
incomplete information, some of this information is
missing or incomplete. The pruning rules presented
here are fully general and apply equally well in cases
of uncertainty about initial state, percepts, and ac-
tions. However, for the sake of presentational simplic-
ity, we restrict our attention to uncertainty about the
robot’s initial state. In our version, the robot’s job is
to achieve a goal G, when started in an environment
(A, E, P, see, do, e), where e is any member of a set of
states I C E.

roblern Solving with Complete
Information

The traditional approach to problem solving with com-
plete information is sequential planning and execution.
An agent, given a description of an initial state and a
set of goal states, first produces a plan of operation,
then executes that plan.

In single state sequential planning, information
about the behavior of the agent’s environment is rep-
resented in the form of a state graph, i.e. a labelled,
directed graph in which nodes denote states of the
agent’s environment, node labels denote percepts, and
arc labels denote actions. There is an arc (sr, ~2) in
the graph if and only if the action denoted by the label
on the arc transforms the state denoted by sr into the
state denoted by ~2. By convention, all labelled arcs
that begin and end at the same state are omitted.

To find a plan, the robot searches the environment’s
state graph for a path connecting its single initial state
to a goal state. If such a path exists, it forms a sequen-
tial plan from the labels on the arcs along the path.

Obviously, there are many ways to conduct this
search - forward, backward, bidirectional, depth-first,
breadth-first, iterative deepening, etc. If the search is
done in breadth-first fashion or with iterative deepen-
ing, the shortest path will be found first.

As an illustration of this method, consider an appli-
cation area known as the Square World. The geogra-
phy of this world consists of a set of 4 cells laid out
on a 2-by-2 square. The cells are labelled a, b , c , d in a
clockwise fashion, starting at the upper left cell. There
is a robot in one of the cells and some gold in another.

One state of the Square World is shown on the left
in Figure 1. The robot is in cell a and the gold is in cell
c. The picture on the right illustrates another state.
In this case, the robot is in cell b and the gold is in cell
d.

Search 725

Figure 1: Square World

m V

Figure 2: State Graph of Square World

If we concentrate on the location of the robot and
the gold only, then there are 20 possible states. The
robot can be in any one of 4 cells, and the gold can
be in any one of 4 cells or in the grasp of the robot (5
possibilities in all).

Given our point of view, we can distinguish every
one of these states from every other state. By contrast,
consider an agent with a single sensor that determines
whether the gold is in the grip of the robot, in the same
cell, or elsewhere. This sensory limitation induces a
partition of the Square World’s 20 states into 3 subsets.
The first subset contains the 4 states in which the robot
grasps the gold. The second subset consists of the 4
states in which the gold and the robot are in the same
cell. The third subset consists of the 12 states in which
the gold and the robot are located in different cells.

The Square World has four possible actions. The
agent has a single movement action move, which moves
the robot around the square in a clockwise direction
one cell at a time. In addition, the agent can grasp the
gold if the gold is occupying the same cell, and it can
drop the gold if it is holding the gold, leading to 2 more
actions grub and drop. Finally, it can do nothing, i.e.
execute the noop action. ”

Our robot’s objective in the Square World problem
is to get itself and the gold to the upper left cell. In
this case, the goal G is a singleton set consisting of just
this one state.

Figure 2 presents the state graph for the Square
World. The labels inside the nodes denote the states.
The first letter of each label denotes the location of

the
the
the

Figure 3: State-set Graph of Square World

robot. The second letter denotes the location of
gold using the same notation as for the robot, with
addition of i indicating that the gold is in the grip _ - _- _

of the robot. The structure of the graph clarifies the
robot’s three percepts. The four inner states indicate
that the robot is holding the gold. The next four states
indicate that the gold is in the same cell as the robot
(aa,bb, cc ,dd). The outermost twelve states indicate
that the robot and the gold are in different locations.

Looking at the graph in Figure 2, we see that there
are multiple paths connecting the Square World state
ac to state aa. Consequently, there are multiple plans
for achieving aa from ac. It is a simple matter for sssp
to find these paths. If the search is done in breadth-
first fashion, the result will be the shortest path - the
sequence move, move, grab, move, move, drop.

Sequential Planning with Incomplete
Information

In problem solving with incomplete information, our
robot knows that its initial state is a member of a set I
of possible states. How can this robot reach the goal,
given a state graph of the world and this set I? One
approach is to derive a single sequential plan that is
guaranteed to reach the goal no matter which state in
1 is the actual initial state. The robot can execute such
a plan with confidence.

A multiple state sequential planner finds a sequen-
tial plan if a sequential solution exists using a state-set
graph instead of the state graph that sssp uses. In the
state-set graph, a node is a set of states. An action
arc connects node n1 to node n2 if n2 contains exactly
the states obtained by performing the corresponding
action in the states of nl.

Figure 3 illustrates a partial state-set graph for the
Square World. In this case, the robot knows at the
outset that it is in the upper right cell. However, it
does not know the whereabouts of the gold, other than
that it is not in its grasp or in its cell. Therefore, the
initial state set I consists of exactly three states: bb,
bc, and bd.

726 Genesereth

Note that actions can change the state-set size, both
increasing node size and coercing the world to decrease
node size. The mssp architecture begins with node I
and expands the state-set graph breadth-first until it
encounters a node that is a subset of the goal node.
Msspa expands nodes using Results(N), which returns
all nodes that result from the application of each a E A
to node N. The following is a simple version of such an
algorithm. For a more thorough treatment of problem
solving search algorithms, see [Genesereth 19921.

MSSPA Algorithm
1. graph= I, frontier= (I)
2. S = Pop(frontier)
3. If S C G go to 6.
4. frontier = Append(frontier, Results(S))
5. Go to 2.
6. Execute the actions of the path from I to S in
graph.

One nice property of this approach is that it is guar-
anteed - the robot will achieve its goal if there is a
guaranteed sequential plan. Furthermore, it will find
the plan of minimal length.

However, the cost of simple mssp is very high. Given
i = III, g = ICI, a = IAl, and search depth I%, the cost
cost nas3p of finding a plan is proportional to igak.

Fortunately, many of the paths in the state-set graph
can be ignored; these are useless partial plans. Any
path reaching a node that is identical to some earlier
node in that path is accomplishing nothing. Further-
more, any path that leads to a state from which there
is no escape is simply trapping the robot. Finally, if
we compare two paths and can show that one path is
always as good as the other path, we needn’t bother
with the inferior path. We formally define useless in
terms of any partial plan that begins at any node in
the graph. Therefore, note the distinction between the
root node, the current node being expanded, and node
I, the node at which our solution plan must begin:

A partial plan q is useless with respect to root (the
current node) and result-node(q) (the resultant node
of executing plan q from root) if (1) there is a node n
on the path from I to root (inclusive) such that n is a
subset of result-node(q), (2) there is a state s in result-
node(q) that has no outgoing arcs in the state graph,
or (3) there is a plan r such that q is not a sub-plan of r
and result-node(r) is a proper subset of result-node(q).

Pruning Rule 1: Sequential Planning
Prune any branch of the state-set graph that leads only
to useless plans.

Theorem: Pruning Rule 1 preserves
completeness.
Furthermore, we can guarantee the minimal solution
by modifying condition (3) to (3e): there is some plan
r such that length(r) <length(q) and result-node(r) is
a proper subset of result-node(q).

Note that once the planner finds a useless partial
plan, it can prune all extensions of that plan since any
solution from the result-node of a useless plan must
work either from an earlier node (1) or from some other
plan’s result-node (3).

This rule can lead to significant cost savings. Recall
that cost,,,p was igak. If the pruning rule decreases
the branching factor from a to a/b and searches to
depth d for case 3, the cost of mssp including the cost
of Pruning Rule I is proportional to (Hi2 + ai + adi +
ig)ak/bk. We would have savings when:

new cost =
old cost

ki+ a +adi+g < 1

9bk
As a result of the k term in the denominator,

cost tnssp+heuristics will grow significantly more slowly
than costmjsp as the solution length increases.

Conditional
Sequential planning has a serious flaw: some problems
require perceptual input for success. In these cases,
a sequential planner would fail to find a solution al-
though the system can reach the goal if it consults its
sensory input. We need a planner that will find such
solutions.

A multiple state conditional planner finds the min-
imal conditional solution using a conditional state-set
graph. This graph alternates perceptory and effectory
nodes. An effectory node has action arcs emanating
from it and percept arcs leading to it. A perceptory
node has percept arcs emanating from it and action
arcs leading to it. Action arcs connect nodes exactly
as in state-set graphs. Percept arcs are labelled with
percept names and lead to nodes representing the sub-
set of the originating states that is consistent with the
corresponding percept. Figure 4 illustrates part of a
conditional state-set graph.

lMscp begins with just the state set I and expands
the conditional state-set graph in a breadth-first (or
iterative deepening) manner until it finds a solution.
The planner uses both Results and Sees, which expands
a perceptory node into a set of nodes, to accomplish
the construction. Searching this graph is much less
trivial and often more costly than the state-set graph
search that mssp conducts. This is basically an and-or
graph search problem.

Mscp returns a conditional plan. This plan specifies
a sequence of actions for every possible sequence of in-
puts. It is effectively a series of nested case statements
that branch based upon perceptual inputs. Mscpa then
executes the conditional plan by checking the robot’s
percepts against case statements and executing the
corresponding sub-plans. Below is a greatly simplified
version of the mscp algorithm.

MSCPA Algorithm
1. graph = I (a perceptory node)
2. Expand every unexpanded perceptory node n

Search 727

using Sees(n).
3. If there is a sub-graph of graph that specifies
all action arcs and reaches a subset of G for every
possible series of percept arcs, then go to 6.
4. Expand every unexpanded effectory node m
;i”cpo ltZzs;lis(m) .

. .
6. Execute that sub-graph as a conditional plan.

Mscpa will reach the goal with a minimal action
sequence provided that there is a conditional solution.

Unfortunately, greater power has a price. At its
worst, costnasep is even greater than cost,,Sp because
the space contains perceptual branches: igpkak. To
extend Pruning Rule 1 to mscp, remember that a se-
quential plan has a single “result node” while a con-
ditional plan has many possible “result nodes.” We
define the result-nodes(q) to be the set of possible re-
sultant nodes (depending upon perceptory inputs) of
conditional plan q. Pruning Rule parts (I) and (2) re-
quire trivial changes to take this into account. But part
(3) now intends to compare two plans, which amounts
to comparing two sets of result-nodes.

We define domination such that if plan T dominates
plan q, then if there is a solution from result-nodes(q),
there must be a solution from result-nodes(r). Each
node in result-nodes(r) is dominating if it is a proper
subset of some node in result-nodes(q). But “result-
nodes” that maintain goal-reachability and do not in-
troduce infinite loops are also acceptable. Therefore,
we also state that n is dominating if it has reached the
goal or even if it is a proper subset of root. Below,
we define domination and revisit useless in terms of
conditional plans:

Formally, conditional plan r dominates a conditional
plan q if and only if

(A) V(n, Eresult-nodes(q))
3(n,. Eresult-nodes(r)) n, c nq, and

(B) V(n, Eresult-nodes(r))either
1. 3(np Eresult-nodes(q))+ C nq, or
2. n,CG,or
3. n, C root.

A partial conditional plan q is useless with respect
to root and result-nodes(q) if:
(1) There is a node n on the path from I to root (in-
clusive) and there is a node np in result-nodes(q) such
that n is a subset of n,, or
(2) There is a node nq m result-nodes(q) such that there
is a state in nnp with no outgoing action arcs in the state
graph, or
(3) There is a partial conditional plan r such that r
dominates q.

Pruning Rule 2: Conditional Planning
Prune any branch of the conditional
that leads only to useless plans.

state-set graph

Theorem: Pruning Rule 2 preserves
completeness.
Once again, we can reimpose the minimality guarantee
by modifying condition (3): (3e) There is a plan r such
that length(r) 5 length(q) and r dominates q without
use of case B3.

Cost analysis of mscp with Pruning Rule 2 yields re-
sults identical to costmssD with the exception that all
uk terms become akpk. &The pruning rule again pro-
vides search space savings as solution length increases.

Interleaved Planning and Execution
Conditional planning is an excellent choice when the
planner can extract a solution in reasonable time. But
this is not an easy condition to meet. As the branching
factor and solution length increase mildly, conditional
planning becomes prohibitively expensive in short or-
der. These are cases in which conditional planning
wastes much planning energy by examining simply too
much of the search space.

What if the system could cut its search short and
execute effective partial conditional plans? The sys-
tem could track its perceptual inputs during execution
and pinpoint its resultant fringe node at the end of
execution. The planner could continue planning from
this particular fringe node instead of planning for ev-
ery possible fringe node. This twophase cycle would
continue until the system found itself at the goal.

DPA Algorithm
1. states = I.
2. if states C G exit (success!!!)
3. Invoke t&ninating mscp from states and re-
turn the resultant conditional plan.
4. Execute the conditional plan, updating states
during execution.
5. Go to 2.

Dpa will reach the goal provided that there is a con-
ditional solution and the search termination rules pre-
serve completeness.

728 Genesereth

Figure 5: Search Space Savings of DPA

Assume for the moment that our search termination
rules return sub-plans of the minimal conditional plan
from I to G. We can quantify the dramatic search
space savings of delayed planning in this case. Re-
call that the cost of conditional planning is igpkak.
The cost of delayed planning is the sum of the costs
of each conditional planning episode. If there are j
such episodes, then the total cost of delayed planning
is jigp klj~k/3. Figure 5 demonstrates the savings, rep-
resenting mscpa with a large triangle and dpa by suc-
cessive small triangles. Note that if the system could
terminate search at every step, the search cost would
simplify to a linear one: kigpa.

Let us return to the search termination problem:
how can the planner tell that a particular plan is worth
executing although it does not take the system to the
goal? The intuition is clear in situations where all our
actions are clearly inferior to one action: we might as
well execute that one action before planning further.
For example, suppose Sally the robot is trying to de-
liver a package. She is facing the staircase and has
two available actions: move forward and turn right 90
degrees. The pruning rules would realize that flying
down the stairs is useless (deadly) and the planner
should immediately return the turn right action. We
can generalize this rule from single actions to partial
plans.

Termination Rule 1 (Forced Plan)If there
exists a plan r such that for all plans q either q is
useless or r is a sub-plan of q, then return r as a
forced plan.

Theorem: Termination Rule I preserves
completeness and provides a minimal solution.
The forced plan rule has trivial cost when its condi-
tional planner is using Pruning Rule 2. Unfortunately,
the forced plan criterion can be difficult to satisfy. This
rule requires that every non-useless solution from root
share at least a common first action. This fails when
there are two disparate solutions to the same problem.
Still, complete conditional planning to the goal may be
prohibitively expensive.

We need a termination rule with weaker criteria.
The viable plan rule will select a plan based upon its
own merit, never comparing two plans. The foremost
feature of any viable plan is reversibility. We want to
insure that the plan does not destroy the ability of the
system to reach the goal. This justifies the requirement
that each fringe node of a viable plan be a subset of

root.
A viable plan must also guarantee some sort of

progress toward the goal. We guarantee such progress
by requiring every fringe node to be a proper subset
of root. Each viable plan will decrease uncertainty by
decreasing the root state set size. This can occur at
most 111 - 1 times.

Termination Rule 2 (Viable Plan) If there
exists a plan r such that for all nodes n, in
result-nodes(r): n, is a proper subset of root,
then return r as a viable plan.
Theorem: Termination Rule 2 preserves
completeness.
The fact that the viable plan rule does not preserve
minimality introduces a new issue: how much of the
viable plan should the system execute before returning
to planning ? Reasonable choices range from the first
action to the entire plan. Experimental and qualitative
analysis indicates that this variable allows a very mild
tradeoff between planning time and execution time.

Average-case cost analysis of dpa using the Viable
Plan Rule yields hopeful results. Recall that pure con-
ditional planning would cost igpkak. Suppose a dpa
system executes n partial plans of depth j, resulting
in node I,, with size h. From In, there are no search
termination opportunities and the planner must plan
straight to the goal. Assume that there is some c such
that i =
is i2.

ch. The cost per node of the Viable Plan Rule

For case 1, assume g > h. The cost from I to I, is
n(i2 + ig)$caj. The worst-case cost from In to the goal
is (h2 + hg)p k ak when In is no closer to the goal than
I. This can occur precisely when g > h and coercion
is not necessary. When we divide the cost of dpa by
the cost of mscp we are left with savings when:

n(i + g)p’aj + h + h2
gpkak i p

For case 2, assume g 5 h. Then a number of co-
ercive actions occur along the way from I to 6. If
we assume that these coercives are distributed evenly,
then there are (h - g)/2 coercives from In to the
goal and k - (i - h)/2 total steps from In to the
goal. The total cost changes to n(i2 + ig)piaj +
(h2 + hg)pk-(‘-h)/2ak-(‘-h)/2. The third term, h2/ig,
changes to h/(gp(“-h)/2a(‘-h)/2), which is now less
than one since we assumed that g 5 h.

Experimental
We implemented these planners in four domains us-
ing property space representations, in which sets of
properties correspond to sets of states satisfying those
properties. For DPA, we implemented both termi-
nation criteria and executed the first step of viable
plans. MJH World is a realistic indoor navigation

Search 729

problem. Wumpus World is a traditional hero, gold,
and monster game. The Bay Area Transit Problem
[Hsu 19901 models an attempt to travel from Berkeley
to Stanford despite traffic jams. The Tool Box Prob-
lem [Olawsky 19901 d escribes two tool boxes that our
robot must bolt. The following depicts p, a, i, and g:

MJHl
MJH2
MJH3
WUMl
WUM2
BAT
TBOX

Pa ’
24: :
24 6 6
24 6 6
4 6 24 4
4 6 44 4
16 4 8172 8172

I3144 4

Below are running times (in seconds) and plan
lengths, including average length in brackets, for all ar-
chitectures with and without pruning rules. The DPA
statistics were derived by running DPA on every initial
state and averaging the running times. The dash (-)
signifies no solution and the asterisk (*) indicates no
solution after 24 hours running time.

MJHl
MJH2
MJH3
WUMl
WUM2
BAT
TBOX

SPA SPAh CPA CPAh DPA
34.6 4.1 82.8 21.4 1.6

74.6 24.6 1.5
* 623.6 2.4

877.7 104.5 1.3
* 15111 1.7
* * 3.6
* * 73.1

Lend,, Lenidd
9-ll[lO]
8-12[10] 6-l&]
S-16[11] 6-12[10]
7-15[9.2] 7-11[8.5]
;2;;;;;] 7-15[9.8]

10~13[1;.7]
5-12
10-13

BAT introduces a huge initial state set and a high
branching factor. DPA time results for BAT are
based upon a random sampling of thirty actual ini-
tial states. TBOX is the hardest problem because the
action branching factor is so high that even sequential
programming with complete information is impossible
without pruning. The TBOX running times are based
upon running DPA on every I possible in the Tool Box
World. Our DPA planner never issued an unbolt com-
mand in any TBOX solution. Olawsky regards the use
of unbolt as a failure and, using that definition, our ter-
mination rules produced zero failures in TBOX. A sur-
prising result concerning both of these large domains
is that the execution lengths were extremely similar to
the ideal execution lengths.

Conclusion
This paper presents some powerful pruning rules for
problem solving with incomplete information. These
rules are all domain-independent and lead to substan-
tial savings in planning cost, both in theoretical analy-
sis and on practical problems. The rules are of special
importance in the case of interleaved planning and ex-
ecution in that they allow the planner to terminate
search without planning to the goal.

Although our analysis concentrates exclusively on
uncertainty about initial states, the rules are equally
relevant to uncertainty about percepts and actions.

Our analysis also assumes that state sets are repre-
sented explicitly, but the pruning rules apply equally
well to planners based on explict enumerations of prop-
erty sets (e.g. Strips) and logic-based methods (e.g.
Green’s method).

One substantial limitation of this work is our empha-
sis on state goals. We have not considered the value
of these methods or rules on problems involving con-
ditional goals or process goals. We have also not con-
sidered the interactions of our rules with methods for
coping with numerical uncertainty. Further work is
needed in both areas.

Acknowledgements
David Smith introduced the machine shop robot ex-
ample. Sarah Morse provided a helpful early critique
of this paper. Tomas Uribe provided useful late-night
suggestions.

eferences
Etzioni, O., Hanks, S., and Weld, D. 1992. An Ap-
proach to Planning with Incomplete Information. In
Proceedings of the Third International Conference on
Knowledge Represent at ion and Reasoning.

Fikes, R. E., Hart, P.E., and Nilsson, N. J. 1972.
Learning and Executing Generalized Robot Plans.
Artificial Intelligence 3(4): 251-288.

Genesereth, M. R. 1992. Discrete Systems. Course
notes for CS 222. Stanford, CA: Stanford University.

Hsu, J. 1990. Partial Planning with Incomplete Infor-
mation. In Proceedings of AAAI Spring Symposium
on Planning in Uncertain, Unpredictable, or Chang-
ing Environments. Menlo Park, Calif.: AAAI Press.

Olawsky, ID., and Gini, M. 1990. Deferred Planning
and Sensor Use. In Proceedings of the DARPA Work-
shop on Innovative Approaches to Planning, Schedul-
ing, and Control. Los Altos, Calif.: Morgan Kauf-
mann.

Rosenschein, S.J. 1991. Plan Synthesis: A Logical
Perspective. In Proceedings of the Seventh Interna-
tional Conference on Artificial Intelligence. Vancou-
ver , British Columbia, Canada.

730 Genesereth

