Refining the Structure of Terminological Systems: Terminology = Schema + Views*

M. Buchheit¹ and F. M. Donini² and W. Nutt¹ and A. Schaerf²
1. German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
 {buchheit,nutt}@dfki.uni-sb.de
2. Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” Italy
 {donini,aschaerf}@assi.dis.uniroma1.it

Abstract

Traditionally, the core of a Terminological Knowledge Representation System (TKRS) consists of a so-called TBox, where concepts are introduced, and an ABox, where facts about individuals are stated in terms of these concepts. This design has a drawback because in most applications the TBox has to meet two functions at a time: on the one hand, similar to a database schema, frame-like structures with typing information are introduced through primitive concepts and primitive roles; on the other hand, views on the objects in the knowledge base are provided through defined concepts.

We propose to account for this conceptual separation by partitioning the TBox into two components for primitive and defined concepts, which we call the schema and the view part. We envision the two parts to differ with respect to the language for concepts, the statements allowed, and the semantics.

We argue that by this separation we achieve more conceptual clarity about the role of primitive and defined concepts and the semantics of terminological cycles. Moreover, three case studies show the computational benefits to be gained from the refined architecture.

Introduction

Research on terminological reasoning usually presupposes the following abstract architecture, which reflects quite well the structure of existing systems. There is a logical representation language that allows for two kinds of statements: in the TBox or terminology, concept descriptions are introduced, and in the ABox or world description, individuals are characterized in terms of concept membership and role relationships. This abstract architecture has been the basis for the design of systems, the development of algorithms, and the investigation of the computational properties of inferences.

Given this setting, there are three parameters that characterize a terminological system: (i) the language for concept descriptions, (ii) the form of the statements allowed, and (iii) the semantics given to concepts and statements. Research tried to improve systems by modifying these three parameters. But in all existing systems and almost all theoretical studies language and semantics have been kept uniform.

The results of these studies were unsatisfactory in at least two respects. First, it seems that tractable inferences are only possible for languages with little expressivity. Second, no consensus has been reached about the semantics of terminological cycles, although in applications the need to model cyclic dependencies between classes of objects arises constantly.

Based on an ongoing study of applications of terminological systems, we suggest to refine the two-layered architecture consisting of TBox and ABox. Our goal is twofold: on the one hand we want to achieve more conceptual clarity about the role of primitive and defined concepts and the semantics of terminological cycles; on the other hand, we want to improve the tradeoff between expressivity and worst case complexity. Since our changes are not primarily motivated by mathematical considerations but by the way systems are used, we expect to come up with a more practical system design.

In the applications studied we found that the TBox has to meet two functions at a time. One is to declare frame-like structures by introducing primitive concepts and roles together with typing information like isa-relationships between concepts, or range restrictions and number restrictions of roles. E.g., suppose we want to model a company environment. Then we may introduce the concept Employee as a specialization of Person, having exactly one name of type Name and at least one affiliation of type Department. This is similar to class declarations in object-oriented systems. For this purpose, a simple language is sufficient. Cycles occur naturally in modeling tasks, e.g., the boss of an Employee is also an Employee. Such declarations have

¹This work was partly supported by the Commission of the European Union under ESPRIT BRA 6810 (Compulog 2), by the German Ministry of Research and Technology under grant ITW 92-01 (TACOS), and by the CNR (Italian Research Council) under Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo, LdR “Ibidi.”

²In (Lenzerini & Schaerf 1991) a combination of a weak language for ABoxes and a strong language for queries has been investigated.
no definitional import, they just restrict the set of possible interpretations.

The second function of a TBox is to define new concepts in terms of primitive ones by specifying necessary and sufficient conditions for concept membership. This can be seen as defining abstractions or views on the objects in the knowledge base. Defined concepts are important for querying the knowledge base and as left-hand sides of trigger rules. For this purpose we need more expressive languages. If cycles occur in this part they must have definitional import.

As a consequence of our analysis we propose to split the TBox into two components: one for declaring frame structures and one for defining views. By analogy to the structure of databases we call the first component the schema and the second the view part. We envision the two parts to differ with respect to the language, the form of statements, and the semantics of cycles.

The schema consists of a set of primitive concept introductions, formulated in the schema language, and the view part by a set of concept definitions, formulated in the view language. In general, the schema language will be less expressive than the view language. Since the role of statements in the schema is to restrict the interpretations we want to admit, first order semantical analysis is also called descriptive semantics in this context (see Nehel 1991), is adequate for cycles occurring in the schema. For cycles in the view part, we propose to choose a semantics that defines concepts uniquely, e.g., least or greatest fixpoint semantics.

The purpose of this work is not to present the full-fledged design of a new system but to explore the options that arise from the separation of TBoxes into schema and views. Among the benefits to be gained from this refinement are the following three. First, the new architecture has more parameters for improving systems, since language, form of statements, and semantics can be specified differently for schema and views. So we found a combination of schema and view language with polynomial inference procedures whereas merging the two languages into one would have led to intractability. Second, we believe that one of the obstacles to a consensus about the semantics of terminological cycles has been precisely the fact that no distinction has been made between primitive and defined concepts. Moreover, intractability results for cycles mostly refer to inferences with defined concepts. We proved that reasoning with cycles is easier when only primitive concepts are considered. Third, the refined architecture allows for more differentiated complexity measures, as shown later in the paper.

In the following section we outline our refined architecture for a TKRS, which comprises three parts: the schema, the view taxonomy, and the world description, which comprise primitive concepts, defined concepts and assertions in traditional systems. In the third section we show by three case studies that adding a simple schema with cycles to existing systems does not increase the complexity of reasoning.

The Refined Architecture

We start this section by a short reminder on concept languages. Then we discuss the form of statements and their semantics in the different components of a TKRS. Finally, we specify the reasoning services provided by each component and introduce different complexity measures for analyzing them.

Concept Languages

In concept languages, complex concepts (ranged over by C, D) and complex roles (ranged over by Q, R) can be built up from simpler ones using concept and role forming constructs (see Tables 1 and 2 a set of common constructs). The basic syntactic symbols are (i) concept names, which are divided into schema names (ranged over by A) and view names (ranged over by V), (ii) role names (ranged over by P), and (iii) individual names (ranged over by a, b). An interpretation \(I = (\Delta^I, \cdot^I) \) consists of the domain \(\Delta^I \) and the interpretation function \(\cdot^I \), which maps every concept to a subset of \(\Delta^I \), every role to a subset of \(\Delta^I \times \Delta^I \), and every individual to an element of \(\Delta^I \) such that \(a^I \neq b^I \) for different individuals \(a, b \) (Unique Name Assumption). Complex concepts and roles are interpreted according to the semantics given in Tables 1 and 2, respectively.

In our architecture, there are two different concept languages in a TKRS, a schema language for expressing schema statements and a view language for formulating views and queries to the system. The view and schema languages in the case studies will be defined by restricting the set of concept and role forming constructs to a subset of those in Tables 1 and 2.

The Three Components

Now we describe the three parts of a TKRS: the schema, the view taxonomy and the world description. We first focus our attention to the schema. The schema introduces concept and role names and states elementary type constraints. This can be achieved by inclusion axioms having one of the forms:

\[
A \subseteq D, \quad P \subseteq A_1 \times A_2,
\]

where \(A, A_1, A_2 \) are schema names, \(P \) is a role name, and \(D \) is a concept of the schema language. Intuitively, the first axiom states that all instances of \(A \) are also instances of \(D \). The second axiom states that the role \(P \) has domain \(A_1 \) and range \(A_2 \). A schema \(S \) consists of a finite set of schema axioms.

Inclusion axioms impose only necessary conditions for being an instance of the schema name on the left-hand side. For example, the axiom "Employee \(\subseteq \) Person" declares that every employee is a person,
Table 1: Syntax and semantics of concept forming constructs.

<table>
<thead>
<tr>
<th>Construct Name</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>top</td>
<td>(T)</td>
<td>(\Delta^T)</td>
</tr>
<tr>
<td>singleton set</td>
<td>{a}</td>
<td>{a^+}</td>
</tr>
<tr>
<td>intersection</td>
<td>(C \cap D)</td>
<td>(C^2 \cap D^2)</td>
</tr>
<tr>
<td>union</td>
<td>(C \cup D)</td>
<td>(C^2 \cup D^2)</td>
</tr>
<tr>
<td>negation</td>
<td>(-C)</td>
<td>(\Delta^2 \setminus C^2)</td>
</tr>
<tr>
<td>universal quantification</td>
<td>(\forall R.C)</td>
<td>({d_1 \mid \forall d_2 : (d_1, d_2) \in R^2 \rightarrow d_2 \in C^2})</td>
</tr>
<tr>
<td>existential quantification</td>
<td>(\exists Q \in R)</td>
<td>({d_1 \mid \exists d_2. (d_1, d_2) \in Q^2 \wedge (d_1, d_2) \in C^2})</td>
</tr>
<tr>
<td>existential agreement</td>
<td>(\exists Q \in R)</td>
<td>({d_1 \mid \exists d_2. (d_1, d_2) \in Q^2 \wedge (d_1, d_2) \in R^2})</td>
</tr>
<tr>
<td>number restrictions</td>
<td>({(d_1, d_2) \mid</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Table 2: Syntax and semantics of role forming constructs.

<table>
<thead>
<tr>
<th>Construct Name</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>inverse role</td>
<td>(P^{-1})</td>
<td>({(d_1, d_2) \mid (d_2, d_1) \in P^2})</td>
</tr>
<tr>
<td>role restriction</td>
<td>((R; (R; C)))</td>
<td>({(d_1, d_2) \mid (d_1, d_2) \in R^2 \wedge d_2 \in C^2})</td>
</tr>
<tr>
<td>role chain</td>
<td>(Q \circ R)</td>
<td>({(d_1, d_3) \mid \exists d_2. (d_1, d_2) \in Q^2 \wedge (d_2, d_3) \in R^2})</td>
</tr>
<tr>
<td>self</td>
<td>(\epsilon)</td>
<td>({(d_1, d_1) \mid d_1 \in \Delta^2})</td>
</tr>
</tbody>
</table>

but does not give a sufficient condition for being an employee.\(^2\)

A schema may contain cycles through inclusion axioms (see Nebel 1991 for a formal definition). So one may state that the bosses of an employee are themselves employees, writing "Employee \(\subseteq \forall \text{boss.Employer} \)." In general, existing systems do not allow for terminological cycles, which is a serious restriction, since cycles are ubiquitous in domain models.

There are two questions related to cycles: the first is to fix the semantics and the second, based on this, to come up with a proper inference procedure. As to the semantics, we argue that axioms in the schema have the role of narrowing down the models we consider possible. Therefore, they should be interpreted under descriptivistic semantics, i.e., like in first order logic: an interpretation \(\mathcal{I} \) satisfies an axiom \(A \subseteq D \) if \(A^2 \subseteq D^2 \), and it satisfies \(P \subseteq A_1 \times A_2 \) if \(P^2 \subseteq A_1^2 \times A_2^2 \). The interpretation \(\mathcal{I} \) is a model of the schema \(\mathcal{S} \) if it satisfies all axioms in \(\mathcal{S} \). The problem of inferences will be dealt with in the next section.

The view part contains view definitions of the form

\[V \models C, \]

where \(V \) is a view name and \(C \) is a concept in the view language. Views provide abstractions by defining new classes of objects in terms of the concept and role names introduced in the schema. We refer to "\(V \models C \)" as the definition of \(V \). The distinction between schema and view names is crucial for our architecture. It ensures the separation between schema and views.

A view taxonomy \(\mathcal{V} \) is a finite set of view definitions such that (i) for each view name there is at most one definition, and (ii) each view name occurring on the right hand side of a definition has a definition in \(\mathcal{V} \).

Differently from schema axioms, view definitions give necessary and sufficient conditions. As an example of a view, one can describe the bosses of the employee Bill as the instances of "BillsBosses = \exists \text{boss-of. Bill}." But note that this does not yield a definition if we assume descriptive semantics because for a fixed interpretation of Bill and of the role boss-of there may be several ways to interpret BillsSuperBosses in such a way that the above equality holds. In this example, we only obtain the intended meaning if we assume least fixpoint semantics. This observation holds more generally: if cycles are intended to uniquely define concepts then descrip-
tive semantics is not suitable. However, least or greatest fixpoint semantics or, more generally, a semantics based on the μ-calculus yield unique definitions (see Schild 1994). Unfortunately, algorithms for subsumption of views under such semantics are known only for fragments of the concept language defined in Tables 1 and 2.

In this paper, we only deal with acyclic view taxonomies. In this case, the semantics of view definitions is straightforward. An interpretation I satisfies the definition $V \subseteq C$ if $V^2 = C^2$, and it is a model for a view taxonomy V if I satisfies all definitions in V.

A state of affairs in the world is described by assertions of the form

$$C(a), \quad R(a, b),$$

where C and R are concept and role descriptions in the view language. Assertions of the form $A(a)$ or $P(a, b)$, where A and P are names in the schema, resemble basic facts in a database. Assertions involving complex concepts are comparable to view updates.

A world description W is a finite set of assertions. The semantics is as usual: an interpretation I satisfies $C(a)$ if $a^2 \in C^2$ and it satisfies $R(a, b)$ if $(a^2, b^2) \in R^2$; it is a model of W if it satisfies every assertion in W.

Summarizing, a knowledge base is a triple $\Sigma = (S, V, W)$, where S is a schema, V a view taxonomy, and W a world description. An interpretation I is a model of a knowledge base if it is a model of all three components.

Reasoning Services

For each component, there is a prototypical reasoning service to which the other services can be reduced.

Schema Validation: Given a schema S, check whether there exists a model of S that interprets every schema name as a nonempty set.

View Subsumption: Given a schema S, a view taxonomy V, and view names V_1 and V_2, check whether $V_1^2 \subseteq V_2^2$ for every model I of S and V.

Instance Checking: Given a knowledge base Σ, an individual a, and a view name V, check whether $a^2 \in V^2$ holds in every model I of Σ.

Schema validation supports the knowledge engineer by checking whether the skeleton of his domain model is consistent. Instance checking is the basic operation in querying a knowledge base. View subsumption helps in organizing and optimizing queries (see e.g. Buchheit et al. 1994). Note that the schema S has to be taken into account in all three services and that the view taxonomy V is relevant not only for view subsumption, but also for instance checking. In systems that forbid cycles, one can get rid of S and V by expanding definitions. This is not possible when S and V are cyclic.

Complexity Measures

The separation of the core of a TKRS into three components allows us to introduce refined complexity measures for analyzing the difficulty of inferences.

The complexity of a problem is generally measured with respect to the size of the whole input. However, with regard to our setting, three different pieces of input are given, namely the schema, the view taxonomy, and the world description. For this reason, different kinds of complexity measures may be defined, similarly to what has been suggested in (Vardi 1982) for queries over relational databases. We consider the following measures (where $|X|$ denotes the size of X):

Schema Complexity: the complexity as a function of $|S|$;

View Complexity: the complexity as a function of $|V|$;

World Description Complexity: the complexity as a function of $|W|$;

Combined Complexity: the complexity as a function of $|S| + |V| + |W|$.

Combined complexity takes into account the whole input. The other three instead consider only a part of the input, so they are meaningful only when it is reasonable to suppose that the size of the other parts is negligible. For instance, it is sensible to analyze the schema complexity of view subsumption because usually the schema is much bigger than the two views which are compared. Similarly, one might be interested in the world description complexity of instance checking whenever one can expect W to be much larger than the schema and the view part.

It is worth noticing that for every problem combined complexity, taking into account the whole input, is at least as high as the other three. For example, if the complexity of a problem is $O(|S| \cdot |V| \cdot |W|)$, its combined complexity is cubic, whereas the other ones are linear. Similarly, if the complexity of a given problem is $O(|S|^{|V}|)$, both its combined complexity and its view complexity are exponential, its schema complexity is polynomial, and its world description complexity is constant.

In this paper, we use combined complexity to compare the complexity of reasoning in our architecture with the traditional one. Moreover, we use schema complexity to show how the presence of a large schema affects the complexity of the reasoning services previously defined. View and world description complexity have been investigated (under different names) in (Nebel 1990; Baader 1990) and (Schaerf 1993; Donini et al. 1994), respectively.

For a general description of the complexity classes we use see (Johnson 1990)

Case Studies

In this section, we study some illustrative examples that show the advantages of the architecture we pro-
pose. We extend three systems by a language for cyclic schemas and analyze their computational properties.

As argued before, a schema language should be expressive enough to declare isa-relationships, restrict the range of roles, and specify roles to be necessary (at least one value) or functional (at most one value). These requirements are met by the language SC (see Buchheit et al. 1994), which is defined by the following syntax rule:

$$D \rightarrow A \mid \forall P.A \mid (\geq 1 P) \mid (\leq 1 P).$$

Obviously, it is impossible to express in SC that a concept is empty. Therefore, schema validation in SC is trivial. Also, subsumption of schema names is decidable in polynomial time.

We proved that inferences become harder for extensions of SC. If we add inverse roles, schema validation remains trivial, but subsumption of schema names becomes NP-hard. If we add any constructs by which one can express the empty concept—like disjointness axioms—schema validation becomes NP-hard. However, in our opinion this does not mean that extensions of SC are not feasible. For some extensions, we came up with natural restrictions on the form of schemas that decrease the complexity. Also, it is not clear whether realistic schemas will contain structures that require complex computations.

In all three case studies, the schema language is SC. As view language, we investigate three different languages derived from three actual systems described in the literature, namely CONCEPTBase (Jarke 1992), KRIS (Baader & Hollunder 1991), and CLASSIC (Borgida et al. 1989). For the extended systems, we study the complexity of the reasoning services, where, in particular, we aim at showing two results: (i) reasoning with respect to schema complexity is always tractable, (ii) combined complexity is not increased by the presence of terminological cycles in the schema.

In all three cases, we assume that the view taxonomy is acyclic. For this reason, from this point on we assume that no view names occur in view definitions or in the world description. This can be achieved by iteratively substituting every view name with its definition, which is possible because of our acyclicity assumption (see Nebel 1990 for a discussion of this substitution and its complexity).

The Language of CONCEPTBase as View Language

In (Buchheit et al. 1994) the query language QC was defined, which is derived from the deductive object-oriented database system CONCEPTBase under development at the University of Aachen. In QC roles are formed with all the constructs of Table 2, and concepts are formed according to the syntax rule:

$$C, D \rightarrow A \mid T \mid \{a\} \mid C \cap D \mid \exists R.C \mid \exists Q \equiv R.$$

Note that all concepts in QC correspond to existentially quantified formulas. We feel that most practical queries are of this form and do not involve universal quantification. In (Buchheit et al. 1994) it has been shown that view subsumption in QC can be computed in polynomial time w.r.t. combined complexity. We generalized this result.

Theorem 1 With SC as schema language and QC as view language, instance checking is in PTIME w.r.t. combined complexity.

This result illustrates the benefits of the new architecture because by restricting universal quantification to the schema and existential quantification to views we can have both without losing tractability. We proved that for the extension of SC by the construct $\exists P.A$, the combined complexity of view subsumption becomes NP-hard (whereas the schema complexity remains PTIME). From the results in (Donini et al. 1992a) it follows that adding universal quantification to QC would make view subsumption NP-hard.

The Language of KRIS as View Language

The system KRIS, under development at DFKI, provides as its core the expressive language ACCN, which is defined by the following syntax rule:

$$C, D \rightarrow A \mid C \cap D \mid C \cup D \mid \neg C \mid \forall P.C \mid \exists P.C \mid (\geq n P) \mid (\leq n P).$$

The complexity of reasoning with ACCN is known: Subsumption between ACCN-concepts has been proved PSPACE-complete in (Hollunder, Nutt, & Schmidt-Schauß 1990) and instance checking w.r.t. an acyclic TBox and an ABox has recently been proved PSPACE-complete too in (Hollunder 1993). For the combination of SC and ACCN in our architecture, we have the following result:

Theorem 2 With SC as schema language and ACCN as view language, view subsumption and instance checking are PSPACE-complete problems w.r.t. combined complexity and PTIME problems w.r.t. schema complexity.

We conclude that a simple schema with cycles can be added to systems like KRIS without changing the complexity of reasoning. However, if ACCN is also used as the schema language, then schema complexity alone is EXPTIME-hard (Buchheit, Donini, & Schaerf 1993).

The Language of CLASSIC as View Language

Finally, we study the concept language of the CLASSIC system as view language. CLASSIC has been developed at Bell Labs and is used in several applications. We refer to this language as CL.

In CLASSIC individuals are treated in a special way (see Borgida & Patel-Schneider 1993), which we capture by the following syntax and conventions: Individuals are represented by individual concepts B_1, \ldots, B_n.
that appear neither in the schema nor in the left-hand side of a definition and that are interpreted as mutually disjoint sets. Then the construct (one-of \(B_1 \ldots B_n\)) of CL can be modeled by a disjunction \(B_1 \cup \ldots \cup B_n\) of individual concepts. The construct (fills \(P B\)) can be interpreted as a particular case of existential quantification, which we write as \(\exists P.B\). The same-as construct \(p \equiv q\), which expresses agreement of chains \(p, q\) of functional roles, can be modeled by a combination of \(SL\) schema axioms and our existential agreement. Now, the syntax of \(CL\) is the following:

\[
C, D \rightarrow A | C \cap D | \forall P.C | (\leq n P) | (\geq n P) | B_1 \cup \ldots \cup B_k | \exists P.B | p \equiv q.
\]

Theorem 3 With \(SL\) as schema language and \(CL\) as view language, view subsumption and instance checking are problems in \(PTIME\) w.r.t. combined complexity.

This shows that adding cyclic schema information does not endanger the tractability of reasoning with CLASSIC, which was one of the main concerns of the CLASSIC designers (Borgida et al. 1989). Note that adding the same-as construct to \(SL\) makes view subsumption undecidable (Nebel 1991).

Conclusion

We have proposed to replace the traditional TBox in a terminological system by two components: a schema, where primitive concepts describing frame-like structures are introduced, and a view part that contains defined concepts. We feel that this architecture reflects adequately the way terminological systems are used in most applications.

We also think that this distinction can clarify the discussion about the semantics of cycles. Given the different functionalities of the schema and view part, we propose that cycles in the schema are interpreted with descriptive semantics while for cycles in the view part a definitional semantics should be adopted.

In three case studies we have shown that the revised architecture yields a better tradeoff between expressivity and the complexity of reasoning.

The schema language we have introduced might be sufficient in many cases. Sometimes, however, one might want to impose more integrity constraints on primitive concepts than those which can be expressed in it. We see two solutions to this problem: either enrich the language and have to pay by a more costly reasoning process, or treat such constraints in a passive way by only verifying them for the objects in the knowledge base. The second alternative can be given a logical semantics in terms of epistemic operators (see Donini et al. 1992b).

References

Hollunder, B. 1993. How to reduce reasoning to satisfiability checking of concepts in the terminological system KRIS. Submitted.

