
An Analysis of Forward Pruning *

Stephen J. J. Smith Dana S. Nau
Department of Computer Science Department of Computer Science, and

University of Maryland
College Park, MD 20742

sjsmithQcs.umd.edu

Abstract

Several early game-playing computer programs used
forward pruning (i.e., the practice of deliberately ig-
noring nodes that are believed unlikely to affect a
game tree’s minimax value), but this technique did
not seem to result in good decision-making. The poor
performance of forward pruning presents a major puz-
zle for AI research on game playing, because some ver-
sion of forward pruning seems to be “what people do,”
and the best chess-playing programs still do not play
as well as the best humans.

As a step toward deeper understanding of forward
pruning, we have set up models of forward pruning
on two different kinds of game trees, and used these
models to investigate how forward pruning affects the
probability of choosing the correct move. In our stud-
ies, forward pruning did better than minimaxing when
there was a high correlation among the minimax val-
ues of sibling nodes in a game tree.

This result suggests that forward pruning may possi-
bly be a useful decision-making technique in certain
kinds of games. In particular, we believe that bridge
may be such a game.

Introduction
Much of the difficulty of game-playing is due to the
large number of alternatives that must be examined
and discarded. One method for reducing the number
of nodes examined by a game tree search is forward
pruning, in which at each node of the search tree, the
search procedure may discard some of the node’s chil-
dren before searching below that node. On perfect-
information zero-sum games such as chess, forward
pruning has not worked as well as approaches that do
not use forward pruning [4, 241. This presents a major
puzzle for AI research on game playing, because some
version of forward pruning seems to be “what people
do,” and the best chess-playing programs still do not
play as well as the best humans. Thus, it is important

Institute for Systems Research
University of Maryland

College Park, MD 20742
nau@cs.umd.edu

to try to understand why programs have been unable to
utilize forward pruning as effectively as -humans have
done, and whether there are ways to utilize forward
pruning more effective1y.l

As a step toward deeper understanding of how for-
ward pruning affects quality of play, in this paper we
set up a model of forward pruning on two abstract
classes of game trees, and we use this model to inves-
tigate how forward pruning affects the probability of
choosing the correct move. Our results suggest that
forward pruning works best in situations where there
is a high correlation among the minimax values of sib-
ling nodes. Since we believe that bridge has this char-
acteristic, this encourages us to believe that forward
pruning may work better in the game of bridge than it
has worked in other games.

Forward-Pruning Models
Consider a zero-sum game between two players, Max
and Min. If the game is a perfect-information game,
then the “correct” value of each node u is normally
taken to be the well known minimax value:

the payoff at u
if u is a terminal node;

mm(u) = max(mm(v) : v is a child of u)
if it is Max’s move at u;

min(mm(v) : v is a child of b}
if it is Min’s move at u.

Due to the size of the game tree, computing a node’s
true minimax value is impractical for most games. For
this reason, game-playing programs usually mark some
non-terminal nodes as terminal, and evaluate them us-
ing some static evaluation function e(u). The simplest
version of this approach is what Shannon [16] called
“Type A” pruning: choose some arbitrary cutoff depth
d, and mark a non-terminal node u as terminal if and
only if u’s depth exceeds d. A more sophisticated ver-
sion of this is quiescence search: mark a non-terminal

*This work supported in part by an AT&T Ph.D. schol-
arship to Stephen J. J. Smith, Maryland Industrial Part-
nerships (MIPS) grant 501.15, Great Game Products, and
NSF grants NSFD CDR-88003012 and IRI-9306580.

‘In particular, we are developing a forward-pruning
search technique for the game of bridge [17, 181, by ex-
tending task-network planning techniques [22, 23, 13, 201
to represent multi-agency and uncertainty.

1386 Search

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

node u as terminal if and only if u’s depth exceeds d
and u is “quiet” (i.e., there is reason to believe that
e(u) will be reasonably accurate at u).

To further decrease the number of nodes examined,
game-tree-search procedures have been developed such
as alpha-beta [5], B* [2], or SSS* [21]. These proce-
dures will ignore any node v below u that they can
prove will not affect u’s minimax value mm(u).

This approach has worked well in games such * as
chess [3, 71, checkers [15, 141, and Othello [6]. A more
aggressive approach is forward pruning, in which the
procedure deliberately ignores v if it believes v is un-
likely to affect mm(u), even if there is no proof that
v will not affect mm(u). Although several early com-
puter chess programs used forward pruning, it is no
longer widely used, because chess programs that used
it did less well than those that did not [4, 241.

Our Model of Forward Pruning
In the game trees investigated in this paper, the value
of each leaf node is either 1, representing a win for
Max, or 0, representing a win for Min. Our model of
a forward-pruning algorithm works as follows. At each
node u where it is Max’s move, u has three children, ur ,
us, and ua. The forward-pruning algorithm will choose
exactly two of these three nodes to investigate further.
Normally, it will make this choice by applying a static
evaluation function eval(.) to the three nodes, and dis-
carding the node having the lowest value-and this is
what we do in the “Statistical Studies” section. For
our mathematical derivations, we assume fixed proba-
bilities for which nodes will be chosen and which node
will be discarded, as described below. There are three
possible cases:

1. Two of the nodes, say ui and ~2, have minimax val-
ues representing wins for the current player. One of
the nodes, say ug, has a minimax value representing
a loss for the current player. Then the correct two
children to investigate further are the ones whose
minimax values are the same as the minimax value
of u, in this case ui and us. Thus, for a Max node,
the correct children have value 1; for a Min node, the
correct children have value 0. If the algorithm does
not choose both of the correct children, then the al-
gorithm will search only one of ui and 212. Thus,
it will continue part of its search down an incorrect
branch, in this case the branch leading to us. This
may result in an error in the algorithm’s computa-
tion of u’s minimax value.
In our mathematical derivations, we assume that the
probability of choosing the correct two children is
p, where p is constant throughout the tree. The
algorithm’s probability of choosing one correct child
and the incorrect child is thus (1 - p)/2 for each
correct child.

2. One of the nodes, say ui, has a minimax value rep-
resenting a win for the current player. Two of the

Leaf node values - +1 0 0 0 0 0 0 +1 +1

Figure 1: Example of an N-game-like tree.

nodes, say 2~2 and us, have minimax values repre-
senting losses for the current player. In this case,
the correct child is ui. If the algorithm chooses the
two incorrect nodes, it will continue the rest of its
search down incorrect branches, those leading to u2
and ua. This is likely to result in an error in the
algorithm’s computation of u’s minimax value.
In our mathematical derivations, we assume that the
probability of choosing the two incorrect nodes is r,
where r is constant throughout the tree. The algo-
rithm’s probability of choosing the correct child and
one incorrect child is thus (1 - r)/2 for each incor-
rect child. (For the rest of this paper, we will set
r = (1 - P)~ and define q = 1 - (p + r).)

3. All of the nodes have the same minimax value. In
this case, all children are equally correct; the al-
gorithm’s probability of choosing-any given pair of
branches is l/3.

Game-Tree Models
In this section, we define two different classes of game
trees. In later sections, we will investigate how foriard
pruning behaves on these trees.

N-Game trees and N-Game-Like Trees
An N-game-dike tree is a complete tree that contains
the following types of nodes (for example, see Fig. 1):

1. Max nodes, where it is Max’s move. Each Max node
is either a leaf node or has three children, all of which
are Min nodes.

2. Min nodes, where it is Min’s move. Each Min node
has three children, all of which are RVA nodes.

3. RVA (random-value addition) nodes, which have nu-
\ I

merit values assigned to them at random. The nu-
meric value of each RVA node is chosen indepen-
dently from the set { -1,l) with probability pi be-
ing the probability of choosing 1. (For the rest of this
paper, we will set pN = 0.61803, the golden ratio, so
that in the limit, there is still a nonzero probability
of each player having a forced win in the game tree.)
Each RVA node has a single child, which is a Max
node.

Two-Player Games 1387

Max no&

Min nodes

Max no&s

Min nodes

Max no&s
Leaf node values -101100001

Figure 2: Example of a P-game tree.

The tree’s Maz-:-height, h, is one less than the number
of Max nodes on any path from the root to a leaf node.2
The strength of each leaf node u is the sum of the values
of the RVA nodes on the path from the root to U. If the
strength of a leaf node is nonnegative, it is classified as
a win; otherwise, it is classified as a loss.

An N-game tree, as defined in [9, lo], is similar to the
N-game-like trees defined above, except that N-game
trees have no RVA nodes. Instead, a value of 1 or -1
is randomly assigned to each arc, with a probability of
0.5 of choosing 1. In this paper, we study N-game-like
trees in the “Mathematical Derivations” section, and
N-game trees in the “Statistical Studies” section.

Comparison with Bridge
In the game of bridge, the basic unit of play is the
trick. After each side has made a move, one side or
the other wins the trick. At each point in a bridge
hand, the trick score for each side is the number of
tricks that side has scored so far. The outcome of the
hand depends
the hand.

on each side’s trick score at the end of

This trick-scoring method gives bridge a superficial
resemblance to the N-game-like trees defined above.
To see this, consider a-node v in a bridge game tree,
and suppose that v represents a bridge deal in which n
tricks are left to be played. If T is the subtree rooted
at v, then the trick scores of the leaves of T cannot
differ from one another by any more than n. A similar
situation occurs in an N-game-like tree of height h: if
a Max node v has a Max-height of n, and T is the
subtree rooted at v, then the strength of the leaves of
T cannot differ from one another by any more than 2n.

P-Game Trees
A P-game tree [9, 10, 121 is a complete tree that con-

tains the following types of nodes (an example appears
in Fig. 2):

1. MQZ nodes, where it is Max’s move. Each Max node
is either a leaf node or has exactly three children, all
of which are Min nodes.

2This is analogous to the height of a complete tree
(which is one less than the number of nodes on any path
from the root to a leaf node), except that here we only
count Max nodes.

2. Min nodes, where it is Min’s move. Each Min
node has exactly three children, which are both Max
nodes.

As before, the tree’s Max-height, h, is one less than
the number of Max nodes on any path from the root to
a leaf node. Since the tree is complete, each leaf node
has the same height, and thus the same Max-height.
The value of each leaf node u is randomly, indepen-
dently chosen from a the set (0, l}, with probability pp
of choosing 1. (For the rest of this paper, we will set
PP = 0.68233, in order to guarantee that in the limit,
there is still a nonzero probability that each player will
have a forced win in the game tree [l, 11, 91.) Because
U’S value does not depend on the path from the root
to U, there is no need for RVA nodes.

Mathematical Derivations
Forward Pruning on N-Game-Like Trees
We want to compute the probability that the forward-
pruning algorithm estimates a value of s and the actual
value is t for an N-game-like tree T whose Max-height
is h. That is, we want Pr[estimated value s, actual
value t 1 T’s Max-height is h]. We can compute this
from the node strengths, as follows. Let

eh,x,v = Pr[estimated strength x, actual strength y
] Max-height h, root is a Max node];

fhw = Pr[estimated strength x, actual strength y
1 Max-height h, root is an RVA node] ;

%x,v = Pr[estimated strength x, actual strength y
] Max-height h, root is a Min node].

These probabilities depend ‘on p and pi (recall that
pi = 0.61803). The base case is ec,c,Y = 1 if 2 = y = 0,
and es,x,y = 0 otherwise. The recurrence for fh,m,y is

fhw = PNeh,z--l,y-1 + (1 - PA+h,x+l,y+l-

The recurrences for gh,c,y and eh+l ,x# are too compli-
cated to include here; see [19]. Now, let

eh,t,t = Pr[estimated value s, actual value t
1 Max-height h, root is a Max node];

fh,s,t = Pr[estimated value s, actual value t
] Max-height h, root is an RVA node];

#h,s,t = Pr[estimated value s, actual value t
I Max-height h, root is a Min node].

Then

eh,l,l = c x eh,x,y;
x:x>0 y:y>o

eh,l,O = x x eh,t,y;
x:x~O y:y<o

eh,O,l = x x eh,%,y;
x:z<oy:y20

Eh,O,O = c c eh,z,y-
x:x<0 y:y<o

For f and jj, the equations are similar.

1388 Search

Forward ‘Pruning on P-Game Trees
Since there are no strengths in P-game trees, we can
compute the probabilities for the values directly. We
define

e6,x,Y = Pr[estimated value x, actual value y
I Max-height h, root is a Max node];

86 F,Y = Pr[estimated value x, actual value y
I Max-height h, root is a Min node].

The base case is ec,x,y = pp if x = 1 and y = 1; (1-pp)
ifx=Oandy = 0; and 0 otherwise. As shown in [19],
the recurrence for gi,x,y is identical to that for fh,x,y ,

except that each occurrence of eh,m,n is replaced by
e6,m,n. The recurrence for ek+l,x,y is identical to that
for eh+l,x,y , except that each occurrence of fh,m,n is
replaced by fi,m,n.

Probability of Correct Decision
We can use the above recurrences to measure the prob-
ability of correct decision. This is the probability that
the forward-pruning algorithm, given a choice between
two alternatives that have different minimax values,
will choose the correct one.3 In particular, consider
an N-game-like tree T of Max-height h, whose root is
a Max node u with children ~1 and 242 such that the
value of ~1 is greater than the value of ~2. Then

Dh = Pr[estimated value of ui >
estimated value of 2421

+ iPr[estimated value of ur =

estimated value of u2]

= [gh-l,l,l#h-l,O,O +

gh-l,O,lgh-1,0,0/2 + ah-l,l,lgh-1,0,1/2]

[b-l,l,l + gh-l,O,l) x (sh-l,l,o + gh-l,o,())].

Similarly, for P-game trees,

oh = [gh-l,l,lgh-l,o,o +

gh-Wgh-1,0,0/2 + gh-l,l,lgh-1,0,1/2]

[(gh-l,l,l + gh-l,o,l) x (gh-1,&O + gh-l,O,O)].

Results and Interpretations
To derive closed-form solutions for the recurrences
described in the “Mathematical Derivations” section
would be very complicated. However, since we do have
exact statements of the base cases and recurrences, we
can compute any desired value of eh,x,y or ei,m,x,y, and
thus any desired value of Dh or D6. We have computed
Dh and Df, for trees of height h = 1,2, . . . ,15. The re-
sults are shown in Fig. 3, along with the probability

3 We have also investigated the probability of correct de-
cision among three alternatives; the formulas [19] are too
complicated to present here, but the results are similar.

1.1

t ’

I

b I-

! p-o.85
i 0.9 - 0
8

pm 0.80

p = 0.75
E 0.8 -

p I 0.70
8
B
ho.?- P= O-65 p10.95-

3 p - 0.60

8 0.6 - ’ \ ‘\ ‘\ \\ ‘\ ‘\
nmb. of

‘\ \
Eorf

\\\‘\ \ ‘\ ‘\

t

de&&by
x . \ .\ ‘. .

’ .’ .’ . ’ IO.90
0.5 mm ‘.h&-~-:x= &o. -

9-
I t I

0 5 10 15 20
Max-height of the tree. h

Figure 3: Dh and Df, versus h for various values of p.

of correct decision by random guess, included for com-
parison purposes. Our interpretation of these results
is as follows:*

The higher the value of p, the more likely it is that
the forward-pruning algorithm will choose the cor-
rect two nodes to investigate at each level of the tree,
and thus the more likely it is that the algorithm will
return a good approximation of the tree’s minimax
value. As shown in Fig. 3, this occurs in both P-
game trees and N-game-like trees.

In N-game-like trees, there is much stronger corre-
lation among the values of sibling nodes than there
is in P-game trees. Therefore, in N-game-like trees,
even if the forward-pruning algorithm chooses the
wrong node, the minimsx value of this node is not
too far from the minimax value we would compute
anyway. Thus, as shown in Fig. 3, for each value of
p, the forward-pruning algorithm returns more ac-
curate values in N-game-like trees than in P-game
trees.

Statistical Studies
The results in the “Mathematical Derivations” section
suggest that minimax with forward pruning does bet-
ter when there is a high correlation among the minimax
values of sibling nodes in a game tree. Previous stud-
ies [9, lo] h ave shown that ordinary minimaxing also
does better when there is a high correlation among the
minimax values of sibling nodes in a game tree. Thus,
the next question is whether minimax with forward

‘The probab’ * y ht of correct decision for N-game-like
trees exhibits a “manic-depressive” behavior similar to that
observed in [8], that is, it is higher for odd Max-heights
than it is for even Max-heights. We believe this is because
our RVA nodes are only put below Min nodes. Standard
N-game trees have the equivalent of our RVA nodes below
both Min and Max nodes.

Two-Player Games 1389

pruning would do better than ordinary minimaxing-
for otherwise, it wouldn’t make sense to use forward
pruning for actual game playing.

To answer this question, we computed the proba-
bilities of correct decision at various search depths on
P-game trees and N-game trees, for minimax with and
without forward pruning. For this study, we wanted to
use a real evaluation function rather than a mathemat-
ical model of one. This made it impossible to do an
analysis similar to the one in the “Mathmetical Deriva-
tions” section, so instead we did a statistical study.

Forh=2,... ,6, we generated 5000 ternary N-game
trees and P-game trees of Max-height h. The trees
were generated at random, except that if a tree’s root
did not have at least one forced-win child cwira and
one forced-loss child closJ, we discarded the tree and
generated anot her. For each tree T, we did a depth
d minimax search of T,5 using the same evaluation
function used in [9, lo]:

evab(u) =
winning leaf-descendants of u

all leaf-descendants of u ’

We did this for d = 1, . . . ,2h - 2.‘j To get a statistical
approximation of the probability of correct decision,
we averaged the following over all 5000 N-game trees
or P-game trees:

quantity averaged =

I

1 if mm(c,i,,, d - 1) >
mm(cl,,, , d - l),

l/2 if mm(c,in, d - 1) =
mm(cios8 , d - l),

0 otherwise.

We then repeated the same experiment, using minimax
with forward pruning.

The results are shown in Figures 4 and 5, which
graph the probability of correct decision for minimax-
ing both with and without forward pruning. To indi-
cate how good a decision each approach could produce
given the same amount of search time, these figures
graph the probability of correct decision as a function

‘The depth-d minimax value of a node is

1

evaZ(u) (the payoff at zb)
if d = 0 or u is a terminal node,

mm(u, d) =
max{mm(v, d - 1) : v is a child of u}

if it is Max’s move at u,
min(mm(v, d - 1) : v is a child of u)

if it is Min’s move at a.

where eval(u) is u’s evaluation function value. A depth d
minimax search from a node u means computing the depth
d - 1 minimax values of u’s children.

6We did not s earth to depths 2h - 1 and 2h because
the comparison would not have been fair. At these depths,
ordinary minimaxing applies evaZ(u) only to nodes within
one move of the end of the game. For such nodes, evaZ(u)
produces perfect results, hence so does ordinary minimax-
ing.

1390 Search

0.00 -

b
go.88-
a

%,.,.

7;: h=2

~O.OO-
8
ij

~$0.05 -
d

%
h=3

0.04 -
h=4
hz5

0.93%=6

Solid lines = mhim with fonvard pnming

Dashed lines = mi&nax w!Ahout forward pMilg

2 loa
Nun& of nodes generated

Figure 4: Probability of correct decision on N-games,
versus number of nodes generated, for minimax with
and without forward pruning. The data is averaged
over 5000 game trees.

Solid lines = minimax with forward pwing

Dashed lines = nirimax withoil forward fxming

! .s-
3 0.7

i?

~0.05
z
.*
P g 0.6
L

Figure 5: Probability of correct decision on P-games,
versus number of nodes generated, for minimax with
and without forward pruning. The data is averaged
over 5000 game trees.

of the number of nodes generated by the search.7 As
can be seen, minimaxing with forward pruning gen-
erally does better than ordinary minimaxing on N-
games, and slightly worse than ordinary minimaxing
on P-games.

Conclusion
In this paper, we set up models of forward pruning on
ternary N-game-like game trees, and ternary P-game
trees. We used these models to compute the probabil-

7For ternary g ame trees, the number of nodes generated
by a ordinary minimax search is 3l+. . .+3” = (3nt1 -3)/2.
The number of nodes generated with forward pruning is
3(2’ + . . . + 2’-‘-9 = 3(2” - 1). This is without alpha-beta
pruning. With alpha-beta pruning, there would have been
a different number of nodes generated in each game tree,
making it difficult to obtain meaningful averages over our
5000 games.

ity of correct decision produced by minimax with and
without forward pruning.

In our studies, minimax with forward pruning did
better than ordinary minimaxing in cases where there
was a high correlation among the minimax values of
sibling nodes in a game tree. Thus, forward pruning
may possibly be a viable decision-making technique on
game trees having the following characteristics: :’

Jirst charucterisbic: there is generally a high correla-
tion among sibling nodes;

second characteristic: when there are exceptions to
the first characteristic, one can accurately identify
them.

To extend our work, we intend to do an empirical
study of forward pruning on the game of bridge. We
are interested in bridge for the following reasons:

Bridge is an imperfect-information game, because no
player knows exactly what moves the other players
are capable of making. Because of this, the game
tree for bridge has a large branching factor, resulting
in a game tree containing approximately 6.01 x 1O44
nodes in the worst case. Ordinary minimax search
techniques do not do well in bridge, because they
have no chance of searching any significant portion
of the game tree.

Our preliminary studies on the game of bridge show
that by using forward-pruning techniques based on
task-network planning, we can produce search trees
of only about 1300 nodes in the worst case [17].
Thus, forward pruning will allow us to search all the
way to the end of the game. Thus, we will not need
to use a static evaluation function, and thus will not
have to deal with the inaccuracies produced by such
functions.

We believe that bridge has the two characteris-
tics described above, primarily because of the trick-
scoring method used in bridge. Thus, we believe that
forward pruning techniques may produce reasonably
accurate results in bridge.

References
[l] Baudet, G. M. 1978. On the branching factor of the

alpha-beta pruning algorithm. Artif Intel. 10:173-
199.

[2] Berliner, H. J. 1979. The B* tree search algorithm:
A best-first proof procedure. Artif Intel. 12:23-40.

[3] Berliner, H. J.; Goetsch, 6.; Campbell, M. S.; and
Ebeling, C. 1990. Measuring the performance po-
tential of chess programs. Artif Intel. 43:7-20.

[4] Biermann, A. W. 1978. Theoretical issues related
to computer game playing programs. Personal Com-
puting 86-88.

[5] Knuth, D. E. and Moore, R. W. 1975. An analysis
of alpha-beta pruning. Artif, Intel. 6:293-326.

[S] Lee, K.-F. and Mahajan, S. 1990. The development
of a world class Othello program. Artif Intel. 43:21-
36.

[7] Levy, D. and Newborn, M. 1982. All About Chess
and Computers. Computer Science Press.

[8] Nau, D. S. 1982. The last player theorem. Artif.
Intel., 18:53-65. ’

[9] Nau, D. S. 1982. An investigation of the causes of
pathology in games. Artif. Intel. 19:257-278.

[lo] Nau, D. S. 1983. Pathology on game trees revis-
ited, and an alternative to minimaxing. Artif Intel.
21(1, 2):221-244.

[ll] Pearl, J. 1980. Asymptotic properties of minimax
trees and game-searching procedures. Artif. Intel.
14:113-138.

[12] Pearl, J. 1984. H euristics. Addison-Wesley, Read-
ing, MA.

[13] Sacerdoti, E. D. 1977. A Structure for Plans and
Behavior. American Elsevier Publishing Company.

[14] Samuel, A. L. 1967. Some studies in ma-
chine learning using the game of checkers. ii-recent
progress. IBM Journal of Research and Development
2:601-617.

[15] Schaeffer, J.; Culberson, J.; Treloar, N.; Knight,
B.; Lu, P.; and Szafron, D. 1992. A world champi-
onship caliber checkers program. Artif. Intel. 53:273-
290.

[16] Shannon, C. 1950. Programming a computer for
playing chess. Philosophical Magazine 7(14):256-
275.

[17] Smith, S. J. J.; Nau, D. S.; and Throop, T. 1992.
A hierarchical approach to strategic planning with
non-cooperating agents under conditions of uncer-
tainty. In Proc. First Internut. Conf. AI Planning
Systems. 299-300.

[lS] Smith, S. J. J. and Nau, D. S. 1993. Strategic
planning for imperfect-information games. In AAAI
Full Symposium on Games: Planning and Learning.

[19] Smith, S. J. J.; N au, D. S. Formal and statistical
analysis of forward pruning. Forthcoming.

[20] Stefik, M. 1981. Planning with constraints (MOL-
GEN: Part 1). Artif. Intel. 16:111-140.

[21] Stockman, G. C. 1979. A minimax algorithm bet-
ter than, alpha-beta? Artif. Intel. 12:179-196.

[22] Tate, A. 1976. Project planning using a hierar-
chic non-linear planner. Technical Report 25, De-
partment of Artif. Intel., University of Edinburgh.

[23] Tate, A. 1977. G enerating project networks. In
Proc. 5th IJCAI.

[24] Truscott, T. R. 1981. Techniques used in mini-
max game-playing programs. Master’s thesis, Duke
University, Durham, NC.

Two-Player Games 1391

