A Flexible Framework for Defeasible Logics

G. Antoniou and D. Billington and G. Governatori and M.J. Maher
School of Computing and Information Technology, Griffith University
Nathan, QLD 4111, Australia
{ga,db,guido,mjm}@cit.gu.edu.au

Abstract

Logics for knowledge representation suffer from over-specialization: while each logic may provide an ideal representation formalism for some problems, it is less than optimal for others. A solution to this problem is to choose from several logics and, when necessary, combine the representations. In general, such an approach results in a very difficult problem of combination. However, if we can choose the logics from a uniform framework then the problem of combining them is greatly simplified. In this paper, we develop such a framework for defeasible logics. It supports all defeasible logics that satisfy a strong negation principle. We use logic meta-programs as the basis for the framework.

Introduction

Defeasible logics were introduced and developed by Nute over several years (Nute 1994). These logics perform defeasible reasoning, where a conclusion supported by a rule might be overturned by the effect of another rule. Roughly, a proposition p can be defeasibly proved only when a rule supports it, and it has been demonstrated that no rule supports $\neg p$. These logics also have a monotonic reasoning component, and a priority on rules. One advantage of these logics is that the cost of computing with them is low (Antoniou, Billington, Maher and Rock 2000), in contrast to most logics for knowledge representation.

Nute has developed a framework for defeasible logic that abstracts the many individual logics he has constructed (Nute 1994). Although there are some logics in Nute’s framework that cannot be represented in our framework, we will address logics that go well beyond the family of logics addressed by Nute. We consider logics that admit more kinds of conclusions than statements of definite or defeasible proof, as well as logics with different notions of failure-to-prove than the one used in Nute’s framework.

In the next section we introduce defeasible logics in general and one particular defeasible logic DL. We introduce the Principle of Strong Negation as a design criterion for defeasible logics. In the following sections we demonstrate the framework, first by applying it to DL and then by designing independently motivated variants of DL. We also compare it with Nute’s framework. In the process, we clarify the relationship between defeasible logics and other non-monotonic logics.
Defeasible Logics

The family of defeasible logics was introduced by Nute. We begin by outlining the constructs in defeasible logics. We then define the inference rules of a particular defeasible logic DL that has received the most attention. Finally, we introduce the Principle of Strong Negation.

Outline of Defeasible Logics

A defeasible theory D is a triple $(F, R, >)$ where F is a set of literals (called facts), R a finite set of rules, and $>$ a superiority relation on R. In expressing the proof theory we consider only propositional rules. Rules containing free variables are interpreted as the set of their variable-free instances.

There are three kinds of rules: Strict rules are denoted by $A \rightarrow p$, and are interpreted in the classical sense: whenever the premises are indisputable (e.g. facts) then so is the conclusion. An example of a strict rule is “Emus are birds”. Written formally: $emu(X) \rightarrow bird(X)$. Inference from facts and strict rules only is called definite inference. Facts and strict rules are intended to define relationships that are definitional in nature. Thus defeasible logics contain no mechanism for resolving inconsistencies in definite inference.

Defeasible rules are rules that can be defeated by contrary evidence. An example of such a rule is “Birds typically fly”; written formally: $bird(X) \Rightarrow flies(X)$. The idea is that if we know that something is a bird, then we may conclude that it flies, unless there is other evidence suggesting that it may not fly.

Defeaters are rules that cannot be used to draw any conclusions. Their only use is to prevent some conclusions. In other words, they are used to defeat some defeasible rules by producing evidence to the contrary. An example is “If an animal is heavy then it might not be able to fly”. Formally: $heavy(X) \sim flies(X)$. The main point is that the information that an animal is heavy is not sufficient evidence to conclude that it doesn’t fly. It is only evidence that the animal may not be able to fly. In other words, we don’t wish to conclude $¬flies$ if $heavy$, we simply want to prevent a conclusion $flies$.

A superiority relation on R is an acyclic relation $>$ on R (that is, the transitive closure of $>$ is irreflexive). When $r_1 > r_2$, then r_1 is called superior to r_2, and r_2 inferior to r_1. This expresses that r_1 may override r_2. For example, given the defeasible rules

\[
\begin{align*}
r : & \quad bird(X) \Rightarrow flies(X) \\
r' : & \quad brokenWing(X) \Rightarrow ¬flies(X)
\end{align*}
\]

which contradict one another, no conclusive decision can be made about whether a bird with a broken wing can fly. But if we introduce a superiority relation $> r'$, then we can indeed conclude that it cannot fly. A conclusion of a defeasible theory D is a tagged literal. Conventionally (Nute 1994; Billington 1993) there are four tags, so a conclusion has one of the following four forms:

- $+\Delta q$, which is intended to mean that q is definitely provable in D.
- $−\Delta q$, which is intended to mean that we have proved that q is not definitely provable in D.
- $+\delta q$, which is intended to mean that q is defeasibly provable in D.
- $−\delta q$ which is intended to mean that we have proved that q is not defeasibly provable in D.

Although the two pairs of tags mentioned above are the only ones currently used in defeasible logics, we will leave open the possibility of further (pairs of) tags. Indeed, we will later introduce in our framework the notion of support for a conclusion, which would require new tags in order to express this notion in a proof theory in the style of the next section.

Nute’s Framework

Nute’s framework for defeasible reasoning (Nute 1994) is based around defining a class of proof trees which represent valid inferences. We can reformulate this in terms of conventional inference rules, but we do not have space for a detailed presentation.

Briefly, Nute’s framework consists of four inference rules which partly specify the behaviour of the definite (monotonic) reasoning component and its relationship with the defeasible (non-monotonic) reasoning component. Nute defines a defeasible logic to be a logic containing this monotonic kernel of inference rules and satisfying a coherence property. He also discusses several design principles of defeasible logics, but these are not a part of his framework.

A Defeasible Logic

As an example of a defeasible logic, we consider the logic of (Nute 1987), which has been investigated in (Maher, Antoniu and Billington 1998). In this presentation we use the formulation given in (Billington 1993). We denote this logic by DL.

Given a set R of rules, we denote the set of all strict rules in R by R_s, the set of strict and defeasible rules in R by R_{sd}, the set of defeasible rules in R by R_d, and the set of defeaters in R by R_{df}. $R[q]$ denotes the set of rules in R with consequent q. In the following $∼ p$ denotes the complement of p, that is, $∼ p$ is $∼ p$ if p is an atom, and $∼ p$ is q if p is $∼ q$. A rule r consists of its antecedent $A(r)$ (written on the left; $A(r)$ may be omitted if it is the empty set) which is a finite set of literals, an arrow, and its consequent $C(r)$ which is a literal. In writing rules we omit set notation for antecedents. Provability is defined below. It is based on the concept of a derivation (or proof) in $D = (F, R, >)$.

A derivation is a finite sequence $P = (P(1), \ldots, P(n))$ of tagged literals satisfying the following conditions. The conditions are essentially inference rules phrased as conditions on proofs. $P(1..i)$ denotes the initial part of the sequence P of length i.

$+\Delta$: If $P(i+1) = +\Delta q$ then either

$q \in F$ or

$\exists r \in R_s[q] \forall a \in A(r) : +\Delta a \in P(1..i)$

$−\Delta$: If $P(i+1) = −\Delta q$ then

$q \notin F$ and

$\forall r \in R_s[q] \exists a \in A(r) : −\Delta a \in P(1..i)$
+∂: If \(P(i+1) = +\partial q \) then either
1. \(+\partial q \in P(1..i)\) or
2. \((2.1) \exists r \in R_\partial[q], \forall a \in A(r) : +\partial a \in P(1..i)\) and
\((2.2) -\Delta \sim q \in P(1..i)\) and
\((2.3) \forall s \in R \sim q \) either
\((2.3.1) \exists a \in A(s) : -\partial a \in P(1..i)\) or
\((2.3.2) \exists r \in R_\partial[q] \) such that
\(\forall a \in A(t) : +\partial a \in P(1..i)\) and \(t > s \)
−∂: If \(P(i+1) = -\partial q \) then
1. \(-\partial q \in P(1..i)\) and
2. \((2.1) \forall r \in R_\partial[q] \exists a \in A(r) : -\partial a \in P(1..i)\) or
\((2.2) +\Delta \sim q \in P(1..i)\) or
\((2.3) \exists s \in R \sim q \) such that
\((2.3.1) \forall a \in A(s) : +\partial a \in P(1..i)\) and
\((2.3.2) \exists r \in R_\partial[q] \) either
\(\exists a \in A(t) : -\partial a \in P(1..i)\) or \(t \neq s \)

The elements of a derivation are called lines of the derivation. We say that a tagged literal \(L \) is provable in \(D = (F,R,>) \), denoted by \(D \vdash L \), iff there is a derivation in \(D \) such that \(L \) is a line of \(P \).

\(DL \) is closely related to several non-monotonic logics (Antoniou, Billington and Maher 2000). In particular, the “directly skeptical” semantics of non-monotonic inheritance networks (Hory, Thomason and Tourretzky 1987) can be considered an instance of inference in \(DL \) once an appropriate superiority relation, derived from the topology of the network, is fixed (Billington, de Coster, and Nute 1990). \(DL \) is a conservative logic, in the sense of Wagner (1991).

The Principle of Strong Negation

The purpose of the \(-\Delta\) and \(-\partial\) inference rules is to establish that it is not possible to prove a corresponding positive tagged literal. These rules are defined in such a way that all the possibilities for proving \(+\partial q\) (for example) are explored and shown to fail before \(-\partial q\) can be concluded. Thus conclusions with these tags are the outcome of a constructive proof that the corresponding positive conclusion cannot be obtained.

As a result, there is a close relationship between the inference rules for \(+\partial\) and \(-\partial\), (and also between those for \(+\Delta\) and \(-\Delta\)). The structure of the inference rules is the same, but the conditions are negated in some sense. We say that the inference rule for \(+\partial\) (\(-\partial\)) is the strong negation of the inference rule for \(-\partial\) (\(+\partial\)).

The strong negation of a formula is closely related to the function that simplifies a formula by moving all negations to an innermost position in the resulting formula. It is defined as follows.

\[
\begin{align*}
\text{sneg}(+\partial p) & = -\partial p \\
\text{sneg}(\neg\partial p) & = +\partial p \\
\text{sneg}(A \land B) & = \text{sneg}(A) \lor \text{sneg}(B) \\
\text{sneg}(A \lor B) & = \text{sneg}(A) \land \text{sneg}(B) \\
\text{sneg}(\exists x A) & = \forall x \text{sneg}(A) \\
\text{sneg}(\forall x A) & = \exists x \text{sneg}(A) \\
\text{sneg}(-A) & = -\text{sneg}(A) \\
\text{sneg}(A) & = -A \quad \text{if } A \text{ is a pure formula}
\end{align*}
\]

A pure formula is a formula that does not contain a tagged literal. Pairs of tags other than \(+\partial, -\partial\) are treated in an analogous manner to \(+\partial\) and \(-\partial\). The strong negation of the applicability condition of an inference rule is a constructive approximation of the conditions where the rule is not applicable.

We are led to consider the following Principle of Strong Negation:

For each pair of tags such as \(+\partial, -\partial\), the inference rule for \(-\partial\) should be the strong negation of the inference rule of \(+\partial\) (and vice versa).

Clearly \(DL \) satisfies this principle. In fact, all logics in our framework satisfy it. On the other hand, in Nute’s framework (Nute 1994) logics may violate it.

There are two other important properties that defeasible logics may have. A theory is coherent if there is no \(p \) such that \(D \vdash +\partial p \) and \(D \vdash +\Delta p \) and \(D \vdash -\partial p \). A theory is consistent if for every \(p \) such that \(D \vdash +\partial p \) and \(D \vdash +\Delta p \) and \(D \vdash +\Delta \neg p \). Intuitively, coherence says that no literal is simultaneously provable and demonstrably unprovable. Consistency says that a literal and its negation can both be defeasibly provable only when it and its negation are definitely provable; hence defeasible inference does not introduce inconsistency. (As noted earlier, definite provability is intended for definitional information, and has no mechanism for resolving inconsistencies.) A logic is coherent (consistent) if each theory of the logic is coherent (consistent). The above logic \(DL \) is coherent and consistent (Billington 1993).

A Framework of Defeasible Logics

Our framework consists of a meta-program, defining when an atom is definitely or defeasibly proved, and a semantics for the meta-language (which is logic programming). Maher and Governatori (1999) have shown how \(DL \) is amenable to definition in this framework. We first introduce the meta-program for \(DL \) as a first example of the framework, and then derive some properties of the framework and the logics that can be defined within it. We make a comparison with Nute’s framework.

The \(DL \) Meta-program

In this section we introduce a meta-program \(M \) in a logic programming form that expresses the essence of the defeasible reasoning embedded in \(DL \). \(M \) consists of the following clauses. We first introduce the predicates defining classes of rules, namely

\[
\begin{align*}
\text{supportive rule}(\text{Name}, \text{Head}, \text{Body}) & : -
\text{strict}(\text{Name}, \text{Head}, \text{Body}).
\end{align*}
\]

\[
\begin{align*}
\text{supportive rule}(\text{Name}, \text{Head}, \text{Body}) & : -
\text{defeasible}(\text{Name}, \text{Head}, \text{Body}).
\end{align*}
\]

\[
\begin{align*}
\text{rule}(\text{Name}, \text{Head}, \text{Body}) & : -
\text{supportive rule}(\text{Name}, \text{Head}, \text{Body}).
\end{align*}
\]

\[
\begin{align*}
\text{rule}(\text{Name}, \text{Head}, \text{Body}) & : -
\text{defeater}(\text{Name}, \text{Head}, \text{Body}).
\end{align*}
\]

We introduce now the clauses defining the predicates corresponding to \(+\Delta, -\Delta, +\partial, -\partial\). These clauses specify the structure of defeasible reasoning in \(DL \). Arguably they convey the conceptual simplicity of \(DL \) more clearly than the proof theory.
The first two clauses address definite provability, while the remainder address defeasible provability. The clauses specify if and how a rule in DL can be overridden by another, and which rules can be used to defeat an overriding rule, among other aspects of the structure of defeasible reasoning in DL.

We have permitted ourselves some syntactic flexibility in presenting the meta-program. However, there is no technical difficulty in using conventional logic programming syntax to represent this program.

Given a defeasible theory \(D = (F, R, >) \), the corresponding program \(\mathcal{D} \) is obtained from \(\mathcal{M} \) by adding facts according to the following guidelines:

1. \(\text{fact}(p) \) if \(p \in F \)
2. \(\text{strict}(r, p, [q_1, \ldots, q_n]) \) if \(r_1 : q_1, \ldots, q_n \rightarrow p \in R \)
3. \(\text{defeasible}(r, p, [q_1, \ldots, q_n]) \) if \(r_1 : q_1, \ldots, q_n \Rightarrow p \in R \)
4. \(\text{defeater}(r, p, [q_1, \ldots, q_n]) \) if \(r_1 : q_1, \ldots, q_n \sim p \in R \)
5. \(\text{sup}(r, r_j) \) for each pair of rules such that \(r_i \succ r_j \)

The Framework

Maher and Governatori (1999) have established the correctness of this meta-program representation for DL. Let \(\models_K \) denote logical consequence under Kunen’s semantics of logic programs (Kunen 1987).

Theorem 1 Let \(D \) be a defeasible theory and \(\mathcal{D} \) denote its meta-program counterpart.

For each literal \(p \),

1. \(D \models +\Delta p \iff \mathcal{D} \models_K \text{definitely}(p) \);
2. \(D \models -\Delta p \iff \mathcal{D} \models_K \text{not definitely}(p) \);
3. \(D \models +\delta p \iff \mathcal{D} \models_K \text{defeasibly}(p) \);
4. \(D \models -\delta p \iff \mathcal{D} \models_K \text{not defeasibly}(p) \);

There are significant features of this result that deserve further comment. Negative conclusions (involving tags \(-\Delta \) and \(-\delta \)), which refer to failure to prove, are characterized by the negation of the positive conclusions. Thus the meta-program implements failure as negation.

More generally, this provides a point of comparison between defeasible logics and other non-monotonic logics: in defeasible logics failure is the basic notion, whereas negation is basic in most other non-monotonic logics. Nevertheless, these two notions are different sides of the same coin.

An important feature of the meta-programming framework for defeasible logic is that it admits different forms of failure, corresponding to different semantics of negation in logic programs (Maher and Governatori 1999).

Our framework consists of a meta-program defining defeasibly and definitely, among other predicates, the implicit definition of negative tags by the negation of these predicates, and a semantics for the meta-language (logic programming).

Every logic defined within the framework satisfies the Principle of Strong Negation, by construction. We say that a semantics for logic programs is consistent if for no program \(P \) and atom \(a \) does the semantics of \(P \) imply both \(a \) and \(\neg a \) are true. Thus

Theorem 2 Every defeasible logic defined in our framework using a consistent semantics is coherent.

We can characterize the extent to which Nute’s framework is covered by ours.

Theorem 3 Every defeasible logic in Nute’s framework that satisfies the Principle of Strong Negation can be represented in our framework, using Kunen’s semantics.

In view of this result and the consistency of Kunen’s semantics we can establish that all such logics are coherent.

The presence of the Kunen semantics provides substantial insight into the computational complexity of defeasible logics. It means that every defeasible logic in Nute’s sense that admits free variables and function symbols, and satisfies the Principle of Strong Negation is computable, in contrast to the great majority of non-monotonic logics which are uncomputable. Similarly, if we consider only propositional logics then, under certain restrictions on the meta-program, the consequences of a theory can be computed in polynomial time\(^1\). Again, this is in contrast to the great majority of non-monotonic logics.

There are several points of difference between our framework and Nute’s.

- Nute’s framework is committed to a very specific (though natural) notion of failure-to-prove: the one corresponding to the Kunen semantics. Our framework is not restricted in this way.
- Nute’s framework is able to express logics that violate the Principle of Strong Negation, whereas ours cannot.
- By admitting arbitrary inference rules (in addition to the monotonic kernel) but requiring coherence, Nute’s framework places the burden of proof that the result is a defeasible logic on the logic designer. Every logic designed within our framework is coherent.
- The setting of Nute’s framework makes it extremely difficult to handle defeasible rules containing free variables

\(^1\)Indeed, DL has been shown to have linear complexity (Antoniou, Billington, Maher and Rock 2000).
and function symbols. These can be handled very naturally in the meta-programming framework.

- It is not clear whether the four tags are intended to be the only tags admissible in Nute’s framework or not. In the following section, we will demonstrate the advantage of admitting other tags.

New Defeasible Logics

We now develop several variations of DL. Our interest here is not to develop definitive defeasible logics, but to demonstrate the flexibility of the framework, and the beginnings of a methodology for designing logics. Maher and Governatori (1999) have already defined an extension of DL to allow a failure operator in the body of rules without disturbing the semantics of DL on theories without this operator. To keep this paper brief, we ignore definite inference in this section. A key element of the definition of the logics is the notion of support, used as part of Wagner’s (1991) analysis of defeasible reasoning, so we begin by finding definitions of support.

Support

Support for a literal \(p \) consists of a chain of reasoning that would lead us to conclude \(p \) in the absence of conflicts. If we ignore the superiority relation we could define it simply as follows.

\[
c7 \quad \text{supported}(X) := \text{definitely}(X).
\]

\[
c8 \quad \text{supported}(X) :=
\begin{align*}
&\text{supportive}_\text{rule}(R,X,[Y_1,...,Y_n]), \\
&\text{supported}(Y_1),...:\text{supported}(Y_n),
\end{align*}
\]

However, in situations where two conflicting rules can be applied and one rule is inferior to another, the inferior rule should not be counted as supporting its conclusion. Thus we refine \(c8: \)

\[
c9 \quad \text{supported}(X) :=
\begin{align*}
&\text{supportive}_\text{rule}(R,X,[Y_1,...,Y_n]), \\
&\text{supported}(Y_1),...:\text{supported}(Y_n),
\end{align*}
\]

\[
\text{not beaten}(R,X).
\]

Notice that, because the definition of support is recursive, we would not be able to express it in the proof theory of (Nute 1994; Billington 1993) without additional tags.

Ambiguity Propagation

A literal is ambiguous if there is a chain of reasoning that supports a conclusion that \(p \) is true, another that supports that \(\neg p \) is true, and the superiority relation does not resolve this conflict.

Example 1 The following is a classic example of non-monotonic inheritance.

\[
\begin{align*}
\text{r}_1 : & \Rightarrow \text{quaker} & \text{r}_5 : & \text{republican} \Rightarrow \text{football fan} \\
\text{r}_2 : & \Rightarrow \text{republican} & \text{r}_6 : & \text{paci fist} \Rightarrow \text{antimilitary} \\
\text{r}_3 : & \text{quaker} \Rightarrow \text{paci fist} & \text{r}_7 : & \text{football fan} \Rightarrow \neg \text{antimilitary} \\
\text{r}_4 : & \text{republican} \Rightarrow \neg \text{paci fist}
\end{align*}
\]

The priority relation is empty.

\(\text{paci fist} \) is ambiguous since the combination of \(\text{r}_1 \) and \(\text{r}_3 \) support \(\text{paci fist} \) and the combination of \(\text{r}_2 \) and \(\text{r}_4 \) support \(\neg \text{paci fist} \). Similarly, \(\text{antimilitary} \) is ambiguous.

In DL, the ambiguity of \(\text{paci fist} \) results in the conclusions \(\neg \text{paci fist} \) and \(\neg \neg \text{paci fist} \). Since \(\text{r}_6 \) is consequently not applicable, DL concludes \(\neg \neg \text{paci fist} \) and an unambiguous conclusion about \(\text{antimilitary} \) has been drawn.

A preference for ambiguity blocking or ambiguity propagating behaviour is one of the properties of non-monotonic inheritance nets over which intuitions can clash (Touretzky, Hory and Thomason 1987). Stein (Stein 1992) argues that ambiguity blocking results in an unnatural pattern of conclusions in extensions of the above example. Ambiguity propagation results in fewer conclusions being drawn, which might make it preferable when the cost of an incorrect conclusion is high. For these reasons an ambiguity propagating version of DL is of interest.

We can achieve ambiguity propagation behaviour by making a minor change to clause \(c5 \) so that it now considers support to be sufficient to allow a superior rule to overrule an inferior rule.

\[
c11 \quad \overruled(R,X) :=
\begin{align*}
\text{rule}(S,\sim X,[U_1,...,U_n]), \\
\text{supported}(U_1),...:\text{supported}(U_n),
\end{align*}
\]

\[\text{not defeated}(S,\sim X).\]

Proposition 4 The resulting logic is consistent.

Applying this logic to the example above, all literals mentioned in the theory (both positive and negated) are supported. As in DL, we conclude \(\neg \text{paci fist} \) and \(\neg \neg \text{paci fist} \), since \(\text{r}_3 \) and \(\text{r}_4 \) overrule each other. We also conclude \(+\neg \text{football fan} \) and \(+\neg \text{antimilitary} \) for essentially the same reason as in DL. However this logic differs from DL and propagates ambiguity by concluding \(\neg \neg \text{antimilitary} \), since \(r_7 \) is overruled by \(r_6 \) and \(r_7 \) cannot defeat \(r_6 \).

Team Defeat

The defeasible logics we have considered so far incorporate the idea of team defeat. That is, an attack on a rule with head \(p \) by a rule with \(\sim p \) may be defeated by a different rule with head \(p \) (see inference rule \(+\partial \) and clauses \(c5 \) and \(c6 \)). Even though the idea of team defeat is natural, it is worth noting that several related approaches, such as LPwNF (Dimopoulos and Kakas 1995) and most argumentation frameworks, do not adopt this idea. It is easy to define defeasible logics without team defeat in our framework. For our original defeasible logic (\(c1 \sim c6 \)) this can be achieved by replacing \(c5 \) and \(c6 \) by the following clause.

\[
c12 \quad \overruled(R,X) :=
\begin{align*}
\text{rule}(S,\sim X,[U_1,...,U_n]), \\
\text{defeasibly}(U_1),...:\text{defeasibly}(U_n),
\end{align*}
\]

\[\text{not sup}(R,S).\]

Proposition 5 The resulting logic is consistent.

It is also worth noting that several features can be easily integrated in our framework. For example, we may define an ambiguity propagating defeasible logic without team
defeat replacing each defeasibly(U_i) with support(U_i) in clause c12. In this sense we have established a tunable framework in which a defeasible logic may be designed according to the specific needs of the problem at hand.

Relationships

In this section we wish to establish relationships among some of the variants we introduced in this paper. We will show that there exists a chain of increasing expressive power among several of the logics. We will be considering the following tags:

- Δ, which denotes strict provability.
- ∂_ω, which denotes defeasible provability in the the ambiguity propagating defeasible logic ($c1\text{-}c4,c6\text{-}c11$).
- ∂, which denotes defeasible provability in our original defeasible logic ($c1\text{-}c6$).
- Σ, which denotes support in our original defeasible logic.

Then we are able to prove the following:

Theorem 6 $+\Delta \subset +\partial_\omega \subset +\partial \subset +\Sigma$.

Each inclusion is strict, in the sense that there are defeasible theories in which the inclusion is strict.

We wish to point out that this result is deeper than that it may look on the surface. Notice that when the logic fails to prove a literal p and instead proves $\neg \partial p$, then that result may be used by the logic to prove another literal q that could not be proven if p were provable. In fact it is easily seen that defeasible provability in the original defeasible logic without team defeat is not weaker than defeasible provability with team defeat. Consider the following theory:

$$\begin{align*}
 r_1 & : \Rightarrow p \\
 r_2 & : \Rightarrow p \\
 r_3 & : p \Rightarrow \neg q \\
 r_4 & : \neg p \\
 r_5 & : \neg p \\
 r_6 & : \Rightarrow q
\end{align*}$$

Then q is not defeasibly provable in the original defeasible logic, but defeasibly provable in the logic without team defeat.

Conclusion

We have developed a framework for defeasible logics that admits a wide range of logics. We have demonstrated the flexibility of the framework and the beginnings of a design methodology by developing, in a straightforward way, variants of DL which are, respectively, ambiguity propagating and incapable of team defeat. All logics designed within the framework are coherent.

The uniform setting provided by logic meta-programming supports the easy combination of logics that are based on the same form of failure. We have a proposal for combining logics with different notions of failure, based on the module system of (Maher 1993), but we have no space to present it here.

In summary, our framework provides a tunable family of defeasible logics.

Acknowledgements

This research was supported by the Australia Research Council under Large Grant No. A49803544.

References

