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Abstract

We provide a method for estimating the generalization error
of a bag using out-of-bag estimates. In bagging, each pre-
dictor (single hypothesis) is learned from a bootstrap sam-
ple of the training examples; the output of a bag (a set of
predictors) on an example is determined by voting. The out-
of-bag estimate is based on recording the votes of each pre-
dictor on those training examples omitted from its bootstrap
sample. Because no additional predictors are generated, the
out-of-bag estimate requires considerably less time than 10-
fold cross-validation. We address the question of how to
use the out-of-bag estimate to estimate generalization error.
Our experiments on several datasets show that the out-of-bag
estimate and 10-fold cross-validation have very inaccurate
(much too optimistic) confidence levels. We can improve
the out-of-bag estimate by incorporating a correction.

Introduction
Supervised learning involves finding a hypothesis to cor-
rectly classify examples in a domain. If, for example, we
wanted to classify mushrooms as edible or poisonous based
on relevant characteristics such as color, smell, habitat, etc.,
we could learn a hypothesis by using mushrooms whose
characteristics and classifications are known.

Much work has been done in supervised learning in de-
veloping learning algorithms for decision trees, neural net-
works, Bayesian networks, and other hypothesis spaces. As
an improvement on these learning algorithms, work has
recently been done using algorithms that combine several
“single hypotheses” (called “predictors” from this point on-
ward) into one “aggregate hypothesis.” One such algorithm
is bagging (bootstrap aggregating) (Breiman 1996a). Bag-
ging involves repeated sampling with replacement to form
several bootstrap training sets from the original dataset.
Bagging should not be viewed as a competitor to other ag-
gregation algorithms (such as boosting) because bagging
can use any learning algorithm to generate predictors.

Over many types of predictor algorithms, bagging has
been shown to improve on the accuracy of a single predic-
tor (Breiman 1996a; Dietterich 1998b; Freund & Schapire
1996; Maclin & Opitz 1997; Quinlan 1996). An im-
portant issue is determining the generalization error of
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a bag (a bagging aggregate hypothesis). Usually, gen-
eralization error is estimated byk-fold cross-validation
over the dataset (Michie, Spiegelhalter, & Taylor 1994;
Weiss & Kulikowski 1991).

There are two potential problems with the cross-
validation estimate (Wolpert & Macready 1996). One is the
additional computation time. If there areB predictors in
the bag, then10B additional predictors must be generated
for 10-fold cross-validation. This becomes a serious issue
if significant time is needed to generate each predictor, e.g.,
as in neural networks.

The other is that the cross-validation estimate does not
directly evaluate the aggregate hypothesis. None of the
10B predictors generated during 10-fold cross-validation
become part of the bag (except by coincidence). It is an
assumption that the performance of the hypotheses learned
from the cross-validation folds will be similar to the per-
formance of the hypothesis learned using the whole dataset
(Kearns & Ron 1997).

One solution is to use the predictors in the bag to estimate
generalization error (Breiman 1996b; Wolpert & Macready
1996; Tibshirani 1996). Each predictor is generated from
a bootstrap sample, which typically omits about 37% of
the examples. Theout-of-bag estimaterecords the votes
of each predictor over the examples omitted from its cor-
responding bootstrap sample. The aggregation of the votes
followed by plurality voting for each example results in an
estimate of generalization error.

We performed experiments on 10 two-class datasets. We
used ID3 (Quinlan 1986) and C4.5 (Quinlan 1993) to gen-
erate predictors. Generalization error is represented by the
empirical error of the bag on a separate test set.

In these experiments, the out-of-bag estimate slightly
overestimates generalization error on average. 10-fold
cross-validation has similar behavior. A two-samplet test
(the two samples are the training examples and test exam-
ples), for both the out-of-bag estimate and 10-fold cross-
validation, has very inaccurate (much too optimistic) con-
fidence levels. In several cases, a supposedly 95% confi-
dence interval corresponds to less than 90% empirically; in
one case, less than 75%.

Previous research (Kohavi 1995) has shown that 10-fold
cross-validation tends to have a pessimistic bias, i.e., the
estimated error rate tends to have a higher expected value
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than the true error rate. Besides duplicating this finding
in the context of bagging, our methodology uses a better
statistical test and also studies the confidence intervals of
the estimates.

We can improve the out-of-bag estimate by incorporating
a correction. If there areB predictors in the bag, then there
areB votes for each test example compared to about0:37B
out-of-bag votes on average for each training example. We
propose two corrections by taking this factor into account.

One correction is based on the voting patterns in the
test examples, where a voting pattern is specified by the
number of votes for each class, e.g., 29 votes for class A
and 21 votes for class B. This correction is not practical
for estimating generalization error because the test-example
voting-patterns are unknown if all available examples are
used for training. However, we gain an understanding of
what is needed to calculate a correction.

For a given test example, we can simulate out-of-bag vot-
ing by drawing a subsample of the votes on the test exam-
ples, i.e., each vote is selected with probability1=e. For
two-class datasets, we can directly compute two values: the
expected value and the variance of the difference between
the simulated out-of-bag voting and test error. Using these
statistics and an appropriatet test, we obtain acceptable
confidence intervals in our experiments.

Our second correction tries to reverse this process. It uses
the out-of-bag voting patterns on the training examples to
estimate the distribution ofB-vote patterns. Based on this
estimated distribution, we compute the expected value and
variance of the difference between the out-of-bag estimate
andB-vote voting. This second correction has a heuris-
tic component because it (roughly) assumes that theB-vote
distribution is selected from a a uniform distribution ofB-
vote distributions. Perhaps for this reason, the second es-
timate often leads to optimistic confidence levels, though
they are better than the uncorrected out-of-bag estimate.

The remainder of this paper is organized as follows.
First, we describe the experimental procedure. Next, we
provide the results of the experiments and their implica-
tions. Finally, we conclude with a summary and future re-
search issues.

Experimental Procedure
We selected a number of two-class datasets from the UCI
repository and the C4.5 distribution (certain quantities are
easier to compute precisely with two-class datasets). Sev-
eral of these datasets were used extensively to develop the
generalization error estimates. The other datasets (see the
Appendix) were used for the experiments presented in this
paper.

We used two learning algorithms. One algorithm was
C4.5 using default parameters (Quinlan 1993). We also
used the ID3 decision-tree learning algorithm with no prun-
ing (Quinlan 1986). In our version of ID3, missing values
are handled by creating an extra branch from each internal
node to represent the case of a missing value. If there are no
examples for a leaf node, it is given a classification equal to
the most common class of its parent.

For this paper, the following procedure for experimenting
with the bagging method was used:

1. The data set is randomly divided in half to create a train-
ing setS and a test setT .

2. A bootstrap sampleS�
1

is selected fromS and a predictor
is created fromS�

1
using a learning algorithm. This is re-

peatedB times to createB predictors,h1; : : : ; hB , from
theB bootstrap samplesS�

1
; : : : ; S�B .

3. The out-of-bag estimate is determined from the training
setS by allowing each predictorhi to vote only on the
examplesS�S�i , i.e., the training examples omitted from
theith bootstrap sample. Then the predicted class of each
example is determined by a plurality vote with ties bro-
ken in favor of the most common class inS. On average,
about 37% of the examples are excluded from each boot-
strap sample, so on average, about 37% of the predictors
vote on each training example.

4. Test error is determined from the test setT by a plurality
vote on each example over theB predictors. Ties are
broken in favor of the most common class inS. Test error
is considered to be an accurate estimate of generalization
error.1

5. The above steps 1–4 are repeated 1000 times for each
data set, learning algorithm, and value forB (we used
B = 50). Averages and standard deviations for the out-
of-bag estimate, test error, and the paired difference were
computed. 1000 trials were used for two reasons. Any
substantial difference in the averages ought to become
statistically significant after 1000 trials. Also, we per-
formed a two-samplet test on each trial with the antic-
ipation of falling within the calculated 95% confidence
interval at least 95% of the time, i.e., to determine if the
confidence level of the test can be trusted.

Other Generalization Error Estimates
Besides the out-of-bag estimate, we also evaluated 10-fold
cross-validation and two different corrections to the out-of-
bag estimate.

10-Fold Cross-Validation For B = 50, we computed
a 10-fold cross-validation estimate of generalization error.
Cross validation has been widely accepted as a reliable
method for calculating generalization accuracy (Michie,
Spiegelhalter, & Taylor 1994; Weiss & Kulikowski 1991),
and experiments have shown that cross validation is rela-
tively unbiased (less biased than bootstrap sampling) (Efron
& Tibshirani 1993). However, there is some evidence that
10-fold cross-validation has high type I error for comparing
learning algorithms (Dietterich 1998a).

In order to compute the cross-validation estimate, a step
is inserted between steps 4 and 5 in the procedure described

1This assumes that the examples in the dataset are indepen-
dently drawn from some probability distribution, and that the
probability mass of the training setS is near 0%. These assump-
tions are not true for at least the monks datasets. In this case, the
generalization error estimates can be treated as estimates of error
on examples outside of the training set.



above. In this new step, the training setS is partitioned into
10 cross-validation sets or folds of nearly equal size. Then
for each cross-validation foldFi, the examplesS � Fi are
used with bagging to formB predictors. The resulting bag
is used to classify the examples inFi and produce an error
measure. The average and variance are computed from the
10 iterations.

Test Error Correction In the out-of-bag estimate, there
are about0:37B out-of-bag votes on average for each train-
ing example. The test error is determined fromB votes for
each test example, so it might be expected that the out-of-
bag voting would be inaccurate.

A “test error correction” is determined as follows. Given
the voting patterns on the test examples, we can simulate
out-of-bag voting by choosing each vote with probability
1=e. This is expected to be a good simulation of the out-
of-bag estimate because test examples and training exam-
ples should be interchangeable as far as out-of-bag voting is
concerned. We did not perform the simulation, but instead
directly computed the expected value of the out-of-bag sim-
ulation, using this value as the sample mean in statistical
tests. For sample variance, we treated the mean as if it was
the result ofn Bernoulli trials, wheren is the number of test
examples. The second appendix describes the calculations
in more detail.

Out-of-Bag Correction A serious disadvantage of the
test error correction is its dependence on the voting on the
test examples. We would like to estimate generalization er-
ror purely from the training examples so that all available
examples can be used for training. So one might alterna-
tively compute an “out-of-bag correction” based on the out-
of-bag voting patterns by simulatingB-vote patterns from
the out-of-bag voting patterns. The difficulty here is that
determiningP (EB j EO), whereEB andEO are respec-
tively events of someB-vote pattern and out-of-bag voting
pattern, depends on the distribution ofB-vote patterns.

We heuristically guess the distribution ofB-vote patterns
as follows. Two different distributions are calculated for the
two classes. Consider one of the classes and the training ex-
amples with that class as their label. LetU be a probability
distribution in which allB-vote patterns are equally likely,
e.g., the pattern of 30 votes for class A and 20 votes for
class B is as likely as 15 votes for class A and 35 votes
for class B. We determinePU (EB j EO) for each training
example, sum up the probabilities for eachB-vote pattern,
and normalize them so they sum to 1; these are used to de-
fine a probability distributionD over theB-vote patterns.
This distribution is adjusted to better account for the num-
ber of out-of-bag errors. Then we determinePD(EB j EO)
for each training example and compute the expected value
of the simulated test error.

The two expected values from the two different distribu-
tions are combined and used as sample mean in statistical
tests. For sample variance, we treated the mean as if it was
the result ofn Bernoulli trials, wheren is the number of
training examples. The second appendix describes the cal-
culations in more detail.

Statistical Tests

The following statistical tests were employed to compare
the results of different experiments over the 1000 trials. In
our notation,�i, Xi, ands2i are respectively the expected
value, the sample average, and sample variance overni
samples.

A paired differencet test (paired comparison of means)
was performed over 1000 pairs to compare the four differ-
ent estimates of generalization error with test error. This
test evaluates the hypothesis that the average estimate of
generalization error has the same expected value as the av-
erage test error. To pass this test with a 5% significance
level, the magnitude of thet value should be no more than
1:962. t is computed by:

t =
X1p
s2
1
=n1

(1)

wheren1 = 1000 in our experiments
Two differentt tests (unpaired comparison of means) was

performed on each trial to determine whether the general-
ization error estimate on that trial was significantly different
(5% level) from the test error on that trial. That is, for each
trial, we evaluate the hypothesis that the generalization er-
ror estimate has the same expected value as the test error.
Because this hypothesis is tested for each of 1000 trials, we
can count the number of trials that fail the test and see if the
number of failures is about 5% (or less). This would imply
that a 95% confidence interval according to the test appears
to correspond to a 95% confidence interval in reality. For a
binomial distribution with probability of successp = :95,
the probability of 939 successes or more (61 failures or less)
is about 95%.

The number of failures should be interpreted cautiously
in our experiments. Simply splitting the file into a training
set and test set generally results in a negative correlation
between the error estimates and the test error. This appears
to be because the “bad” examples might not be proportion-
ally distributed between the two sets, which causes the error
estimate and the test error to go in opposite directions.

For the out-of-bag estimate, the test correction, and the
out-of-bag correction, we used the standard two-samplet
test assuming equal variances (Cohen 1995; Snedecor &
Cochran 1980). To test the hypothesis�1 = �2, we com-
pute

s2pooled =
(n1 � 1)s2

1
+ (n2 � 1)s2

2

n1 + n2 � 2
(2)

t =
X1 �X2q

s2pooled(1=n1 + 1=n2)
(3)

and comparet against the critical value forn1 + n2 � 2
degrees of freedom. Here,n1 andn2 are the number of
examples in the training set and test set, respectively.

For 10-fold cross-validation, we used a two-samplet
test allowing for unequal variances (Snedecor & Cochran
1980). This is because the variance overn1 = 10 folds will



be much different from the variance overn2 test examples.
To test the hypothesis�1 = �2, we compute

ai =
s2i
ni
; vi = ni � 1 (4)

t =
X1 �X2p
a1 + a2

(5)

v =
(a1 + a2)

2

a2
1
=v1 + a2

2
=v2

(6)

and comparet against the critical value forbvc degrees of
freedom. Here,n1 andn2 are the number of examples in
the training set and test set, respectively.

Justification for The Two-Samplet Tests
An informal survey of several statistics texts indicated a va-
riety of ways to estimate the degrees of freedomv for a
two-samplet test with unequal variances. A common, but
cautious, approach is to setv to the minimum ofv1 and
v2. However, this would put the uncorrected out-of-bag es-
timate at a disadvantage because it uses the more stringent
two-samplet test assuming equal variances. The calcula-
tion of v by Equation (6) appears to have some acceptance
as a better approximation.

It is unclear what sample variance should be used for
the test correction and out-of-bag correction. Our choice
is in some sense “fair” because it ensures that the size of
the confidence interval will be similar to that used to the
out-of-bag estimate. However, one might derive a sam-
ple variance for the test correction from the probabilities
derived for each test example (likewise for the out-of-bag
correction and each training example). We tried this, but
it fails badly empirically because it leads to an artificially
small variance. We believe the reason is that incorporating
the corrections corresponds to adding more variance rather
than reducing variance. In particular, our results suggest
that additional variance should be added for the out-of-bag
correction, but this would give the correction an apparently
“unfair” advantage.

Results
Bagging Estimate
Table 1 shows the statistics that were collected for the 10
data sets usingB = 50 predictors. The first column gives
the abbreviations for the datasets (see the Appendix), and
the second column gives the test error percentage. The next
three columns compares the out-of-bag estimate to test er-
ror: the percent difference between the averages, thet value
from the paired-differencet test over 1000 pairs, and the
number of failures for 1000 applications of the two-sample
t test at 5% significance. The last three columns provide the
same information comparing 10-fold cross-validation with
the out-of-bag estimate.

The table shows that both the out-of-bag estimate and
10-fold cross-validation can be expected to slightly over-
estimate test error. On average, the out-of-bag estimate
differed from test error by0:52% on average, and 10-fold

Data Test OOB� Test Error CV � Test Error
Set Error Diff. t Fails Diff. t Fails
BA 27.55 0.88 6.20 111 0.31 1.99 112
CR 16.24 0.43 4.33 72 0.27 2.76 77
FL 20.52 0.07 0.85 78 0.15 1.69 82
IO 8.18 0.46 4.59 61 0.26 2.60 68
M1 1.77 0.78 13.03 231 1.02 15.28 115
M2 51.93 �0.90 �5.40 79 �1.39 �8.42 93
M3 0.00 0.004 2.31 0 0.014 3.77 0
PI 24.74 0.71 6.96 57 0.22 2.15 72
PR 17.84 1.70 5.59 119 1.01 3.31 111
SO 22.81 1.05 5.17 82 0.64 3.21 63
Average 0.52 4.36 89 0.25 2.83 79

Table 1: Results for ID3,B = 50: Out-of-Bag Estimate
and 10-Fold Cross-Validation
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Figure 1: Histogram oft Values Comparing the Out-of-Bag
Estimate to Test Error

cross-validation differed by0:25%. The paired-differencet
test showed a significant difference (5% level,jtj > 1:962)
between the generalization error estimates and test error for
all the datasets except FL.

The results of the two-samplet test also show that the
out-of-bag estimate and 10-fold cross-validation yield sim-
ilar performance. For most of the datasets, the two-sample
t test has an overoptimistic confidence level (more than
61 failures). That is, a 95% confidence interval accord-
ing to the test does not correspond to a 95% confidence
interval for either the out-of-bag estimate or 10-fold cross-
validation. On average, around 8% to 9% of the trials fail
the test, with especially poor performance on the BA, M1,
and PR datasets (over 100 fails each).

Figure 1 displays a histogram of thet values for 7 of the
datasets (excluding M1, M2, and M3 because of extreme
error rates). The normal density function is superimposed.
It can be seen that the histogram has a normal-like shape,
but flatter and skewed to the right (corresponding to where
test error is overestimated).



OOB� Test Error OOB� Test Error
Data � Test Error Corr. � OOB Correction
Set Diff. t Fails Diff. t Fails
BA �0.02 �0.14 57 �0.19 �1.34 97
CR 0.06 0.59 61 �0.05 �0.55 71
FL 0.02 0.19 63 �0.04 �0.46 85
IO 0.05 0.57 43 �0.01 �0.13 54
M1 0.07 1.21 52 0.05 0.80 115
M2 �0.05 �0.31 75 �0.24 �1.38 91
M3 0.003 1.81 0 0.003 2.39 0
PI 0.16 1.64 42 �0.06 �0.61 50
PR 0.06 0.23 61 0.10 0.32 113
SO 0.05 0.27 46 �0.32 �1.62 73
Avg. 0.04 0.61 50 �0.08 �0.26 75

Table 2: Results for ID3,B = 50: Corrections to the Out-
of-Bag Estimate

Corrections to the Out-of-Bag Estimate

Table 2 shows the statistics that were collected for the 10
data sets using the corrections to the out-of-bag estimate.
The first column gives the abbreviations for the datasets
(see the Appendix). The next three columns compare the
out-of-bag estimate to the test error and the test error cor-
rection: the percent difference between the averages, thet
value from the paired-differencet test over 1000 pairs, and
the number of passes for 1000 applications of a multiple-
samplet test at 5% significance. The last three columns
provide the same information comparing the out-of-bag es-
timate to the test error and the out-of-bag correction.

Table 2 shows that both corrections lead to better esti-
mates of generalization error. The test error correction dif-
fered from by0:04% on average, and so, comes very close
to an unbiased estimate of generalization error. The paired-
differencet test shows no significant difference (5% level,
jtj > 1:962) on any of the datasets, though the test error
is still overestimated on 8 of the 10 datasets. The out-of-
bag correction is almost as good according to the paired-
differencet test, with an average difference of�0:08% and
with a significant difference on only one of the 10 datasets,
but is better than the uncorrected out-of-bag estimate and
10-fold cross-validation (Table 1).

The results of the two-samplet test also show that the test
error correction has excellent performance and is better than
the out-of-bag correction, which in turn is slightly better
than the uncorrected out-of-bag estimate and 10-fold cross-
validation. Thist test with the test error correction empir-
ically provides a much more acceptable confidence level;
there were more than 61 failures only 2 of the datasets.
The t test with the out-of-bag correction is less acceptable
with more than 61 failures on 7 of the 10 datasets. The
slightly lower average compared to the out-of-bag and 10-
fold cross-validation estimates is encouraging, but not sta-
tistically significant.

OOB 10CV TEC OOBC
Rejections Pairedt 7 6 0 2
Avg. Number of Fails 110 96 55 99

Table 3: Results for C4.5,B = 50: Generalization Error
Estimates

Additional Results
For C4.5 andB = 50, we obtained results for all four gen-
eralization error estimates, summarized in Table 3. The
columns correspond to the difference estimates (out-of-bag
estimate, 10-fold cross-validation, test error correction, out-
of-bag correction). The first row shows the number of
datasets in which the paired differencet shows that the
generalization error estimate is biased, i.e., rejects the hy-
pothesis that the average estimate of generalization error
has the same expected value as the average test error. The
second row shows the average number of failures using the
two-samplet test. Failure means rejecting the hypothesis
that the generalization error estimate has the same expected
value as test error on that trial.

It can be seen that the test correction again clearly out-
performs the other estimates. Compared to the out-of-bag
and 10-fold cross-validation estimates, the out-of-bag cor-
rection again has less bias based on the number of paired-t
rejections, but has similar performance on the 2-samplet
test. In the detailed results (not shown), by far the worse
performance was by the out-of-bag estimate, 10-fold cross-
validation, and out-of-bag correction on the M1 dataset
(292, 273, and 202 fails, respectively). The out-of-bag cor-
rection also performed badly on the M1 and PR datasets
(147 and 151 fails, respectively, but still better than OOB
and 10CV). The test error correction had 61 or fewer fail-
ures on 8 of the datasets, with the worse performance on the
PR dataset (93 fails).

Conclusion
With the use of any learning algorithm, it is important to
use as many examples as possible for training the hypoth-
esis (or hypotheses) from a dataset. It is also important to
determine a good estimate of generalization error so that
we can have confidence that a good hypothesis has been
learned. Our methodology statistically compares an esti-
mate of generalization error determined from a training set
to the empirical error on a separate test set.

Cross-validation is one way of estimating generalization
error, while using all of the examples for training, but our
experiments have shown that it is biased and can provide
inaccurate confidence interval estimates of generalization
error. When bagging is used, the out-of-bag estimate can
be to estimate generalization error, and it also uses all ex-
amples that are available. Unfortunately, the out-of-bag es-
timate is also biased and leads to similarly inaccurate con-
fidence intervals.

We have developed corrections that improve the out-of-
bag estimate and outperform 10-fold cross-validation. A
test error correction, i.e., based on the voting patterns on the



test examples, empirically provides a nearly unbiased esti-
mate of generalization error and leads to good confidence
intervals. However, this correction is not practical because
it cannot be applied until the bag is evaluated on examples
outside of the training set.

We also developed an out-of-bag correction, i.e., based
on the voting patterns on the training examples. This cor-
rection makes an assumption about the distribution of do-
mains, and so, must be regarded as heuristic. Perhaps as a
result, this correction is not as good as the previous correc-
tion. The out-of-bag correction is relatively unbiased com-
pared to 10-fold cross-validation and an uncorrected out-of-
bag estimate, but does not significantly improve the accu-
racy of the confidence intervals.

We conclude that 10-fold cross-validation and the uncor-
rected out-of-bag estimate should be cautiously used for
generalization error estimates because they can result in
confidence levels that are much too high. We recommend
the out-of-bag estimate with a correction based on the vot-
ing patterns on the training examples. The corrected out-of-
bag estimate uses all the data, is unbiased, and avoids the
additional time needed for 10-fold cross-validation; how-
ever, it still often leads to inflated confidence levels. Further
research is needed to develop generalization error estimates
with confidence intervals that can be fully trusted.
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Appendix: Datasets
For each dataset, we list our abbreviation, the number of
examples, the number of attributes, and a brief description.
The datasets come from the Irvine dataset (Blake, Keogh, &
Merz 1998) or the C4.5 distribution (Quinlan 1993). We did
not consider larger datasets because of the time required to
perform bagging and 10-fold classification multiple times.

BA, 550, 35. The UCI cylinder bands dataset.
CR, 690, 15. The C4.5 credit card applications dataset.
FL, 1066, 10. The UCI solar flare dataset. This was

changed to a two-class dataset: any flare activity vs. no flare
activity.

IO, 351, 34. The UCI ionosphere dataset.
M1, 432, 6. The C4.5 monk 1 dataset.
M2, 432, 6. The C4.5 monk 2 dataset.
M3, 432, 6. The C4.5 monk 3 dataset. The dataset in the

C4.5 distribution has no classification noise.
PI, 768, 8. The UCI Pima Indians diabetes dataset.
PR, 106, 57. The UCI promoter gene sequence dataset.
SO, 208, 60. The UCI sonar signals dataset.

Appendix: Deriving the Corrections
For a given trial with a two-class dataset, designate one
class to be the majority class, and let the other class be the
minority class. The majority class is determined using the
training set. Assume thatB predictors are in the bag.

For a given example, letEB(x; y) be the event ofx votes
for the majority class andy votes for the minority class,
wherex + y = B. Let EO(u; v) be the event ofu votes
for the majority class andv votes for the minority class,
where the votes are a subsample of theB votes, where each
vote is independently selected to be in the subsample with
probability1=e. That is, we treat out-of-bag voting as if we
were taking a subsample ofB votes on that example. We
call this “out-of-bag sampling.” A probability distribution
is specified by assigned priors toP (EB(x; y)).

We note that:

P (EO(u; v) j EB(x; y))

= b(u; x; 1=e)b(v; y; 1=e) (7)

whereb(k; n; p) is the probability ofk successes inn i.i.d.
Bernouilli trials, each with probability of success1=e. That
is, EO(u; v) means thatu of thex votes for the majority
class were chosen, andv of the y votes for the minority
class were chosen.

Test Error Correction
For test examplei, let x be the number of votes for the
majority class, lety be the number of votes for the minority
class, and letl(i) be the example’s label, with a label of1
corresponding to the majority class. Here,x+ y = B.

We can then determine the probability that out-of-bag
sampling favors the majority class or the minority class:

p1(i) =
X
u�v

P (EO(u; v) j EB(x; y)

p0(i) =
X
u<v

P (EO(u; v) j EB(x; y)

and the expected error by out-of-bag sampling from theB
votes.

�(i) =

8><
>:

p1(i) if x < y ^ l(i) = 0
1� p1(i) if x < y ^ l(i) = 1
p0(i) if x � y ^ l(i) = 1
1� p0(i) if x � y ^ l(i) = 0

Overn test examples, we obtain a sample mean and sam-
ple variance:

� =

Pn

i=1 �(i)

n

s2 =
n(�� �2)

n� 1

� ands2 are the values used in our two-samplet test. The
sample variance is based on treating� as the sample mean
of n Bernoulli trials.

Out-of-Bag Correction
For training examplei, letu be the number of votes for the
majority class, and letv be the number of votes for the mi-
nority class. Here,u+v on average will be aboutB=e. The
out-of-bag correction is based on estimating the distribution
of EB(x; y) based on the out-of-bag votes. This is done by
pretending that the out-of-bag voting was really out-of-bag



sampling fromB votes and assuming that eachEB(x; y) is
equally likely. We actually estimate two different distribu-
tions: one for when the label is the majority class, and the
other for the minority class. Consider, then, thosen training
examples that have a majority class label.

Define PU (EB(x; y)) = 1=(B + 1) for x 2
f0; 1; : : : ; Bg andy = B � x. We can then derive:

PU (EB(x; y) j EO(u; v))

=
PU (EO(u; v) j EB(x; y))PU (EB(x; y))

PU (EO(u; v)

� PU (EO(u; v) j EB(x; y))

becausePU (EB(x; y)) is a constant and the denominator is
a normalizing term. Equation (7) gives the calculations.

We define an intermediate probability distributionI:

PI(EB(x; y)) = �

nX
i=1

PU (EB(x; y) j EO(u; v))

setting� so that1 =
PB

j=0 PI(EB(j; B � j)).
This probability distribution implies the probability that

out-of-bag voting will result in predicting the majority class
and minority class.

c1 =
X
u>=v

PI(EO(u; v))

Let c0 = 1� c1. Letd1 be the percentage of training exam-
ples that favor the majority class in out-of-bag voting. Let
d0 = 1� d1.

We obtain the probability distributionD by:

PD(EB(x; y)) �
�

d1PI(EB(x; y))=c1 if x >= y
d0PI(EB(x; y))=c0 if x < y

These probabilities are normalized so they sum to 1. This
mostly, but not completely, adjusts the probabilities so that
the distribution of majority/minority class predictions cor-
responds to the out-of-bag voting.

Assuming this probability distribution, we estimate the
B-vote predictions based on the out-of-bag voting by cal-
culatingPD(EB(x; y) j EO(u; v)). For training examplei,
we can determine the probability thatB-vote voting favors
the majority class (x � y) and the minority class (x < y).
By adding the probabilities over all the examples, we esti-
mate the number of majority and minority class predictions.
If we are considering the training examples with a majority
(minority) class label, then the number of minority (major-
ity) class predictions is the estimated number of test errors.

Let � be the estimated percentage of test errors by com-
bining the results from the two distributions. Letn now be
the total number of training examples. Then we use

s2 =
n(�� �2)

n� 1
The sample variance is based on treating� as the sample
mean ofn Bernoulli trials.
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