
Discovering State Constraints in DISCOPLAN: Some New Results

Alfonso Gerevini
Dipartimento di Elettronica per l’Automazione

Università di Brescia
Via Branze 38, 25123 Brescia, Italy

E-mail: gerevini@ing.unibs.it

Lenhart Schubert
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

E-mail: schubert@cs.rochester.edu

Abstract

DISCOPLAN is an implemented set of efficient preplanning al-
gorithms intended to enable faster domain-independent plan-
ning. It includes algorithms for discovering state constraints
(invariants) that have been shown to be very useful, for exam-
ple, for speeding up SAT-based planning. DISCOPLAN origi-
nally discovered only certain types of implicative constraints
involving up to two fluent literals and any number of static lit-
erals, where one of the fluent literals contains all of the vari-
ables occurring in the other literals; only planning domains
with STRIPS-like operators were handled. We have now ex-
tended DISCOPLAN in several directions. We describe new
techniques that handle operators with conditional effects, and
enable discovery of several new types of constraints. More-
over, discovered constraints can be fed back into the discov-
ery process to obtain additional constraints. Finally, we out-
line unimplemented (but provably correct) methods for dis-
covering additional types of constraints, including constraints
involving arbitrarily many fluent literals.

Introduction
The automated inference of state constraints (invariants)
based on a given set of state-transforming operators and ini-
tial conditions has emerged as a significant new development
in the effort to design effective domain-independent plan-
ners (Kelleher & Cohn 1992; Rintanen 1998; Gerevini &
Schubert 1996; 1998; Fox & Long 1998). It has been shown
that such state constraints, derived in a pre-planning phase,
can be used to greatly reduce the planning search space
and hence planning time (Gerevini & Schubert 1996; 1998;
Rintanen 1998; Kautz & Selman 1998; Fox & Long 1998;
2000; Refanidis & Vlahavas 2000), as well as to aid specifi-
cation and debugging of planning domains.

In (Gerevini & Schubert 1998) we proposed a collec-
tion of techniques for extracting state constraints from a
set of operators and an initial state, and we implemented a
subset of these techniques in the DISCOPLAN (DIScovering
COnstraints for PLANning) package. On the assumption
that operators are given in STRIPS-like form, we imple-
mented the derivation of (a) fluent predicate domains (sets
of

�
-tuples that include all possible argument tuples for

which a
�

-ary predicate may hold; these were obtained by a
Graphplan-like method); (b) implicative constraints of form

Copyright c
�

2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

((IMPLIES ���) ���	�
�
� ���),
where
����������������������������! #"%$ are literals, the �'& are static
(non-fluent) supplementary conditions such as type and in-
equality constraints, and the antecedent literal
 contains all
variables occurring elsewhere; an example is
((IMPLIES(AT?X?Y)(AIRPORT?Y))(AIRPLANE?X))
(from the “att-logistics” world, stating that for all?X,
?Y, if?X is at?Y then?Y is an airport, provided that?X is
an airplane); and (c) simultaneous implicative and single-
valuedness (sv-) constraints such as the blocks-world con-
straint
((IMPLIES(ON?*X?Y)(NOT(CLEAR?Y)))(NEQ?YT),
where “starred” variables indicate that there can be at most
one value of the argument in the starred position correspond-
ing to any given values for the remaining arguments of the
predicate in question, and T stands for the table. In addition,
we outlined (but did not implement) algorithms for deriv-
ing certain sv-constraints independently of implicative con-
straints, and for deriving simultaneous implicative and sv-
constraints more general than those in (c), allowing both the
antecedent and the consequent to contain variables not con-
tained in the other.

Here we describe some major extensions of DISCOPLAN,
in both practical and theoretical directions. An across-the-
board extension is the allowance for conditional effects in
operators specifying a planning domain. This is likely to
be of considerable practical interest in domain-independent
planning, since formalisms permitting operators with con-
ditional effects (e.g., UCPOP and PDDL) facilitate compact
encoding of complex operators that would otherwise require
unnatural and potentially very large expansions as multiple
unconditional operators.

The algorithms and implementation for (b) and (c) above
have been generalized accordingly, and the newly imple-
mented and newly proposed techniques similarly allow for
conditional effects. These extensions are described in the
second section. In the third section, we describe how DIS-
COPLAN is able to infer additional constraints of the type
just mentioned by “expanding” operators so as to include
preconditions and effects implied by constraints discovered
earlier, and then re-running the discovery algorithms. In
the forth section, we describe some further extensions to
our methods (mostly unimplemented, but provably correct);
this includes methods for inferring strict single-valuedness
(and � -valuedness) constraints, and constraints involving ar-

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

bitrarily many fluent literals. We provide sample results in
the fifth section, and then summarize our contribution and
its relation to other approaches, and our further plans.

Newly Inferred Constraints
We begin by outlining the generalizations needed to deal
with conditional effects in deriving implicative and simul-
taneous implicative and sv-constraints (a slightly more de-
tailed description is given in (Gerevini & Schubert 2000)).
Then we devote a series of subsections to the new capabili-
ties of DISCOPLAN.

Adapting the Hypothesize-and-Test Paradigm to
Conditional Effects
We assume operators similar to those handled by UCPOP,
except that we do not allow for universal quantification. Af-
ter (automatic) standardization, each operator consists of a
name, a set of parameters, and a set of when-clauses. Each
when-clause contains a set of precondition literals and a set
of effect literals, any of which may have constant or para-
metric arguments and may be positive or negated. The first
when-clause, called the primary when-clause, contains the
preconditions that must be verifiable whenever the operator
is applied to a state, and the effects whose truth is assured
in the resulting state. Each of the remaining, secondary
when-clauses (if any) specifies additional preconditions and
effects, where satisfaction of those preconditions along with
the primary ones assures the truth of those effects in the re-
sulting state.

We use several top-level programs to infer different types
of constraints from operator structure, but most of them ad-
here to a hypothesize-and-test paradigm with the following
structure. (An exception is the program for finding antisym-
metry constraints, in which the first of the following steps
is based on single literals rather than pairs). Note that

�
can be logically complex, for instance consisting of both an
implicative hypothesis and one or two sv-hypotheses. This
is crucial since some hypotheses cannot be verified in isola-
tion, but only by simultaneous induction with other hypothe-
ses.

1. Hypothesize a constraint
�

based on co-occurrences of
literals in a when-clause � of an operator and in the cor-
responding primary when-clause � � (if different). For
example, effects
 and � might lead to an implicative
hypothesis (IMPLIES
 �), and possibly sv-hypotheses
about the predicates involved.

2. Add a set of candidate supplementary conditions� �'� ��������������� , consisting of the static preconditions of �
and � � and if ���� � � , the negations of static precondi-
tions of other when-clauses (except ones that unify with
static preconditions of � or � � or their negations).

3. Test hypothesis
�

relative to each when-clause of each op-
erator, using the relevant verification conditions; for each
apparent violation of

�
find the corresponding possible

“excuses” for the violation. An excuse is a set of provi-
sos

� ���� � ���������	�
 � , chosen from the candidate supplemen-
tary conditions, that weaken the hypothesis sufficiently to
maintain is truth. If a violation has no excuses, abandon
the hypothesis

�
, otherwise record the set of possible ex-

cuses of the violation on a global list.

4. Find all minimal subsets (up to a given size)1 of� � � ��������� � ��� that “cover” all apparent violations of
�

; a
subset of

� ��� � ��������� �	� covers an apparent violation of
�

if
it contains all elements of at least one “excuse” for that
violation;

5. Check hypothesis (
� ���� ���������	�
) (i.e., the original hypothe-

sis together with added provisos) for each of the minimal
subsets

� �	�� �����������	�
 � of
� ��� � ������� � ��� found in the previous

step for truth in the initial conditions of the problem being
solved; return the variant hypotheses that pass this test as
the verified hypotheses.

Verification Conditions and “Excuses”
Verification conditions are conditions on the precondition-
effect structure of operators that are needed to support an
inductive proof that the operators maintain a given type of
state constraint. (We have such inductive proofs for the con-
straints found by DISCOPLAN, but space does not allow their
inclusion.) The most complex aspect of the above sequence
of steps is the collection of possible “excuses” (sets of candi-
date supplementary conditions) in step 3, when verification
conditions for

�
are violated. The details depend on the ver-

ification conditions (as determined by the form of
�

), and
different verification conditions call for different “excuses”
when violated. However, there are commonalities across the
various types of hypotheses that are exploited in our code. In
particular, there are essentially 4 types of verification condi-
tions: (i) ones that preclude the occurrence of multiple ef-
fects of the same type (e.g., in testing (ON?*X?Y), we
want to guard against multiple effects such as (ON?U?W),
(ON?V?W)); (ii) ones that require the co-occurrence of a
certain type of effect with another (e.g, in testing an im-
plicative constraint, whenever an effect instantiates the an-
tecedent, another effect should instantiate the consequent;
and similarly for the contrapositive of the implication); (iii)
ones that require a change (a certain type of precondition and
a related effect) whenever a given type of effect is present
(e.g., this is needed whenever

�
involves sv-constraints);

and (iv) ones that preclude the co-occurrence of certain ef-
fects with certain other effects (e.g., this is needed in testing
exclusion hyotheses, stating that the truth of one predica-
tion implies the falsity of another). Our programs for testing
hypotheses and collecting “excuses” are organized around
4 subroutines corresponding to these 4 types of verification
condition.2

The “excuses” themselves are essentially of two types.
One type of “excuse” ensures that a particular when-clause
of an operator is rendered irrelevant to a hypothesis. In this
case the excuse is a singleton

� �
� (chosen from the candi-
date supplementary conditions) whose falsity is entailed by
the preconditions of that when-clause (or by the precondi-
tions of the corresponding primary when-clause, if differ-

1For the domains we have tested a size limit of 2 suffices; al-
lowance for up to 5 supplementary conditions yielded no new con-
straints.

2Actually, we have recently added a fifth routine testing for the
presence of a “compensating change”, which allows us to make
stronger use of the induction assumption in testing implicative con-
straints. We briefly discuss this later.

ent). This type of excuse is considered whenever a when-
clause generates an effect that should not co-occur with an-
other given effect, or whenever it generates an effect whose
co-occurrence requirements are not (provably) met. The
second type of “excuse” ensures that the effects of a par-
ticular secondary when-clause are realized. In this case
the “excuse” may contain multiple elements of

� � � � ������� � ��� ,
which together entail the preconditions of that when-clause.
This type of “excuse” is considered whenever a required co-
occurring effect is not guaranteed in the when-clause under
consideration, but can be guaranteed via the effects of an-
other when-clause, if the preconditions of that other when-
clause are true. The search for “excuses” for apparent viola-
tions of hypothesized constraints has recently been strength-
ened by the use of subtype/supertype and exclusion relations
among static monadic predicates. (These are found in the
manner explained in the subsection that follows.)

We now provide some specifics of the discovery process
for most types of constraints in the new version of DIS-
COPLAN, with particular reference to verification conditions
(where relevant). We omit discussion of simple implicative
constraints (without sv-constraints).

Static Constraints
Static constraints are state invariants involving type-
predicates, where a type-predicate is a static monadic predi-
cate that occurs positively in the initial state. In general, the
result of this analysis gives the following information about
types:� a list of type-predicates, each of which is associated with

the set of objects of the domain satisfying the predicate;� a list of universal types (i.e., predicates that are satisfied
by every object in the domain), and a list of empty types
(i.e., predicates that are satisfied by no object);� a list of supertype/subtype and incompatible relationships
between type-predicates.

Type information is computed in polynomial time by pro-
cessing the initial state in the following way (the algorithm
assumes that for each predicate

�
in the domain it is known

whether
�

is static – this information is computed during
the initial standardization of the operators). First we com-
pute the set � of the constants appearing in the specification
of the initial state, and we associate with each type-predicate
the set of the constants appearing in the positive instances of�

.3 This set, indicated with � � � , is the extension of
�

. If we
have that � � � = � , then

�
is an universal type, while if � � � =�

, then
�

is an empty type; if for some other type-predicate�
, we have that � � ����� � � , then

�
is a subtype of

�
and

�
is

a supertype of
�

, i.e., each object of type
�

must be of type�
; if � � �
	�� � � =

�
, then

�
and

�
are incompatible types,

i.e., no object in � can be both of type
�

and of type
�

. For
example, suppose that the list of static predicates appearing
in the initial state is:
((P a) (P b) (Q b) (R a) (S a) (S b)
(S c) (T a b) (T b c)).

The following information is computed by DISCOPLAN:� � � ��� ��
���� � ; Type-predicates: (P Q R S)
3Here we assume that all the objects (constant symbols) of the

domain appear in the initial state as terms of some positive literal.

� �P � = � a,b � , �Q � = � b � , �R � = � a � , �S � = � a,b,c �� Universal types: (S ?X); empty types: nil� Super/sub-type relationships:
((IMPLIES(Q?X)(P?X)) (IMPLIES(R?X)(P?X))
(IMPLIES(P?X)(S?X)) (IMPLIES(Q?X)(S?X))
(IMPLIES(R?X)(S?X)))� Incompatible types:

((IMPLIES(Q?X)(NOT(R?X)))).

Dedicated Inference of SV-Constraints
An example of an sv-constraint that can be inferred in iso-
lation is the blocks-world constraint ((ON ?X ?*Y)), i.e.,
any object can be ON at most one other object; or, in unab-
breviated FOL,��� ��� ����������� � � ��� $������ � � ��� $ $ �!� � ���
As an example involving a supplementary condition (from
the logistics-att world), we have
((AT?X?*Y)(AIRPLANE?X)),

i.e., an airplane can be AT no more than one place. Our “ded-
icated” method of finding sv-constraints of this type starts by
forming hypotheses based on the occurrence within a when-
clause and the corresponding primary when-clause of an ef-
fect (

�#" � ����� " �) together with a “compensating change”, i.e.,
a
�

-precondition and corresponding $ � -effect that appears
to maintains single-valuedness. The verification conditions
ensure (a) that there are no multiple effects that could vio-
late single-valuedness, and (b) that any

�
-effect is indeed

accompanied by a “compensating” change. Violations lead
to collection of “excuses” of the sort indicated earlier (if pos-
sible), and these provide the basis for deriving minimal sets
of supplementary conditions. (a) and (b) suffice for an in-
ductive proof that if a constraint such as ((P ?X ?*Y)
(Q ?X)) holds in the initial state, it holds in all reachable
states. (Additional starred and unstarred arguments and mul-
tiple supplementary conditions are easily dealt with.)

Implicative Constraints + SV-Constraints: The
Case of Subsumed Variables
In the introduction, we mentioned the blocks-world con-
straint
((IMPLIES(ON?*X?Y)(NOT(CLEAR?Y)))(NEQ?YT))
as an example of a combined implicative and sv-constraint
obtainable by the previous version of DISCOPLAN. In gen-
eral, the implicative constraints we are considering here have
as their antecedent a positive literal that contains at least one
“starred” variable not occurring in the consequent, and zero
or more “unstarred” variables occurring in the consequent.
The stars indicate that for all values of the unstarred vari-
ables, the antecedent holds for at most one tuple of values of
the starred variables.

The discovery of such constraints in the previous version
of DISCOPLAN was limited to domains where operator ef-
fects are unconditional. The new algorithm for operators
with conditional effects proceeds much as before, though of
course with complications due to the fact that multiple when-
clauses may contribute to the effects of an operator. Potential
antecedent-consequent pairs are hypothesized based on co-
occurrence of a positive effect literal
 with another effect or
persistent precondition � whose variables are a proper sub-
set of those of
 . The complement of the signed predicate

of � must occur as an effect of some operator (otherwise
simultaneous inference of an sv-constraint would be unnec-
essary), and
 and � must belong to the pooled effects and
persistent preconditions of some when-clause � and the cor-
responding primary when-clause � � . For the special case of
an antecedent (P?X?*Y) and consequent (Q?X) the ver-
ification conditions are the following (these are easily gen-
eralized to allow for multiple shared and starred variables):

(a) There must not be multiple effects matching (P ?X
?*Y) that could directly violate the sv-constraint. The
details are as in condition (a) for “dedicated” sv-testing.

(b) If � contains an effect (P
� �) for some

�
and � ,

there must be a precondition (NOT (Q
� �)) and an ef-

fect (Q
� � �) in � or the corresponding primary when-

clause ��� , where
� � � � � � � �

by symbol identity or
EQ-preconditions. (We have recently weakened this con-
dition in a way that makes stronger use of the induction
assumption, but leave out details for simplicity.)

(c) If � contains an effect (NOT (Q
�
)) for some

�
,

there must be a precondition (P
� � �) and an effect

(NOT (P
� � � � �)) in � or � � , where

� � � � � � � �
and � � � � by symbol identity or EQ-preconditions.

Implicative Constraints + SV-Constraints: The
Case of Non-Subsumed Variables
In the implicative constraints considered in the preceding
subsection, the antecedent variables were required to sub-
sume the consequent variables. Here we assume instead that
both antecedent and consequent contain variables not con-
tained in the other. All such variables are “starred”, while
the shared variables are unstarred. An example is the fol-
lowing constraint from the Logistics world:
((IMPLIES(AT?X?*Y)(NOT(IN?X?*Z)))(OBJ?X)).
This is an exclusive state constraint, i.e., it states that no ob-
ject can simultaneously be AT something and IN something
(and in addition an object can be AT no more that one thing,
an IN no more than one thing). In (Gerevini & Schubert
1998) we formulated provably correct criteria for deriving
such constraints, but once again we did not generalize to
operators with conditional effects. The generalized method
proceeds much as in the case of implicative constraints with
subsumed variables (previous subsection), and we need only
point out the main differences. First, hypothesis formation
relies on literal co-occurrences as before, except that both
the antecedent and consequent are based on effects (with no
consideration of persistent preconditions) and the restric-
tions relevant to exclusive state constraints are placed on
signs and variables. There are five verification conditions;
for the (easily generalized) special case of an exclusive state
constraint with antecedent (P ?X ?*Y) and consequent
(NOT (Q ?X ?*Z)), they run as follows. The first two
conditions guard against multiple effects matching (P ?X
?*Y) or (Q ?X ?*Z), as in the previous condition (a).
The third condition states

(c) If � contains an effect (P
� �) for some

� ��� , there
must be a precondition (Q

� ���) and an effect (NOT
(Q

� � � � �)) in � or � � , where
� � � � � � � � and � � � �

by symbol identity or EQ-preconditions.

The fourth condition is completely analogous to the third,
with P and Q and � and � interchanged. The fifth and fi-
nal condition guards against co-occurrence of an effect (P� �) in one when-clause with an effect (Q

� ���) in the
same or in another when-clause, where

� � � � by symbol
identity or EQ-preconditions. This condition is most easily
understood by thinking of an exclusive state constraint as a
disjunction of two negative literals, and recognizing that if
both literals become false for the same shared argument and
some values of the non-shared arguments, then the disjunc-
tion cannot remain true for all values of the three variables.

Antisymmetry Constraints
Antisymmetry constraints (as-constraints) are particular im-
plicative constraints of the form

((IMPLIES (
�#" � " �) (NOT (

�#" � " �))) ��� � � ����� � �),
where

" � and
" � can be constants or universally quanti-

fied variables, and � � ����������� � are supplementary conditions
whose variables are a subset of

� " � � " � � . An example of an
antisymmetry constraint in the blocks-world is
((IMPLIES(ON?X?Y)(NOT(ON?Y?X)))),

i.e., if one object is on another, then the second is not on the
first. Like the previous methods, the method for discover-
ing antisymmetries uses the hypothesize-and-test paradigm
described above. In particular, if (

� " � " �) is an effect
of a when-clause in an operator op, then we hypothesize
((IMPLIES (

� " � " �) (NOT (
� " � " �)))). The hypothesis is

then augmented with candidate supplementary conditions in
the same manner as for implicative constraints, and tested
against the operators to yield variants augmented with mini-
mal sets of supplementary conditions, and finally these vari-
ants are tested in the initial state. The verification condi-
tions for an antisymmetry hypothesis

�
, enabling an induc-

tive proof that
�

holds in all reachable states, are the follow-
ing:

For each when-clause � of each operator � , if � has an
effect matching (

�#" � " �), then assuming that (a)
�

is true
in any state � where � is applied and the preconditions of
� hold, and (b)

�
becomes false in the state � � resulting

by applying � to � , leads to a contradiction (because � or
� � would have to be inconsistent).

In order to test this condition, for each when-clause � of � ,
if � has an effect matching (

� " � " �) with unifier � , we add
[(
� " � " �)] � to the effects of � . Then we test each expanded

when-clause ��� to see whether the set
�

formed by the ef-
fects of ��� , together with the persistent preconditions and
effects of the primary when-clause � � of � (if ��� �� � �), is
inconsistent. If this is the case, then

�
is confirmed for � .

If this is not the case, then we collect sets of supplementary
conditions that can excuse the violation of the verification
condition.

To strengthen this method, when we test the verification
condition against an operator, we use an “expanded” ver-
sion of the operator, obtained by augmenting the precondi-
tions and effects of each when-clause using implicative con-
straints discovered earlier. (This process is described in the
next section). The resulting

�
-sets are inconsistent if

�
con-

tains a pair of contradictory non-static conditions, contradic-
tory EQ/NEQ-conditions, or a pair of static conditions that
violate static constraints.

XOR-constraints
XOR-constraints are state-constraints of the form

((XOR
 �) ��� � � ����� � �),
where
 and � are positive fluent literals, such that non-
shared variables are existentially quantified, while shared
variables are universally quantified, and where the variables
in � � , � � , ..., ��� can only be variables shared by
 and � .
An example of an XOR-constraint in the logistics domain is
((XOR (AT?X?Y) (IN?X?Z)) (OBJECT?X)),

stating that in any reachable state, any object is either at
some place or in something. The method that we have de-
veloped for inferring this type of constraint is based on com-
bining two types of constraints entailing exclusive disjunc-
tions. The first type of constraint consists of those implica-
tive constraints inferred by our previously described meth-
ods where
 and � are fluents,
 is positive and � is negative.
The second type of constraint corresponds to binary “state
membership invariants” (Fox & Long 1998). These are bi-
nary disjunctions, possibly augmented with supplementary
conditions, of the following form ((OR
 �) � � � � ����� � �),
where the non-shared variables of
 and � are existentially
quantified, and the remaining variables are universally quan-
tified. Our method for inferring state membership invariants
is a variant of the methods for inferring implicative con-
straints described in previous sections (for lack of space we
omit a detailed description). One of the main differences lies
in the way hypotheses are verified in the initial state, and in
the way supplementary conditions capable of rescuing the
law are collected. When we check a hypothetical member-
ship invariant against the initial state, we consider additional
type predicates (not appearing in the operator from which
the hypothesis was derived) which restrict the domains of
universally quantified variables in
 and � . For example, in
UCPOP’s formalization of the Ferry domain DISCOPLAN can
infer the following membership invariant
((OR (AT?X?Y) (ON?XFERRY)) (AUTO?X)),

where (AUTO?X) is a supplementary condition that is re-
quired for verifying the law in the initial state, and which
does not belong to any operator that suggested the hypothe-
sis. By combining this state membership constraint with the
exclusive constraint
((IMPLIES (AT?X?Y) (NOT (ON?XFERRY)))),

DISCOPLAN infers the XOR-constraint
((XOR (AT?X?Y) (ON?XFERRY)) (AUTO?X)).

Using “Expanded” Operators
As mentioned above DISCOPLAN discovers as-constraints
using expanded operators. Moreover, as pointed out in
(Gerevini & Schubert 1998), the general hypothesize-and-
test process can be enhanced by feeding confirmed con-
straints back into the process. A straightforward way to do
this is to expand each operator by adding extra preconditions
and effects that are implied by constraints discovered earlier.
In particular, the current version of DISCOPLAN expands the
given operators using implicative constraints with subsumed
variables.4

4Note that in the current implementation type constraints are not
used for expanding the operators. Reasoning about type constraints
is incorporated into the various discovery routines.

By re-running all the discovery algorithms using the ex-
panded operators, further constraints can be derived. This
process of inferring state-constraints and expanding the op-
erators using discovered constraints can be repeated until no
more new constraints are derived.

An operator � is expanded by using each implicative con-
straint ((IMPLIES
 �) � � ��� � ��������� � � $ with subsumed vari-
ables in the following way. For each when-clause � of � ,
if a precondition or effect � of � matches
 with unifier � ,
and ��� ����� � � are satisfied under � , then we augment � with� ��� � . Specifically, we add

� ��� � to the preconditions of � ,
if � is a precondition of � or � is a static condition; while
we add

� ��� � to the effects of � if � is an effect of � and

 is non-static. Writing � � for the primary when-clause of
� , if � � � � , then the check for the validity of � � ����� � �
is done against the preconditions of � ; otherwise (� is a
secondary when-clause) the supplementary conditions are
checked against the preconditions of � extended with the
preconditions of � � . Also, note that if � � � � and some
supplementary preconditions are not satisfied by the precon-
ditions of � � , then it is still possible that such conditions are
satisfied by the preconditions of a secondary when-clause
� � . If this is the case, then

� ��� � is added to the precondi-
tions or effects of � � (depending on the conditions indicated
above).

Finally, if a when-clause is not expanded, and
 and �
involve the same variables, then we try to expand it using
the contrapositive implicative constraints

((IMPLIES $ � $
) � � � � ����� � � $.

Further Extensions
We previously mentioned our recent weakenening of the
verification conditions for combined implicative and sv-
constraints, making stronger use of the induction assump-
tions. The nature of the change is best appreciated from an
example. Consider the following simple set of operators de-
scribing two ways of getting from one place to another –
walking and taking a cab:
(define (operator walk) (define (operator take-cab)
:parameters (?x ?y) :parameters (?x ?y)
:precondition :precondition

(and (at ?x) (neq ?x ?y)) (and (at-cab ?x) (neq ?x ?y))
:effect (and (at ?y) :effect (and (at-cab ?y)

(not (at ?x)))) (not (at-cab ?x))))

(define (operator get-in) (define (operator get-out)
:parameters (?x) :parameters (?x)
:precondition :precondition

(and (at-cab ?x) (at ?x)) (and (at-cab ?x) (in-cab))
:effect (and (not (at ?x)) :effect (and (at ?x)

(in-cab))) (not (in-cab))))

A law that holds in this domain, whenever it holds initially,
is (IMPLIES (AT ?*X) (NOT (IN-CAB))). The point of
interest is that verification of this law for the walk oper-
ator requires the inference, from the induction assumption,
that (NOT (IN-CAB)) holds in any state in which the walk-
preconditions hold, and since this condition persists, that it
also holds after a walk. Our current code does this verifi-
cation by adding the immediate consequences of the induc-
tion assumption to the operator preconditions, and applying
the weakened verification conditions (no longer requiring a
change from (in-cab)) to (NOT (IN-CAB)) in walk). We
note that this technique could also be used for simultane-
ous induction, i.e., we could assume multiple hypotheses in

states prior to operator application, add the immediate con-
sequences of these assumptions to the preconditions, and
then apply our usual verification conditions for individual
hypotheses. If the individual verifications succeed, then all
the assumed hypotheses are true (cf. (Rintanen 1998)).

Besides the implemented extensions we have outlined so
far, we have also formulated a number of extensions theoret-
ically, which we now describe briefly. Their implementation
remains as future work.

Strict Single-Valuedness (and n-Valuedness)

The verification conditions we described for “dedicated” in-
ference of sv-constraints essentially ensure that (a) no op-
erator application generates multiple literals that would vio-
late the sv-constraint, and (b) any operator application that
generates one instance of the predicate at issue, where there
might already be a prior instance with the same “unstarred”
arguments, also generates a compensating change from an
instance to a negated instance of the predicate. Thus the
number of tuples of values of starred variables, for any given
values of the unstarred ones, is limited to 1. To establish
strict singlevaluedness, we need only add the converse of
(b), that any operator that produces a negated instance of
the predicate at issue should also produce a “compensating”
positive instance. However, both effects must also appear
in negated form in the preconditions, since mere affirmation
of an effect may just be reaffirmation of something that was
already true in the prior state.

In other words, we verify that for any given values of the
unstarred arguments, the number of tuples of values of the
starred arguments remains fixed. An interesting point is that
this enables discovery of “strict � -valuedness” constraints
as readily as strict sv-constraints. The only difference lies in
what can be confirmed in the initial state.

N-ary Disjunctive Constraints

Our implemented methods in principle allow the inference
of constraints involving any number of literals – but only
two of these may be fluent literals (the rest are static supple-
mentary conditions). However, our hypothesis generation
and verification techniques are rather readily extensible to
arbitrary disjunctions of literals, where any number of these
may be fluents. We require the hypothesis to be of form

 � � ����� �
 � , where the
 & are literals, and for each
 & for
which some instances can become false (through the effects
of some operator), there is another literal
�� whose variables
are a subset of those of
 & . All variables are regarded as
universally quantified. Then we can verify the law by con-
firming that whenever one of the literals becomes false (i.e.,
an instance of its negation is asserted in an operator’s ef-
fects), a corresponding instance of another literal, with at
most the same variables, becomes or remains true (i.e., is
asserted as a persistent precondition, or as an effect). We
have formulated a method that starts with (potentially) “un-
necessarily lengthy” disjunctions, and systematically finds
minimal combinations of literals whose disjunction is an in-
variant.

BW-LARGE-B
((IMPLIES (CLEAR ?X) (BLOCK ?X)))
((IMPLIES (CLEAR ?X) (NOT (FIXED ?X))))
((IMPLIES (ON ?X ?Y) (BLOCK ?X)))
((IMPLIES (NOT (BLOCK ?X)) (CLEAR ?X)))
((IMPLIES (ON ?X ?Y) (BLOCK ?Y)))
((IMPLIES (ON ?X ?Y) (NOT (ON ?Y ?X))))
((IMPLIES (ON ?X ?Y) (NEQ ?X ?Y)))
((IMPLIES (ON ?X ?Y) (NOT (FIXED ?X))))
((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NOT (FIXED ?Y)))
((IMPLIES (FIXED ?X) (BLOCK ?X))) ((BLOCK ?X))
((ON ?X ?*Y)) ((XOR (ON ?X ?Y) (CLEAR ?Y)) (NOT (FIXED ?Y)))

BW-LARGE-B1
((IMPLIES (ON ?X ?Y) (NEQ ?X TABLE)))
((IMPLIES (ON ?X ?Y) (NEQ ?X ?Y)))
((IMPLIES (ON ?*X ?Y) (NOT (CLEAR ?Y))) (NEQ ?Y TABLE))
((IMPLIES (ON ?X ?Y) (NOT (ON ?Y ?X))))
((ON ?X ?*Y)) ((XOR (ON ?X ?Y) (CLEAR ?Y)) (NEQ ?Y TABLE))

Figure 1: Samples of DISCOPLAN outputs for bw-large-
b and bw-large-b1.

N-ary Disjunctive and SV-Constraints
The second generalization concerns disjunctive laws with si-
multaneous assumption of sv-constraints. We assume a dis-
junction of literals
 � � ����� �
 � , where the
 & literals may
contain “starred” occurrences of some variables, subject to
the following constraints: (a) only negative literals may con-
tain “starred” variable occurrences; (b) “starred” variables
may not occur in more than one literal; and (c) for every
 &
that can become false, the set of “unstarred” variables occur-
ring in that literal must include the set of variables (possibly
the empty set) of some other literal.

Note that (c) is a generalization of the constraint assumed
above for implicative laws without “starred” variables, i.e.,
without sv-hypotheses. The interpretation of any “stars” oc-
curring in a negative literal is that the predicate of that literal
is single-valued in the sense that if we consider all tuples of
values of the predicate that satisfy the supplementary condi-
tions on them, then we will find at most one such tuple for
any particular choice of values of the unstarred arguments.

For such a generalized disjunctive and sv-hypothesis we
have formulated, and proved to be correct, verification con-
ditions enabling an inductive proof that the law holds in all
reachable states. These conditions are a generalization of
those for n-ary disjunctive constraints, and implicative con-
straints involving non-subsumed starred variables, that we
have described in the previous sections.

Sample Results and Related Work
Figures 1-2 give the outputs of DISCOPLAN for some known
problems. For lack of space fluent predicate domains and
OR-constraints are not included; moreover, we report only 6
of the 36 static constraints for T-trains1 and 6 of the 15
static constraints for att-logistics. logistics-a
is from the ATT-logistics domain (Kautz & Selman 1996) for
which we used the formalization provided by MEDIC (Ernst,
Millstein & Weld 1997); T-trains1 is from the typed
version of the Trains domain (Gerevini & Schubert 1996)
containing seven operators, one of which has conditional ef-
fects; bw-large-b is a problem from SATPLAN formal-
ization of the blocks world (Kautz & Selman 1996) that we
translated into four operators with no conditional effects;
bw-large-b1 is the same problems as bw-large-b, ex-
cept that here we used a different domain formalization with
just one operator containing conditional effects:

T-TRAINS1
((IMPLIES (AT ?X ?Y) (CITY ?Y)))
((IMPLIES (IN ?*X ?Y) (NOT (EMPTY ?Y))))
((IMPLIES (OJ ?X) (NOT (ORANGES ?X))))
((IMPLIES (EMPTY ?X) (CAR ?X)))
((IMPLIES (COUPLED ?X ?Y) (CAR ?Y)))
((IMPLIES (LOOSE ?X) (CAR ?X)))
((IMPLIES (IN ?X ?Y) (OJ ?X)) (TANKER-CAR ?Y))
((IMPLIES (COUPLED ?*X ?Y) (NOT (LOOSE ?Y))))
((IMPLIES (COUPLED ?X ?Y) (ENGINE ?X)))
((AT ?X ?*Y) (ENGINE ?X))
((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (BANANAS ?X))
((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (COMM ?X))
((IMPLIES (AT ?X ?Y) (NOT (AT ?Y ?X))))
((IMPLIES (COUPLED ?X ?Y) (NOT (COUPLED ?Y ?X)))))
((XOR (COUPLED ?X ?Y) (LOOSE ?Y)) (CAR ?Y))
((XOR (AT ?X ?Y) (IN ?X ?Z)) (BANANAS ?X) (COMM ?X))
((XOR (AT ?X ?Y) (IN ?X ?Z)) (BANANAS ?X))
((XOR (IN ?X ?Y) (EMPTY ?Y)) (CAR ?Y)))
((IMPLIES (CAR ?X) (NOT (CITY ?X))))
((IMPLIES (CAR ?X) (NOT (TRACK ?X))))
((IMPLIES (CAR ?X) (NOT (ENGINE ?X))))
((IMPLIES (CAR ?X) (NOT (OJ-FAC ?X))))
((IMPLIES (CAR ?X) (NOT (COMM ?X))))
((IMPLIES (BANANAS ?X) (NOT (CAR ?X))))
((IMPLIES (BOXCAR ?X) (CAR ?X)))....

ATT-LOGISTICS-A
((IMPLIES (IN ?X ?Y) (OBJECT ?X)))
((IMPLIES (AT ?X ?Y) (LOCATION ?Y)) (OBJECT ?X))
((IMPLIES (AT ?X ?Y) (AIRPORT ?Y)) (AIRPLANE ?X))
((IMPLIES (AT ?X ?Y) (LOCATION ?Y)) (TRUCK ?X))
((AT ?X ?*Y) (AIRPLANE ?X)) ((AT ?X ?*Y) (TRUCK ?X))
((IMPLIES (AT ?X ?*Y) (NOT (IN ?X ?*Z))) (OBJECT ?X))
((IMPLIES (IN ?X ?Y) (NOT (IN ?Y ?X))))
((IMPLIES (AT ?X ?Y) (NOT (AT ?Y ?X))))
((XOR (AT ?X ?Y) (IN ?X ?Z)) (OBJECT ?X))
((IMPLIES (AIRPLANE ?X) (NOT (OBJECT ?X))))
((IMPLIES (AIRPLANE ?X) (NOT (TRUCK ?X))))
((IMPLIES (AIRPLANE ?X) (NOT (LOCATION ?X))))
((IMPLIES (AIRPLANE ?X) (NOT (AIRPORT ?X))))
((IMPLIES (AIRPLANE ?X) (NOT (CITY ?X))))
((IMPLIES (AIRPORT ?X) (LOCATION ?X)))....

Figure 2: Samples of DISCOPLAN outputs for att-
logistics and T-trains1.

(define (operator Put)
:parameters (?x ?y ?z)
:precondition (and (on ?x ?) (clear ?x)

(neq ?x Table) (neq ?y ?z) (neq ?x ?y))
:effect (and (when (eq ?y Table)

(and (on ?x ?y) (clear ?z) (not (on ?x ?z))))
(when (and (neq ?y Table) (clear ?y))

(and (on ?x ?y) (clear ?z) (not (on ?x ?z))
(not (clear ?y))))))

The tests were conducted on a portable PC 266 MHz with 64
Mbytes, running Allegro Common Lisp 4.3 under Linux. 5

Each type of constraint can be discovered in isolation us-
ing a dedicated inference procedure. The total CPU-times
that were required for computing all types of constraints for
the problems of Figures 1 and 2 were: 0.056 CPU-seconds
for logistics-a, 0.098 for T-trains1, 0.026 for bw-
large-b and 0.086 for bw-large-b1.

Other approaches for the automatic inference of state in-
variants have been proposed, including (Kelleher & Cohn
1992; Kelleher 1996), (Fox & Long 1998) and (Rintanen
1998). A major contribution of our work in relation to this
prior work and to the original version of DISCOPLAN (1998)
is the allowance for conditional effects. Kelleher and Cohn’s
method is similar to our generation-and-test approach. How-
ever, their techniques cannot infer the types of constraints
that we have addressed in this paper. The algorithm for
computing state invariants proposed in (Rintanen 1998) is
limited to propositional operators, and it appears to be com-
putationally more expensive than our techniques.

Fox and Long’s TIM system can infer some non-binary

5DISCOPLAN is written in Lisp and it accepts input domain de-
scriptions specified using either the UCPOP or PDDL formalism.

membership invariants that DISCOPLAN currently cannot
infer. On the other hand, TIM does not handle negated
preconditions, and cannot infer the following classes of
DISCOPLAN constraints: antisymmetry constraints; XOR-
constraints; strict � -valuedness; and implicative constraints

�� � where�
 or � is a propositional literal, e.g., ((IMPLIES (ON-
BOX?X) (NOT(ON-FLOOR)))) in the Monkey domain;� both
 and � are positive literals, e.g., ((IMPLIES
(HASBANANAS)(HASKNIFE)) in the Monkey domain; or� � is an EQ/NEQ conditions like the irreflexivity law ((IM-
PLIES (ON ?X ?Y) (NEQ ?X ?Y))).

Conclusions and Further Work
A significant aspect of the work we have reported here is
the allowance for conditional effects in our mechanisms for
discovering state constraints in planning domains. Another
significant aspect is the greatly expanded range discovery
techniques, many of which have been implemented in the
new version of DISCOPLAN.

Future work includes the (easy) extension of our methods
to use the initial state (in addition to the individual operators)
to formulate hypothetical constraints, and the implementa-
tion of the techniques that have been developed theoretically
but not yet implemented.

Acknowledgments
This research was supported in part by NATO grant
CRG951285, and by ARPA/SSTO grant F30602-95-1-0025
DARPA grant F30602-98-2-0133 (second author). We
would like to thank Piergiorgio Bertoli for a fruitful discus-
sion that inspired our method of inferring XOR-constraints.

References
Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic SAT-
compilation of planning problems. Proc. of IJCAI-97, 1169-1176.
Fox, M. and Long, D. 1998. The Automatic Inference of State
Invariants in TIM. JAIR, 9, 367–421.
Fox, M. and Long, D. 2000. Utilizing Automatically Inferred
Invariants in Graph Construction and Search. Proc. of AIPS-00.
Gerevini, A. and Schubert, L.K. 1996. Accelerating partial-order
planners: Some techniques for effective search control and prun-
ing, JAIR, 5, 95–137.
Gerevini, A. and Schubert, L.K. 1998. Inferring state constraints
for domain-independent planning. Proc. of AAAI-98, 905–912.
Gerevini, A. and Schubert, L.K. 2000. Extending the Types of
State Constraints Discovered by DISCOPLAN. Proc. of the AIPS-
00 Workshop on Analysing and Exploiting Domain Knowledge
for Efficient Planning.
Kautz, H., and Selman, B. 1996. Pushing the envelope: Planning,
propositional logic, and stochastic search. In Proc. of AAAI-96.
Kautz, H., and Selman, B. 1998. The Role of Domain Specific
Knowledge in the Planning as Satisfiability Framework. search.
In Proc. of AIPS-98.
Kelleher, G. and Cohn, A.G. 1992. Automatically synthesising
domain constraints from operator descriptions. Proc. of ECAI-92..
Kelleher, G. 1996. Determining General Consequences of Sets of
Actions. TR CMS.14.96. Liverpool Moores Univ.
Refanidis, I. and Vlahavas, I. 2000. Exploiting State Constraints
in Heuristic State-Space Planning. Proc. of AIPS-00.
Rintanen, J. 1998. A planning algorithm not based on directional
search. Proc. of KR’98, 617–624.

