
Information Extraction from HTML:
Application of a General Machine Learning Approach�

Dayne Freitag
Department of Computer Science

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
dayne@cs.cmu.edu

Abstract

Because the World Wide Web consists primarily of
text, information extraction is central to any e�ort that
would use the Web as a resource for knowledge discov-
ery. We show how information extraction can be cast
as a standard machine learning problem, and argue for
the suitability of relational learning in solving it. The
implementation of a general-purpose relational learner
for information extraction, SRV, is described. In con-
trast with earlier learning systems for information ex-
traction, SRV makes no assumptions about document
structure and the kinds of information available for use
in learning extraction patterns. Instead, structural and
other information is supplied as input in the form of an
extensible token-oriented feature set. We demonstrate
the e�ectiveness of this approach by adapting SRV for
use in learning extraction rules for a domain consisting
of university course and research project pages sampled
from the Web. Making SRV Web-ready only involves
adding several simple HTML-speci�c features to its ba-
sic feature set.

The World Wide Web, with its explosive growth
and ever-broadening reach, is swiftly becoming the de-
fault knowledge resource for many areas of endeavor.
Unfortunately, although any one of over 200,000,000
Web pages is readily accessible to an Internet-connected
workstation, the information content of these pages is,
without human interpretation, largely inaccessible.
Systems have been developed which can make sense

of highly regularWeb pages, such as those generated au-
tomatically from internal databases in response to user
queries (Doorenbos, Etzioni, & Weld 1997) (Kushmer-
ick 1997). A surprising number of Web sites have pages
amenable to the techniques used by these systems. Still,
most Web pages do not exhibit the regularity required
by they require.
There is a larger class of pages, however, which are

regular in a more abstract sense. ManyWeb pages come
from collections in which each page describes a single
entity or event (e.g., home pages in a CS department;
each describes its owner). The purpose of such a page
is often to convey essential facts about the entity it

�Copyright c
 1998, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

describes. It is often reasonable to approach such a
page with a set of standard questions, and to expect
that the answers to these questions will be available as
succinct text fragments in the page. A home page, for
example, frequently lists the owner's name, a�liations,
email address, etc.
The problem of identifying the text fragments that

answer standard questions de�ned for a document col-
lection is called information extraction (IE) (Def 1995).
Our interest in IE concerns the development of machine
learning methods to solve it. We regard IE as a kind
of text classi�cation, which has strong a�nities with
the well-investigated problem of document classi�ca-
tion, but also presents unique challenges. We share this
focus with a number of other recent systems (Soderland
1996) (Cali� & Mooney 1997), including a system de-
signed to learn how to extract from HTML (Soderland
1997).
In this paper we describe SRV, a top-down relational

algorithm for information extraction. Central to the
design of SRV is its reliance on a set of token-oriented
features, which are easy to implement and add to the
system. Since domain-speci�c information is contained
within this features, which are separate from the core
algorithm, SRV is better poised than similar systems
for targeting to new domains. We have used it to
perform extraction from electronic seminar announce-
ments, medical abstracts, and newswire articles on cor-
porate acquisitions. The experiments reported here
show that targeting the system to HTML involves noth-
ing more than the addition of HTML-speci�c features
to its basic feature set.

Learning for Information Extraction

Consider a collection of Web pages describing univer-
sity computer science courses. Given a page, a likely
task for an information extraction system is to �nd the
title of the course the page describes. We call the title
a �eld and any literal title taken from an actual page,
such as \Introduction to Arti�cial Intelligence," an in-
stantiation or instance of the title �eld. Note that the
typical information extraction problem involves multi-
ple �elds, some of which may have multiple instantia-
tions in a given �le. For example, a course page might

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

... members: Joe Blow, Jane ...

: Joe

Fragment

Examples Classifier

members: Joe

Confidence

members:

: Joe Blow
Joe Blow
...

0.19
0.21
0
0.54
0.87

Figure 1: Information extraction as text classi�cation.
Above, a hypothetical fragment of text from a docu-
ment describing a research project. Below, some of the
corresponding examples. Each is assigned a number by
a classi�er designed to recognize, say, project members.
This illustration assumes that any fragment containing
two or three tokens (terms or units of punctuation) is
an example, but the actual range in example lengths
depends on the task.

include, in addition to the title, the o�cial course num-
ber and the names of the instructors. In traditional IE
terms, this collection of tasks is a template, each �eld a
slot, and each instantiation a slot �ll.
The general problem of information extraction in-

volves multiple sub-tasks, such as syntactic and seman-
tic pre-processing, slot �lling, and anaphora resolution
(Cardie 1997). The research reported here addresses
only the slot �lling problem, and we use the term in-
formation extraction to refer to this problem. In all re-
sults we report, therefore, our system is attempting to
solve the following task: Find the best unbroken frag-
ment (or fragments) of text to �ll a given slot in the
answer template. Note that this task is attempted for
each �eld in isolation. A solution to this task, simple
as it may seem, could serve as the basis for a large
number of useful applications, involving both Web and
non-Web documents. Moreover, our focus allows us to
study more carefully the behavior of the machine learn-
ing approaches we develop.

Extraction as Text Classi�cation

Information extraction is a kind of text classi�cation.
Figure 1 shows how the problem of �nding instances of a
\project member" �eld can be re-cast as a classi�cation
problem. Every candidate instance in a document is
presented to a classi�er, which is asked to accept or
reject them as project members, or more generally, as
in the �gure, to assign a score to each, the size of which
is its con�dence that a fragment is a project member.
In contrast with the document classi�cation problem,

where the objects to classify (documents) have clear
boundaries, the IE problem is, in part, to identify the

boundaries of �eld instances, which always occur in the
context of a larger unit of text. One way to implement
a learned classi�er for Figure 1 would be to treat each
fragment as a mini-document and use a bag-of-words
technique, as in document classi�cation. There is rea-
son to believe, however, that this would not yield good
results. The terms in a fragment by themselves do not
typically determine whether it is a �eld instance; its
relation to surrounding context is usually of great im-
portance.

Relational Learning

Relational learning (RL), otherwise known as induc-
tive logic programming, comprises a set of algorithms
suited to domains with rich relational structure. RL
shares with traditional machine learning (ML) the no-
tion of a universe consisting of class-labeled instances
and the goal of learning to classify unlabeled instances.
However, in contrast with traditional ML, in which in-
stances are represented as �xed-length attribute-value
vectors, the instances in a relational universe are em-
bedded in a domain theory. Instance attributes are not
isolated, but are related to each other logically. In a
typical covering algorithm (e.g., CN2 (Clark & Niblett
1989)), predicates based on attribute values are greed-
ily added to a rule under construction. At each step the
number of positive examples of some class is heuristi-
cally maximized while the number of negative exam-
ples is minimized. Relational learners are rule learners
with on-the-
y feature derivation. In addition to sim-
ple attribute-value tests, a relational learner can also
logically derive new attributes from existing ones, as,
for example, in FOIL (Quinlan 1990).

SRV

Our learner must induce rules to identify text fragments
that are instances of some �eld. When presented with
an instance of the �eld, these rules must say \yes"; when
given any other term sequence drawn from the docu-
ment collection, they must say \no." The set of posi-
tive examples for learning, therefore, is simply the set
of �eld instances. Because the set of all possible text
fragments is intractably large, however, we make the
assumption that �eld instances will be no smaller (in
number of terms) than the smallest, and no larger than
the largest seen during training. Any non-�eld-instance
fragment from the training document collection which
matches these criteria is considered a negative example
of the �eld and counted during induction.

Features In a traditional covering algorithm, the
learner is provided with a set of features, de�ned over
examples, which it can use to construct predicates. Un-
fortunately, multi-term text fragments are di�cult to
describe in terms of simple features. In contrast, indi-
vidual terms (or tokens), lend themselves much more
readily to feature design. Given a token drawn from a
document, a number of obvious feature types suggest
themselves, such as length (e.g., single character word),

word punctuationp sentence punctuation p
capitalized p all upper case all lower case
numericp singletonp hybrid alpha num p
doubletonp tripletonp quadrupletonp
longp prev token next token

Table 1: SRV\core" token features. The two features
in bold face are relational features.

character type (e.g., numeric), orthography (e.g., cap-
italized), part of speech (e.g., verb), and even lexical
meaning (e.g., geographical place). Of course, a token
is also related to other tokens by a number of dif-
ferent kinds of structure, and this structure suggests
other, relational feature types, such as adjacency (e.g.,
next token) and linguistic syntax (e.g., subject verb).

SRV di�ers from existing learning systems for IE by
requiring and learning over an explicitly provided set
of such features. These features come in two basic va-
rieties: simple and relational. A simple feature is a
function mapping a token to some discrete value. A
relational feature, on the other hand, maps a token to
another token. Figure 1 shows some of the features we
used in these experiments. We call these the \core"
features, because they embody no domain-speci�c as-
sumptions.

Search SRV proceeds as does FOIL, starting with
the entire set of examples|all negative examples and
any positive examples not covered by already induced
rules|and adds predicates greedily, attempting thereby
to \cover" as many positive, and as few negative exam-
ples as possible. An individual predicate belongs to one
of a few prede�ned types:

� length(Relop N): The number of tokens in a fragment
is less than, greater than, or equal to some integer.
Relop is one of <, >, or =. For example, length(= 3)
accepts only fragments containing three tokens.

� some(Var Path Feat Value): This is a feature-value
test for some token in the sequence. An example is
some(?A [] capitalizedp true), which means \the frag-
ment contains some token that is capitalized." One
argument to this predicate is a variable. For a rule
to match a text fragment, each distinct variable in it
must bind to a distinct token in the fragment. How
the Path argument is used is described below.

� every(Feat Value): Every token in a fragment
passes some feature-value test. For example,
every(numericp false) means \every token in the frag-
ment is non-numeric."

� position(Var From Relop N): This constrains the po-
sition of a token bound by a some-predicate in
the current rule. The variable From takes one of
two values, from�rst or fromlast. These values con-
trol whether the position is speci�ed relative to the
beginning or end of the sequence. For example,
position(?A from�rst < 2)means \the token bound to
?A is either �rst or second in the fragment."

� relpos(Var1 Var2 Relop N): This constrains the or-
dering and distance between two tokens bound by
distinct variables in the current rule. For example,
relpos(?A ?B = 1) means \the token bound to ?A im-
mediately precedes the token bound to ?B."

At every step in rule construction, all documents in
the training set are scanned and every text fragment
of appropriate size counted. Every legal predicate is
assessed in terms of the number of positive and negative
examples it covers.1 That predicate is chosen which
maximizes the gain metric used in FOIL.

Relational paths Relational features are used only
in the Path argument to the some predicate. This ar-
gument can be empty, in which case the some predicate
is asserting a feature-value test for a token actually oc-
curring within a �eld, or it can be a list of relational
features. In the latter case, it is positing both a re-
lationship about a �eld token with some other nearby
token, as well as a feature value for the other token.
For example, the assertion:

some(?A [prev token prev token] capitalized true)

amounts to the English statement, \The fragment con-
tains some token preceded by a capitalized token two
tokens back." There is no limit to the number of re-
lational features the learner can string together in this
way. Thus, it is possible in principle for the learner
to exploit relations between tokens quite distant from
each other. In practice, SRV starts each rule by consid-
ering only paths of length zero or one. When it posits
a some-predicate containing a path, it adds to its set of
candidate paths all paths obtained by appending any
relational feature to the path used in the predicate. In
this way, it builds its notion of �eld context outward
with each rule.

Validation In the experiments reported here, each
rule in a learned rule set is validated on a hold-out
set. A randomly selected portion (one-third, in this
case) of the training data is set aside for validation
prior to training. After training on the remaining data,
the number of matches and correct predictions over
the validation set is stored with each rule. In order
to get as much out of the training data as possible, this
procedure|training and validation|is repeated three
times, once for each of three partitions of the training
data. The resulting validated rule sets are concatenated
into a single rule set, which is used for prediction. Fig-
ure 2 summarizes all the steps involved in training SRV.
During testing, Bayesian m-estimates are used to as-

sess a rule's accuracy from the two validation numbers
(Cestnik 1990). All rules matching a given fragment are
used to assign a con�dence score to SRV's extraction of
the fragment. If C is the set of accuracies for matching

1For example, a position-predicate is not legal unless a
some-predicate is already part of the rule. See the following
discussion for restrictions on how the relational component
of the some-predicate is used.

documents

Simple &
Relational
Features

Induction

Validation

projmember :- some(...
Matched: 28; Correct: 20

projmember :- every(...

Matched 12; Correct 3

Annotated

Annotated

projmember :- every(...

validation
documents

Rules

Validated rules

projmember :- some(...

Figure 2: Input/output of the SRV algorithm.

rules, then the combined con�dence is 1�
Q

c2C
(1 � c).

We found in practice that this yields better results than,
say, taking the score of the single matching rule of high-
est con�dence.

SRV and FOIL It is important to distinguish be-
tween SRV and FOIL, the general-purpose learning al-
gorithm on which it is based. FOIL takes as input a set
of Horn clauses, which de�ne both the set of training
examples, as well as the structure of the search space.
SRV, in contrast, takes a document collection tagged
for some �eld and a set of features (see Figure 2). Al-
though it might be possible to get some of the func-
tionality of SRV by encoding a �eld extraction problem
in �rst-order logic (an ungainly encoding at best), it
is doubtful that FOIL would perform as well, and it
certainly would perform less e�ciently. In addition to
heuristics SRV shares with FOIL, it encompasses many
additional heuristics which render its search through
typically huge negative example sets tractable. Exam-
ples are handled implicitly, on a token-by-token basis;
because a token is generally shared by many examples
(see Figure 1), this permits a much more rapid account-
ing than if examples were explicitly given. And SRV's
exploration of relational structure is restricted in a way
that makes sense for the IE problem; in contrast with
traditional ILP systems, for example, it cannot infer
recursive rules.

Experiments

To test our system, we sampled a set of pages from the
Web and tagged them for relevant �elds. This section
describes the data set and the approach we took to
adapting SRV for HTML.

Adapting SRV for HTML

Making SRV able to exploit HTML structure only in-
volved the addition of a number of HTML-speci�c fea-

in title in a in h
in h1 in h2 in h3
in list in tt in table
in b in i in font
in center in strong in em
in emphatic after br after hr
after p after li after td
after th after td or th
table next col table prev col

table next row table prev row
table row header table col header

Table 2: HTML features added to the core feature set.
Features in bold face are relational.

tures to its default set. Table 2 shows the features we
added to the core set for these experiments. The in
features return true for any token occurring within the
scope of the corresponding tag. The after features re-
turn true only for the single token following the corre-
sponding tag. The feature in emphatic is a disjunction
of in i, in em, in b, and in strong. In addition, several
relational features were added which capture relations
between tokens occurring together in HTML tables.

Data

For these experiments we sampled and labeled course
and research project pages from four university com-
puter science departments: Cornell, University of
Texas, University of Washington, and University of
Wisconsin. Course pages were labeled for three �elds:
course title, course number, and course instructor.
Course instructor was de�ned to include teaching assis-
tants. Project pages were labeled for two �elds: project
title and project member. After collection and tagging,
we counted 105 pages in our course collection and 96 in
our research project collection.

Procedure

To gauge the performance of SRV, we partitioned each
of the two data sets into training and testing sets sev-
eral times and averaged the results. We tried SRV
using the core features shown in Table 1, and again
with this same set augmented with the HTML features
shown in Table 2. We also performed separate exper-
iments for each of two ways of partitioning: random
partitions, in which a collection (course or project) was
randomly divided into training and testing sets of equal
size; and leave-one-university-out (LOUO) partitioning,
in which pages from one university were set aside for
testing and pages from the other three university were
used for training. Using random partitioning, we split
each data set 5 times into training and testing sets of
equal size. The numbers reported for these experiments
represent average performance over these 5 sessions.
Using LOUO partitioning, the numbers reported rep-
resent average performance over a 4-fold experiment,
in which each single experiment involves reserving the
pages from one university for testing.

Full � 80% � 20%
Acc Cov Acc Cov Acc Cov

Course Title
r
a
n

html 45.7 94.4 53.8 80.4 100.0 19.6
core 33.0 91.1 37.2 79.9 51.1 20.1

u
n
v

html 48.5 96.6 55.7 79.5 83.3 20.5
core 30.8 93.2 32.9 79.5 31.6 20.5

Course Number
r
a
n

html 84.0 100.0 87.2 80.1 91.7 19.9
core 84.1 98.3 86.9 80.1 89.6 19.9

u
n
v

html 79.2 95.7 81.1 73.4 87.0 22.3
core 52.1 95.7 65.8 75.5 77.3 20.2

Project Title
r
a
n

html 26.3 99.5 31.0 79.9 50.0 20.1
core 7.7 99.0 8.2 79.4 9.8 20.6

u
n
v

html 34.0 97.5 39.2 80.0 81.2 20.0
core 9.9 93.8 11.3 80.0 6.3 20.0

Table 3: SRV performance on \one-per-document"
�elds. The label ran stands for random partition-
ing; unv stands for leave-one-university-out partition-
ing. Rows labeled core show SRV's performance using
the feature set shown in Table 1; those labeled html
used the same feature set augmented with the features
shown in Table 2.

Results

We distinguish between two kinds of IE task, depending
on whether a �eld is likely to have only one or multiple
instantiations in a document. For example, a research
project page refers to a single project, so can have only
a single project title, even though the project title may
occur (and be tagged) multiple times in the page. On
the other hand, a project typically has multiple mem-
bers.
The former case, \one-per-document" (OPD), is ob-

viously a much simpler IE task than the latter. Al-
though a system, heuristic or learned, may recognize
multiple project titles in a page, we can simply take the
single most con�dent prediction and have done with it.
In the case of project member, a \many-per-document"
(MPD) �eld, a system will ideally extract every occur-
rence. The answer of the system in this case to the
extraction task must be to return every prediction it
makes for a document.
Table 3 shows the performance of SRV on the three

OPD �elds: course title, course number, and project
title. Here, the unit of performance is a single �le. Ac-
curacy (Acc) is the number of �les for which a learner
correctly identi�es a �eld instance, divided by the num-
ber of �les for which it made a prediction. Coverage
(Cov) is the number of �les containing instances for
which any prediction was made.
It is common in machine learning and information re-

trieval to try to exploit the spread in the con�dence of
learner predictions by trading o� coverage for increased
accuracy. Perhaps by sacri�cing all predictions except

Full � 20%
Field Prec Rec Prec Rec

Course
Instr.

r
a
n

html 21.6 55.9 63.6 20.1
core 20.6 53.2 47.7 20.1

u
n
v

html 13.9 47.2 37.7 19.9
core 16.6 47.2 55.0 20.4

Project
Member

r
a
n

html 30.0 41.0 66.4 20.0
core 26.2 35.2 46.0 20.0

u
n
v

html 29.1 42.8 64.1 20.1
core 26.7 35.9 52.6 20.1

Table 4: SRV performance on the \many-per-
document" �elds.

those with con�dence greater than x, for instance, we
can realize accuracy much higher than baseline. The
standard way of measuring the feasibility of such a
trade-o� is with an accuracy-coverage (or precision-
recall) graph. To construct such a graph, we sort all
learner predictions by con�dence, then, for various n
from 1 to 100, plot the accuracy of the n% most con-
�dent predictions. In lieu of such graphs, we have in-
cluded two additional columns in Table 3, one for ac-
curacy at approximately 80% coverage and one for ap-
proximately 20% coverage. 2

Table 4 shows SRV performance on the two MPD
�elds: course instructor and project member. The unit
of performance in this table is the individual prediction
and �eld instance. Because the accuracy and coverage
statistics bear a strong relationship to the standard IR
notions of precision and recall,3 and in order to empha-
size the di�erent way of measuring performance, we use
di�erent labels for the columns. Prec is the number of
correctly recognized �eld instances divided by the total
number of predictions. Rec is the number of correctly
recognized �eld instances divided by the total number of
�eld instances. Because this is a fundamentally harder
task than in Table 3, in no case does SRV achieve 80%
coverage; thus, only a 20% column is presented. By the
same token, the accuracy-coverage trade-o� is perhaps
more crucial here, because it shows the e�ect of discard-
ing all the low-con�dence predictions that are naturally
�ltered out in the OPD setting.
Finally, Table 5 shows the performance of two straw-

man approaches to the task. The Rote learner sim-
ply memorizes �eld instances it sees in the training set,
making a prediction on any test sequences that match
an entry in its learned dictionary and returning a con-
�dence that is the probability, based on training statis-
tics, that a sequence is indeed a �eld instance. We take
this learner to be the simplest possible machine learn-
ing approach to the problem. We have found in other

2Actual coverages are listed, because it is often impos-
sible to choose a con�dence cut-o� that yields exactly the
desired coverage.

3Field instances correspond to \relevant" documents, in-
correct predictions to irrelevant ones.

Rote Guess

Field Part. Acc Cov Acc

Course
Title

rand 44.3 49.5 1.3
univ 36.2 47.7 1.4

Course
Number

rand 44.4 28.8 3.1
univ 0.0 0.0 2.9

Project
Title

rand 18.8 21.6 8.3
univ 28.6 7.5 8.5

Prec Rec Prec + Rec

Course
Instr.

rand 69.4 11.5 0.9
univ 0.0 0.0 0.9

Project
Member

rand 70.3 10.7 7.1
univ 44.1 2.0 7.6

Table 5: Performance of two simple baseline strategies.

coursenumber :-
length(= 2),
every(in_title false),
some(?A [previous_token] in_title true),
some(?A [] after_p false),
some(?B [] tripleton true)

<title> Course Information CS213 </title>
<h1> CS 213 C++ Programming </h1>

Figure 3: A learned rule for course number with some
sample matching text. This rule matched 11 examples
in the validation set with no false positives.

contexts that it performs surprisingly well in a small
number of \naturally occurring" IE problems.
The Guess column shows the expected performance

of a random guesser, given unrealistically optimistic as-
sumptions. The learner is \told" how many �eld in-
stances occur in a test �le and what their lengths are.
For each instance it is allowed to make one guess of the
appropriate length. Because it always makes exactly as
many predictions as there are test �eld instances, its
precision and recall are equal on MPD �elds.

Discussion

Not surprisingly, SRV performs better than the baseline
approaches in all cases. This is especially apparent for
the OPD �elds. Note that, although Rote may appear
to have comparable accuracies in some cases, these ac-
curacy �gures show only performance over \covered"
�les. In cases where SRV and Rote accuracies appear
comparable, Rote coverage is generally much lower.
As expected, the addition of HTML features gener-

ally yields considerable improvement, especially at the
high precision end of the curve. HTML information
appears to be particularly important for recognizing
project titles. The single exception to this trend is
the course instructor problem in the LOUO setting. It
appears that formatting conventions for a course page

are relatively speci�c to the department from which it
comes, as page templates are passed around among in-
structors and re-used from semester to semester. SRV
takes advantage of the resulting regularities, and its
performance su�ers when some of the rules it learns
do not generalize across university boundaries.

SRV performs best by far on the course number �eld,
even in the LOUO case, where (as the results for Rote
indicate) memorization yields no bene�t. Figure 3
shows one HTML-aware rule responsible for this good
performance. The core results show that much of its
performance on this �eld is attributable to the strong
orthographic regularities these numbers exhibit.

As noted above, Rote is sometimes a viable approach.
This appears to be true for the course title �eld, for
which Rote achieves reasonable performance at surpris-
ingly high coverage levels. This is obviously an e�ect of
the generic character of course titles. The title \Intro-
duction to Arti�cial Intelligence" is quite likely to be a
course title, wherever it is encountered, and is probably
used at many universities without variation. Rote's high
coverage for this �eld allows us to measure its accuracy
at the approximate 20% level: 80.6% accuracy at 16.4%
coverage, in the random-split experiments, and 57.9%
at 20.5% coverage, in the LOUO experiments. Armed
with HTML-speci�c features, SRV achieves much bet-
ter accuracy at this coverage level for both partitioning
methods.

A comparison between Table 3 and Table 4 makes
the di�culty of the MPD extraction problem evident.
Of course, the lower performance in Table 4 is also due
to the fact that names of people are being extracted|
probably a more di�cult task for an automated system
than �elds made up of common English terms|and
that formatting conventions for course instructors and
project members vary more than for, say, course titles.
Note, however, that if we can be satis�ed with only
�nding 20% of the names of instructors and project
members (in the case of random partitioning), we can
expect about two-thirds of our predictions to be correct.

A comparison between the two partitioning meth-
ods shows, not surprisingly, that random partitioning
makes for an easier learning task than LOUO parti-
tioning. This is especially apparent for Rote on the
person-name �elds; faculty members tend to teach mul-
tiple courses, and researchers at a university become
involved in multiple projects. But Web formatting con-
ventions also tend to be shared within a department,
so we might hope that SRV could bene�t from intra-
department regularities. Surprisingly, this is not uni-
formly evident. In the case of project title, SRV ac-
tually does worse in all three columns. This e�ect is
probably in part due to di�erences in training set size
between the two partitioning regimes (half of the data
in random vs. three-fourths of the data, on average, in
LOUO).

Related Work

Soderland originally showed the viability of a cover-
ing (rule learning) approach to the slot �lling problem
(Soderland 1996). More recently, Cali� and Mooney
have demonstrated a similar system with relational ex-
tensions (Cali� & Mooney 1997). In both of these sys-
tems, rules are patterns which stipulate what must oc-
cur in and around �eld instances, and both systems
generalize by starting with maximally speci�c patterns
and gradually dropping constraints. Generalization is
halted when a rule begins to accept too many negative
examples.
This \bottom-up" search represents an e�cient and

useful approach, but it must rely on heuristics to con-
trol how constraints are dropped. Typically, there are
many ways in which a rule can be generalized so that
it does not cover negative examples. In contrast, top-
down search is entirely controlled by the distribution of
positive and negative examples in the data. SRV does
this in part with the aid of a set of features, which are
separate from the core algorithm. In the two bottom-
up systems discussed here, the features are implicit and
entangled with the search heuristics.
Soderland describes modi�cations which must be

made to CRYSTAL, his learning system for IE, in order
to use it for HTML (Soderland 1997). CRYSTAL's as-
sumption that text will be presented in sentence-sized
chunks must be satis�ed heuristically. How this seg-
mentation is performed depends in part on the domain
and requires manual engineering. In contrast, because
SRV searches at the token level, it requires no modi-
�cations to be retargeted. Exploiting HTML structure
only involves the addition of several new HTML-speci�c
features to its basic feature set. These feature are only
additional information, and SRV does not require them
in order to work with HTML.
It is common to report the performance of an IE

system in terms of two summary numbers, precision
and recall, and the systems described above adhere to
this convention. In SRV, we have added a mechanism
whereby these numbers can be varied to achieve the
balance most advantages for the particular application.

Conclusion

Proceeding from general considerations about the na-
ture of the IE problem, we have implemented SRV, a re-
lational learner for this task. Adapting SRV for HTML
requires no heuristic modi�cations to the basic algo-
rithm; instead, HTML structure is captured by the ad-
dition of simple, token-oriented features. There is clear
evidence that, armed with such features, SRV achieves
interesting and e�ective generalization on a variety of
tasks in two HTML domains.
Among the contributions made by this work are:

� Increased modularity and
exibility. Domain-
speci�c information is separate from the underly-
ing learning mechanism. This permits, among other

things, the rapid adaptation of the system for use
with HTML.

� Top-down induction. SRV demonstrates the fea-
sibility of conducting learning for IE in the direction
from general to speci�c.

� Accuracy-coverage trade-o�. In contrast with
other work in this area, the learning framework in-
cludes a mechanism for associating con�dence scores
with predictions. This allows the system to trade
coverage for increased accuracy.

With the introduction of SRV, and other IE systems
like it, we can begin to address the larger problem of
designing arti�cially intelligent agents for mining the
World Wide Web.

Acknowledgments Thanks to the other members of
the WebKB project at CMU, whose data collection
made this work possible. This research was supported
in part by the DARPA HPKB program under contract
F30602-97-1-0215.

References
Cali�, M. E., and Mooney, R. J. 1997. Relational
learning of pattern-match rules for information extrac-
tion. InWorking Papers of ACL-97 Workshop on Nat-
ural Language Learning.

Cardie, C. 1997. Empirical methods in information
extraction. AI Magazine 18(4):65{79.

Cestnik, B. 1990. Estimating probabilities: A crucial
task in machine learning. In Proceedings of the Ninth
European Conference on Arti�cial Intelligence.

Clark, P., and Niblett, T. 1989. The CN2 induction
algorithm. Machine Learning 3(4):261{263.

Defense Advanced Research Projects Agency. 1995.
Proceedings of the Sixth Message Understanding Con-
ference (MUC-6), Morgan Kaufmann Publisher, Inc.

Doorenbos, R.; Etzioni, O.; and Weld, D. S. 1997.
A scalable comparison-shopping agent for the world-
wide web. In Proceedings of the First International
Conference on Autonomous Agents.

Freitag, D. 1998. Toward general-purpose learning for
information extraction. In Proceedings of COLING-
ACL '98. In submission.

Kushmerick, N. 1997. Wrapper Induction for Infor-
mation Extraction. Ph.D. Dissertation, University of
Washington. Tech Report UW-CSE-97-11-04.

Quinlan, J. R. 1990. Learning logical de�nitions from
relations. Machine Learning 5(3):239{266.

Soderland, S. 1996. Learning Text Analysis Rules for
Domain-speci�c Natural Language Processing. Ph.D.
Dissertation, University of Massachusetts. CS Tech.
Report 96-087.

Soderland, S. 1997. Learning to extract text-based in-
formation from the world wide web. In Proceedings of
the 3rd International Conference on Knowledge Dis-
covery and Data Mining.

