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Abstract 

Several early game-playing computer programs used 
forward pruning (i.e., the practice of deliberately ig- 
noring nodes that are believed unlikely to affect a 
game tree’s minimax value), but this technique did 
not seem to result in good decision-making. The poor 
performance of forward pruning presents a major puz- 
zle for AI research on game playing, because some ver- 
sion of forward pruning seems to be “what people do,” 
and the best chess-playing programs still do not play 
as well as the best humans. 

As a step toward deeper understanding of forward 
pruning, we have set up models of forward pruning 
on two different kinds of game trees, and used these 
models to investigate how forward pruning affects the 
probability of choosing the correct move. In our stud- 
ies, forward pruning did better than minimaxing when 
there was a high correlation among the minimax val- 
ues of sibling nodes in a game tree. 

This result suggests that forward pruning may possi- 
bly be a useful decision-making technique in certain 
kinds of games. In particular, we believe that bridge 
may be such a game. 

Introduction 
Much of the difficulty of game-playing is due to the 
large number of alternatives that must be examined 
and discarded. One method for reducing the number 
of nodes examined by a game tree search is forward 
pruning, in which at each node of the search tree, the 
search procedure may discard some of the node’s chil- 
dren before searching below that node. On perfect- 
information zero-sum games such as chess, forward 
pruning has not worked as well as approaches that do 
not use forward pruning [4, 241. This presents a major 
puzzle for AI research on game playing, because some 
version of forward pruning seems to be “what people 
do,” and the best chess-playing programs still do not 
play as well as the best humans. Thus, it is important 

Institute for Systems Research 
University of Maryland 

College Park, MD 20742 
nau@cs.umd.edu 

to try to understand why programs have been unable to 
utilize forward pruning as effectively as -humans have 
done, and whether there are ways to utilize forward 
pruning more effective1y.l 

As a step toward deeper understanding of how for- 
ward pruning affects quality of play, in this paper we 
set up a model of forward pruning on two abstract 
classes of game trees, and we use this model to inves- 
tigate how forward pruning affects the probability of 
choosing the correct move. Our results suggest that 
forward pruning works best in situations where there 
is a high correlation among the minimax values of sib- 
ling nodes. Since we believe that bridge has this char- 
acteristic, this encourages us to believe that forward 
pruning may work better in the game of bridge than it 
has worked in other games. 

Forward-Pruning Models 
Consider a zero-sum game between two players, Max 
and Min. If the game is a perfect-information game, 
then the “correct” value of each node u is normally 
taken to be the well known minimax value: 

the payoff at u 
if u is a terminal node; 

mm(u) = max(mm(v) : v is a child of u) 
if it is Max’s move at u; 

min(mm(v) : v is a child of b} 
if it is Min’s move at u. 

Due to the size of the game tree, computing a node’s 
true minimax value is impractical for most games. For 
this reason, game-playing programs usually mark some 
non-terminal nodes as terminal, and evaluate them us- 
ing some static evaluation function e(u). The simplest 
version of this approach is what Shannon [16] called 
“Type A” pruning: choose some arbitrary cutoff depth 
d, and mark a non-terminal node u as terminal if and 
only if u’s depth exceeds d. A more sophisticated ver- 
sion of this is quiescence search: mark a non-terminal 

*This work supported in part by an AT&T Ph.D. schol- 
arship to Stephen J. J. Smith, Maryland Industrial Part- 
nerships (MIPS) grant 501.15, Great Game Products, and 
NSF grants NSFD CDR-88003012 and IRI-9306580. 

‘In particular, we are developing a forward-pruning 
search technique for the game of bridge [17, 181, by ex- 
tending task-network planning techniques [22, 23, 13, 201 
to represent multi-agency and uncertainty. 
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node u as terminal if and only if u’s depth exceeds d 
and u is “quiet” (i.e., there is reason to believe that 
e(u) will be reasonably accurate at u). 

To further decrease the number of nodes examined, 
game-tree-search procedures have been developed such 
as alpha-beta [5], B* [2], or SSS* [21]. These proce- 
dures will ignore any node v below u that they can 
prove will not affect u’s minimax value mm(u). 

This approach has worked well in games such * as 
chess [3, 71, checkers [15, 141, and Othello [6]. A more 
aggressive approach is forward pruning, in which the 
procedure deliberately ignores v if it believes v is un- 
likely to affect mm(u), even if there is no proof that 
v will not affect mm(u). Although several early com- 
puter chess programs used forward pruning, it is no 
longer widely used, because chess programs that used 
it did less well than those that did not [4, 241. 

Our Model of Forward Pruning 
In the game trees investigated in this paper, the value 
of each leaf node is either 1, representing a win for 
Max, or 0, representing a win for Min. Our model of 
a forward-pruning algorithm works as follows. At each 
node u where it is Max’s move, u has three children, ur , 
us, and ua. The forward-pruning algorithm will choose 
exactly two of these three nodes to investigate further. 
Normally, it will make this choice by applying a static 
evaluation function eval(.) to the three nodes, and dis- 
carding the node having the lowest value-and this is 
what we do in the “Statistical Studies” section. For 
our mathematical derivations, we assume fixed proba- 
bilities for which nodes will be chosen and which node 
will be discarded, as described below. There are three 
possible cases: 

1. Two of the nodes, say ui and ~2, have minimax val- 
ues representing wins for the current player. One of 
the nodes, say ug, has a minimax value representing 
a loss for the current player. Then the correct two 
children to investigate further are the ones whose 
minimax values are the same as the minimax value 
of u, in this case ui and us. Thus, for a Max node, 
the correct children have value 1; for a Min node, the 
correct children have value 0. If the algorithm does 
not choose both of the correct children, then the al- 
gorithm will search only one of ui and 212. Thus, 
it will continue part of its search down an incorrect 
branch, in this case the branch leading to us. This 
may result in an error in the algorithm’s computa- 
tion of u’s minimax value. 
In our mathematical derivations, we assume that the 
probability of choosing the correct two children is 
p, where p is constant throughout the tree. The 
algorithm’s probability of choosing one correct child 
and the incorrect child is thus (1 - p)/2 for each 
correct child. 

2. One of the nodes, say ui, has a minimax value rep- 
resenting a win for the current player. Two of the 

Leaf node values - +1 0 0 0 0 0 0 +1 +1 

Figure 1: Example of an N-game-like tree. 

nodes, say 2~2 and us, have minimax values repre- 
senting losses for the current player. In this case, 
the correct child is ui. If the algorithm chooses the 
two incorrect nodes, it will continue the rest of its 
search down incorrect branches, those leading to u2 
and ua. This is likely to result in an error in the 
algorithm’s computation of u’s minimax value. 
In our mathematical derivations, we assume that the 
probability of choosing the two incorrect nodes is r, 
where r is constant throughout the tree. The algo- 
rithm’s probability of choosing the correct child and 
one incorrect child is thus (1 - r)/2 for each incor- 
rect child. (For the rest of this paper, we will set 
r = (1 - P)~ and define q = 1 - (p + r).) 

3. All of the nodes have the same minimax value. In 
this case, all children are equally correct; the al- 
gorithm’s probability of choosing-any given pair of 
branches is l/3. 

Game-Tree Models 
In this section, we define two different classes of game 
trees. In later sections, we will investigate how foriard 
pruning behaves on these trees. 

N-Game trees and N-Game-Like Trees 
An N-game-dike tree is a complete tree that contains 
the following types of nodes (for example, see Fig. 1): 

1. Max nodes, where it is Max’s move. Each Max node 
is either a leaf node or has three children, all of which 
are Min nodes. 

2. Min nodes, where it is Min’s move. Each Min node 
has three children, all of which are RVA nodes. 

3. RVA (random-value addition) nodes, which have nu- 
\ I 

merit values assigned to them at random. The nu- 
meric value of each RVA node is chosen indepen- 
dently from the set { -1,l) with probability pi be- 
ing the probability of choosing 1. (For the rest of this 
paper, we will set pN = 0.61803, the golden ratio, so 
that in the limit, there is still a nonzero probability 
of each player having a forced win in the game tree.) 
Each RVA node has a single child, which is a Max 
node. 
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Figure 2: Example of a P-game tree. 

The tree’s Maz-:-height, h, is one less than the number 
of Max nodes on any path from the root to a leaf node.2 
The strength of each leaf node u is the sum of the values 
of the RVA nodes on the path from the root to U. If the 
strength of a leaf node is nonnegative, it is classified as 
a win; otherwise, it is classified as a loss. 

An N-game tree, as defined in [9, lo], is similar to the 
N-game-like trees defined above, except that N-game 
trees have no RVA nodes. Instead, a value of 1 or -1 
is randomly assigned to each arc, with a probability of 
0.5 of choosing 1. In this paper, we study N-game-like 
trees in the “Mathematical Derivations” section, and 
N-game trees in the “Statistical Studies” section. 

Comparison with Bridge 
In the game of bridge, the basic unit of play is the 
trick. After each side has made a move, one side or 
the other wins the trick. At each point in a bridge 
hand, the trick score for each side is the number of 
tricks that side has scored so far. The outcome of the 
hand depends 
the hand. 

on each side’s trick score at the end of 

This trick-scoring method gives bridge a superficial 
resemblance to the N-game-like trees defined above. 
To see this, consider a-node v in a bridge game tree, 
and suppose that v represents a bridge deal in which n 
tricks are left to be played. If T is the subtree rooted 
at v, then the trick scores of the leaves of T cannot 
differ from one another by any more than n. A similar 
situation occurs in an N-game-like tree of height h: if 
a Max node v has a Max-height of n, and T is the 
subtree rooted at v, then the strength of the leaves of 
T cannot differ from one another by any more than 2n. 

P-Game Trees 
A P-game tree [9, 10, 121 is a complete tree that con- 

tains the following types of nodes (an example appears 
in Fig. 2): 

1. MQZ nodes, where it is Max’s move. Each Max node 
is either a leaf node or has exactly three children, all 
of which are Min nodes. 

2This is analogous to the height of a complete tree 
(which is one less than the number of nodes on any path 
from the root to a leaf node), except that here we only 
count Max nodes. 

2. Min nodes, where it is Min’s move. Each Min 
node has exactly three children, which are both Max 
nodes. 

As before, the tree’s Max-height, h, is one less than 
the number of Max nodes on any path from the root to 
a leaf node. Since the tree is complete, each leaf node 
has the same height, and thus the same Max-height. 
The value of each leaf node u is randomly, indepen- 
dently chosen from a the set (0, l}, with probability pp 
of choosing 1. (For the rest of this paper, we will set 
PP = 0.68233, in order to guarantee that in the limit, 
there is still a nonzero probability that each player will 
have a forced win in the game tree [l, 11, 91.) Because 
U’S value does not depend on the path from the root 
to U, there is no need for RVA nodes. 

Mathematical Derivations 
Forward Pruning on N-Game-Like Trees 
We want to compute the probability that the forward- 
pruning algorithm estimates a value of s and the actual 
value is t for an N-game-like tree T whose Max-height 
is h. That is, we want Pr[estimated value s, actual 
value t 1 T’s Max-height is h]. We can compute this 
from the node strengths, as follows. Let 

eh,x,v = Pr[estimated strength x, actual strength y 
] Max-height h, root is a Max node]; 

fhw = Pr[estimated strength x, actual strength y 
1 Max-height h, root is an RVA node] ; 

%x,v = Pr[estimated strength x, actual strength y 
] Max-height h, root is a Min node]. 

These probabilities depend ‘on p and pi (recall that 
pi = 0.61803). The base case is ec,c,Y = 1 if 2 = y = 0, 
and es,x,y = 0 otherwise. The recurrence for fh,m,y is 

fhw = PNeh,z--l,y-1 + (1 - PA+h,x+l,y+l- 

The recurrences for gh,c,y and eh+l ,x# are too compli- 
cated to include here; see [19]. Now, let 

eh,t,t = Pr[estimated value s, actual value t 
1 Max-height h, root is a Max node]; 

fh,s,t = Pr[estimated value s, actual value t 
] Max-height h, root is an RVA node]; 

#h,s,t = Pr[estimated value s, actual value t 
I Max-height h, root is a Min node]. 

Then 

eh,l,l = c x eh,x,y; 
x:x>0 y:y>o 

eh,l,O = x x eh,t,y; 
x:x~O y:y<o 

eh,O,l = x x eh,%,y; 
x:z<oy:y20 

Eh,O,O = c c eh,z,y- 
x:x<0 y:y<o 

For f and jj, the equations are similar. 
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Forward ‘Pruning on P-Game Trees 
Since there are no strengths in P-game trees, we can 
compute the probabilities for the values directly. We 
define 

e6,x,Y = Pr[estimated value x, actual value y 
I Max-height h, root is a Max node]; 

86 F,Y = Pr[estimated value x, actual value y 
I Max-height h, root is a Min node]. 

The base case is ec,x,y = pp if x = 1 and y = 1; (1-pp) 
ifx=Oandy = 0; and 0 otherwise. As shown in [19], 
the recurrence for gi,x,y is identical to that for fh,x,y , 

except that each occurrence of eh,m,n is replaced by 
e6,m,n. The recurrence for ek+l,x,y is identical to that 
for eh+l,x,y , except that each occurrence of fh,m,n is 
replaced by fi,m,n. 

Probability of Correct Decision 
We can use the above recurrences to measure the prob- 
ability of correct decision. This is the probability that 
the forward-pruning algorithm, given a choice between 
two alternatives that have different minimax values, 
will choose the correct one.3 In particular, consider 
an N-game-like tree T of Max-height h, whose root is 
a Max node u with children ~1 and 242 such that the 
value of ~1 is greater than the value of ~2. Then 

Dh = Pr[estimated value of ui > 
estimated value of 2421 

+ iPr[estimated value of ur = 

estimated value of u2] 

= [gh-l,l,l#h-l,O,O + 

gh-l,O,lgh-1,0,0/2 + ah-l,l,lgh-1,0,1/2] 

[b-l,l,l + gh-l,O,l) x (sh-l,l,o + gh-l,o,())]. 

Similarly, for P-game trees, 

oh = [gh-l,l,lgh-l,o,o + 

gh-Wgh-1,0,0/2 + gh-l,l,lgh-1,0,1/2] 

[(gh-l,l,l + gh-l,o,l) x (gh-1,&O + gh-l,O,O)]. 

Results and Interpretations 
To derive closed-form solutions for the recurrences 
described in the “Mathematical Derivations” section 
would be very complicated. However, since we do have 
exact statements of the base cases and recurrences, we 
can compute any desired value of eh,x,y or ei,m,x,y, and 
thus any desired value of Dh or D6. We have computed 
Dh and Df, for trees of height h = 1,2, . . . ,15. The re- 
sults are shown in Fig. 3, along with the probability 

3 We have also investigated the probability of correct de- 
cision among three alternatives; the formulas [19] are too 
complicated to present here, but the results are similar. 
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Figure 3: Dh and Df, versus h for various values of p. 

of correct decision by random guess, included for com- 
parison purposes. Our interpretation of these results 
is as follows:* 

The higher the value of p, the more likely it is that 
the forward-pruning algorithm will choose the cor- 
rect two nodes to investigate at each level of the tree, 
and thus the more likely it is that the algorithm will 
return a good approximation of the tree’s minimax 
value. As shown in Fig. 3, this occurs in both P- 
game trees and N-game-like trees. 

In N-game-like trees, there is much stronger corre- 
lation among the values of sibling nodes than there 
is in P-game trees. Therefore, in N-game-like trees, 
even if the forward-pruning algorithm chooses the 
wrong node, the minimsx value of this node is not 
too far from the minimax value we would compute 
anyway. Thus, as shown in Fig. 3, for each value of 
p, the forward-pruning algorithm returns more ac- 
curate values in N-game-like trees than in P-game 
trees. 

Statistical Studies 
The results in the “Mathematical Derivations” section 
suggest that minimax with forward pruning does bet- 
ter when there is a high correlation among the minimax 
values of sibling nodes in a game tree. Previous stud- 
ies [9, lo] h ave shown that ordinary minimaxing also 
does better when there is a high correlation among the 
minimax values of sibling nodes in a game tree. Thus, 
the next question is whether minimax with forward 

‘The probab’ * y ht of correct decision for N-game-like 
trees exhibits a “manic-depressive” behavior similar to that 
observed in [8], that is, it is higher for odd Max-heights 
than it is for even Max-heights. We believe this is because 
our RVA nodes are only put below Min nodes. Standard 
N-game trees have the equivalent of our RVA nodes below 
both Min and Max nodes. 
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pruning would do better than ordinary minimaxing- 
for otherwise, it wouldn’t make sense to use forward 
pruning for actual game playing. 

To answer this question, we computed the proba- 
bilities of correct decision at various search depths on 
P-game trees and N-game trees, for minimax with and 
without forward pruning. For this study, we wanted to 
use a real evaluation function rather than a mathemat- 
ical model of one. This made it impossible to do an 
analysis similar to the one in the “Mathmetical Deriva- 
tions” section, so instead we did a statistical study. 

Forh=2,... ,6, we generated 5000 ternary N-game 
trees and P-game trees of Max-height h. The trees 
were generated at random, except that if a tree’s root 
did not have at least one forced-win child cwira and 
one forced-loss child closJ, we discarded the tree and 
generated anot her. For each tree T, we did a depth 
d minimax search of T,5 using the same evaluation 
function used in [9, lo]: 

evab(u) = 
winning leaf-descendants of u 

all leaf-descendants of u ’ 

We did this for d = 1, . . . ,2h - 2.‘j To get a statistical 
approximation of the probability of correct decision, 
we averaged the following over all 5000 N-game trees 
or P-game trees: 

quantity averaged = 

I 

1 if mm(c,i,,, d - 1) > 
mm(cl,,, , d - l), 

l/2 if mm(c,in, d - 1) = 
mm(cios8 , d - l), 

0 otherwise. 

We then repeated the same experiment, using minimax 
with forward pruning. 

The results are shown in Figures 4 and 5, which 
graph the probability of correct decision for minimax- 
ing both with and without forward pruning. To indi- 
cate how good a decision each approach could produce 
given the same amount of search time, these figures 
graph the probability of correct decision as a function 

‘The depth-d minimax value of a node is 

1 

evaZ(u) (the payoff at zb) 
if d = 0 or u is a terminal node, 

mm(u, d) = 
max{mm(v, d - 1) : v is a child of u} 

if it is Max’s move at u, 
min(mm(v, d - 1) : v is a child of u) 

if it is Min’s move at a. 

where eval(u) is u’s evaluation function value. A depth d 
minimax search from a node u means computing the depth 
d - 1 minimax values of u’s children. 

6We did not s earth to depths 2h - 1 and 2h because 
the comparison would not have been fair. At these depths, 
ordinary minimaxing applies evaZ(u) only to nodes within 
one move of the end of the game. For such nodes, evaZ(u) 
produces perfect results, hence so does ordinary minimax- 
ing. 
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of the number of nodes generated by the search.7 As 
can be seen, minimaxing with forward pruning gen- 
erally does better than ordinary minimaxing on N- 
games, and slightly worse than ordinary minimaxing 
on P-games. 

Conclusion 
In this paper, we set up models of forward pruning on 
ternary N-game-like game trees, and ternary P-game 
trees. We used these models to compute the probabil- 

7For ternary g ame trees, the number of nodes generated 
by a ordinary minimax search is 3l+. . .+3” = (3nt1 -3)/2. 
The number of nodes generated with forward pruning is 
3(2’ + . . . + 2’-‘-9 = 3(2” - 1). This is without alpha-beta 
pruning. With alpha-beta pruning, there would have been 
a different number of nodes generated in each game tree, 
making it difficult to obtain meaningful averages over our 
5000 games. 



ity of correct decision produced by minimax with and 
without forward pruning. 

In our studies, minimax with forward pruning did 
better than ordinary minimaxing in cases where there 
was a high correlation among the minimax values of 
sibling nodes in a game tree. Thus, forward pruning 
may possibly be a viable decision-making technique on 
game trees having the following characteristics: :’ 

Jirst charucterisbic: there is generally a high correla- 
tion among sibling nodes; 

second characteristic: when there are exceptions to 
the first characteristic, one can accurately identify 
them. 

To extend our work, we intend to do an empirical 
study of forward pruning on the game of bridge. We 
are interested in bridge for the following reasons: 

Bridge is an imperfect-information game, because no 
player knows exactly what moves the other players 
are capable of making. Because of this, the game 
tree for bridge has a large branching factor, resulting 
in a game tree containing approximately 6.01 x 1O44 
nodes in the worst case. Ordinary minimax search 
techniques do not do well in bridge, because they 
have no chance of searching any significant portion 
of the game tree. 

Our preliminary studies on the game of bridge show 
that by using forward-pruning techniques based on 
task-network planning, we can produce search trees 
of only about 1300 nodes in the worst case [17]. 
Thus, forward pruning will allow us to search all the 
way to the end of the game. Thus, we will not need 
to use a static evaluation function, and thus will not 
have to deal with the inaccuracies produced by such 
functions. 

We believe that bridge has the two characteris- 
tics described above, primarily because of the trick- 
scoring method used in bridge. Thus, we believe that 
forward pruning techniques may produce reasonably 
accurate results in bridge. 
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