Asynchronous Search with Aggregations

Marius Călin Silaghi and Djamila Sam-Haroud and Boi Faltings
Swiss Federal Institute of Technology, Artificial Intelligence Lab, DI-LIA, CH-1015 Lausanne, Switzerland
{silaghi.haroud.faltings}@lia.di.epfl.ch

Abstract
Many problem-solving tasks can be formalized as constraint satisfaction problems (CSPs). In a multi-agent setting, information about constraints and variables may belong to different agents and be kept confidential. Existing algorithms for distributed constraint satisfaction consider mainly the case where access to variables is restricted to certain agents, but constraints may have to be revealed. In this paper, we propose methods where constraints are private but variables can be manipulated by any agent.

We describe a new search technique for distributed CSPs, called asynchronous aggregation search (AAS). It differs from existing methods in that it treats sets of partial solutions, exchanges information about aggregated valuations for combinations of variables and uses customized messages to allow distributed solution detection. Three new distributed backtracking algorithms based on AAS are then presented and analyzed. While the approach we propose provides a more general framework for dealing with privacy requirements on constraints, our experiments show that its overall performance is comparable or better than that of existing methods.

Keywords: search, distributed AI, constraint satisfaction

Introduction
Multi-agent systems are often used for solving combinatorial problems such as resource allocation, scheduling, or planning. Constraint satisfaction has proven to be a highly successful paradigm for solving such problems in centralized settings. A constraint satisfaction problem (CSP) is given by:

- a set of \(n \) variables \(x_1, ..., x_n \),
- a set of \(n \) domains, \(D_1, ..., D_n \), for the variables,
- a set of \(k \) relations, \(r_1 = (x_1, x_j, ...) \), ..., \(r_k \), each of which is a subset of the set of variables, and
- a set of \(k \) constraints, \(C_1, ..., C_k \). \(C_i \) gives the allowed value combinations for the corresponding relation \(r_i \).

A solution to a CSP is an assignment of values from the corresponding domains to each variable such that for all relations, the combination of assigned values is allowed by the corresponding constraint. Many combinatorial problems, such as resource allocation, scheduling and planning can be modeled as CSPs. A distributed CSP (DCSP) arises when information is distributed among several agents. In the common definition of DCSP (Yokoo et al. 92), variables are distributed among agents so that each variable can only be assigned values by a single agent. Several Asynchronous Search (AS) algorithms have been developed that allow solving such problems by exchanging messages about variable assignments and conflicts with constraints (called nogoods) (Yokoo et al. 92; Hamadi & Bessières 98).

Asynchronous Search
In this section, we recall the basic background of AS using a small example (Figure 1). Without losing the fundamental characteristics of AS, we restrict our description to the case with unbounded nogood recording (Yokoo et al. 92) and where each agent has exactly one variable. In this framework, each agent is responsible for maintaining the value of one variable. It has a link toward any agent that owns a constraint involving that variable. Agents are arranged in a priority order. A constraint is enforced by the agent which has the highest priority among those that are responsible for one of the variables in the corresponding relation.

In our example, there are four agents, \(A^1, A^2, A^3, A^4 \) who control the variables \(x_1, x_2, x_3, x_4 \) with identical domains \(D_1 = D_2 = D_3 = D_4 = \{0, 1, 2, 3\} \). Agent \(A^1 \) wants to ensure that \(3x_1 + 1 > x_3 \), \(A^2 \) wants to have \(x_1 > x_2 - 2 \), \(A^3 \) requires that \(x_1 > x_3 - 2 \), and \(A^4 \) needs \(x_2 + x_3 - x_4 > 4 \) to hold. In order to solve this problem with conventional AS techniques, we first need to assign a priority to each agent, then move certain constraints to the agent with the higher priority. Let us assume that \(A^4 \) has precedence over \(A^1 \). In this case, \(A^3 \)'s constraint has to be communicated to \(A^1 \) which will be responsible for its enforcement. Each agent will start by randomly assigning to its variable a value from its domain (0 in our example). Upon asynchronous backtracking, the local search space for each agent is determined by its local constraints along with the restrictions imposed by the other agents via \textit{ok} and \textit{nogood} messages. When an agent assigns a value to its variable, it sends an \textit{ok}(var=value) message to all the higher-priority agents having a link with it. These agents then evaluate their constraints on that variable. If these constraints are satisfied by the new assignment, given all the known values for the other variables, they do nothing, otherwise they try a new value for
Figure 1: Simplified trace of an asynchronous search process. Each agent A^i is associated with a variable x_i, a set of constraints involving this variable and states represented by boxes. A state shows either the assignment chosen for the owned variable or a conflicting situation (nogood). The arrows represent messages. Each message is prefixed by a number.

Different implementations, based respectively on full, partial and no nogood recording.

Asynchronous Search with Aggregations

We now introduce asynchronous aggregation search (AAS), a new technique that propagates aggregated tuples of values rather than individual values themselves. In AAS, each agent maintains values for the set of variables in which it is involved. Thus, A^1 maintains value combinations for x_1 and x_3, A^2 for x_1 and x_2, A^3 for x_1 and x_3, and A^4 for all of x_2, x_3 and x_4 (see Figure 2). AAS differs from AS in the fact that message arguments are not just individual assignments, but Cartesian products of assignments (Hubbe & Freuder 92) to different variables. More precisely, in the current implementation of AAS, an assignment is a list of domains, one for each involved variable, which represent all the tuples of their Cartesian product. The assignment $x_1 = \{0..3\}$, $x_2 = \{0, 1\}$, for example, will represent all the tuples of the Cartesian product $\{0..3\} \times \{0, 1\}$. Similarly, a solution is no longer a list of individual assignments, but a Cartesian product of domains which represents a set of possible valuations. In scheduling and resource allocation problems with large domains, the savings allowed by the Cartesian product representation can be particularly significant.

Figure 2 illustrates the behavior of AAS on our small example. Agent A^1 first selects the Cartesian product $\{x_1 = \{0..3\}\} \times \{x_3 = \{0\}\}$, and sends an ok? message with the needed parts of this information to A^2, A^3 and A^4 who manage constraints sharing variables with A^1. The algorithm now works in exactly the same manner as AS, except that messages refer to Cartesian products and agents select...
different Cartesian products rather than value assignments. More specifically, \(A^1 \) finds that no combination in the Cartesian product \(\{x_2 = \{0, 1\}\} \times \{x_3 = \{0\}\} \) is compatible with its constraint. It therefore generates a nogood for this combination which causes \(A^2 \) to select the next Cartesian product. Note that since this change selects a subrange of the values allowed by the knowledge of \(A^2 \) for \(x_1 \), it is not necessary to verify this change with \(A^1 \). If it were not possible to find such a subrange, a nogood would be generated and sent to \(A^1 \) in order to try another Cartesian-product there.

There are several ways in which the agents can build the aggregations. Aggregation algorithms guaranteeing a complete and non-redundant covering of the solution space determined by local constraints are given in (Hubbe & Freuder 92; Haselböck 93; Silaghi, Sam-Haroud, & Faltings 2000).

AAS Algorithms

In this section we will present three distributed backtrack search algorithms based on aggregation. We start by giving the necessary background and definitions. Similarly to the AS algorithm of (Yokoo et al. 92), the agents are assigned priorities. We assume that the agent \(A^i \) has priority over another agent \(A^j \) if \(i > j \). A link exists between two agents if they share a variable. The link is directed from the agent with lower priority to the agent with higher priority. Let \(A^i \) and \(A^j \) be two agents related by a link such that \(i > j \). \(A^i \) is called the predecessor of \(A^j \) and conversely, \(A^j \) is called the successor of \(A^i \). The end agents are those without incoming links. The system agent is a special agent that receives the subscriptions of the agents for the search. It decides the order of the agents, initializes the links and announces the termination of the search.

Definition 1 (Assignment) An assignment is a triplet \((x_j, set_j, h_j)\) where \(x_j \) is a variable, \(set_j \) a set of values for \(x_j \) and \(h_j \) a history of the pair \((x_j, set_j)\).

The history provides the information necessary for a correct message ordering. It determines if a given assignment is more recent than another and will be described in more details later. Let \(a_1 = (x_j, set_j, h_j) \) and \(a_2 = (x_j, set_j', h_j') \) be two assignments for the variable \(x_j \). \(a_1 \) is newer than \(a_2 \) if \(h_j \) is more recent than \(h_j' \).

Definition 2 An aggregate is a list of assignments.

An aggregate will be denoted compactly by \((V, S, H)\) where \(V \) is the set of variables, and \(S \) and \(H \) their respective sets of values and histories.

Definition 3 (Explicit nogood) An explicit nogood has the form \(\neg V \), where \(V \) is an aggregate.

The agents communicate using channels without message loss via:
- ok? messages which have as parameter an aggregate. They represent proposals of domains for a given set of variables and are sent from agents with lower priorities to agents with higher priorities. An agent sends ok? messages containing only domains in which the target agent is interested. He does not send domains for assignments he was proposed and he has never changed. If he has not just discarded a recent applicable nogood\(^1\), then he sends only the domains for which he proposes a new modification now. ok? messages are also sent as answers to add-link messages.
- nogood messages which have as parameter an explicit nogood. A nogood message is sent from an agent with higher priority to an agent with lower priority, namely to the agent with the highest priority among those that have modified an assignment in the parameter. An empty parameter signals failure.
- add-link(vars) messages: sent from agent \(A^i \) to agent \(A^j \) (with \(j > i \)). They inform \(A^i \) that \(A^j \) is interested in the variables \(\text{vars} \).

Each agent \(A^i \) owns a set of local constraints. The variables \(A^i \) is interested in, are those implied in its local constraints, called the local variables and those establishing links with other agents. The current solution space of \(A^i \), denoted as \(C_{A^i} \), is described by the local constraints, a list of explicit nogoods and a view.

Definition 4 (View) The view of an agent \(A^i \) is an aggregate \((V, S, H)\) such that \(V \) contains variables \(A^i \) is interested in.

A view imposes restrictions on the original search space defined by the local constraints of an agent. It contains for each variable, the newest received assignment via ok? messages.

Definition 5 (Entailed nogood) Let \(V_1 \) be the view of a given agent, \(T \) be the set of tuples disabled from the original solution space by \(V_1 \). We say that the nogood \(V_1 \rightarrow \neg T \) is entailed by the view \(V_1 \).

A tuple is contained in the current solution space of agent \(A^i \) if it satisfies the local constraints and is not contained in the explicit or entailed nogoods of \(C_{A^i} \). The current instantiation of an agent \(A^i \) is a Cartesian product such that all its tuples are contained in \(C_{A^i} \). The list of nogoods, respectively the view, of an agent \(A^i \) is updated by the nogood, respectively ok? messages it receives.

We now propose the following three distributed backtrack search algorithms based on aggregation:
- AAS-2: is based on full nogood recording similarly to the AS algorithm of (Yokoo et al. 92).
- AAS-1: proceeds similarly to dynamic backtracking (Ginsberg & McAllester 94). It removes the nogoods depending on the instantiation of the modified variables, guaranteeing polynomial space complexity.

\(^1\)This refers to nogoods discarded, as described later, since the last instantiation, within the reset CL of AAS0
AAS-0: is a modification of AAS1 with less nogood recording. AAS0 is a novel algorithm which merges all the nogoods maintained by each agent of AAS1 into a single nogood using the relaxation rule:

\[
V_1 \land V_2 \rightarrow -T^1 \\
V_1 \land V_3 \rightarrow -T^2
\]

\Rightarrow V_1 \land V_2 \land V_3 \rightarrow -(T^1 \lor T^2),

where \(V_1\), \(V_2\) and \(V_3\) are aggregates, obtained by grouping the elements of the nogoods, such that they have no variable in common. Each agent maintains a single explicit nogood which integrates each new incoming explicit nogood using the relaxation rule.

In the case of AAS0, the right part of the nogood description corresponds to the expanded tuples and the left one is referred to as the conflict list (CL).

The core backtrack procedure for each agent is the same for the three algorithms. It is given by the finite state machine of Figure 3. At the beginning, each agent \(A_i\) is in the state Searching where it tries to generate a current instantiation from \(C_{A_i}\). At any time in the state Searching, an agent can transit into the state Accepting where it accepts ok? or nogood messages. These cause the agent to execute the procedures Ok, respectively Nogood which update the local search space (i.e the views, the nogoods lists and the position in the search tree) according to the content of the messages. When, in the state Searching, its \(C_{A_i}\) is empty, the agent \(A_i\) announces a nogood and transits into the state Nogood. When, on the contrary, a local solution is found (i.e. a set of tuples can be extracted from \(C_{A_i}\)), the agent announces the instantiation by sending ok? messages to the concerned agents and transits into the state Solution. The current instantiation of the agent is known as long as it remains in the state Solution.

The three algorithms differ by the actions undertaken in the procedures Ok and Nogood, respectively described in Figures 4 and 5.

The procedure Ok treats incoming ok? messages. The parameter \(Q\), of such a message is an aggregate. We say that a given assignment \((x_j, set_j, h_j)\) of \(Q\) is obsolete if the view of the receiving agent contains a newer assignment for \(x_j\). The procedure Ok starts by filtering the obsolete assignments and then proceeds to updating the set \(C_{A_i}\) according to the remaining valid assignments. Suppose that one of these assignments offers a new possibility of valuation for an external variable \(x_j\) with respect to the current view. In AAS2 or AAS1 all the nogoods which do not take the new possibility into account will be disabled. In AAS1 this means that they will be removed. In AAS2 they will be marked and kept for an eventual further usage. In AAS0, if the nogood obtained by the relaxed inference rule contains such a variable but does not take the new value into account, the conflict list will be reset. Resetting \(C_{A_i}\) means that all the tuples allowed by the current nogoods and view are introduced in \(C_{A_i}\). In the end, the previous instantiation can be updated and renewed.

The procedure Nogood treats incoming nogood messages. The argument, \(Q\), of such a message is an explicit nogood. Let \(V\) be the view of the receiving agent. Suppose that there exists in \(Q\), respectively in \(V\), an assignment \(a_1\), respectively \(a_2\) for the variable \(x_j\) such that \(a_1\) is newer than \(a_2\). We will say that the nogood gives a new view for the variable \(x_j\). In this case, the agent has to update its view by sending an ok? message to itself. An explicit nogood is valid if it concerns (i.e. invalidates) the current instantiation of the agent. If the received nogood is valid and it contains variables that are unknown in the current view of the agent \(A_i\), the procedure Add links will establish new links with all the agents \(A_i^j\), \(j < i\), for which these variables are local.

Solution Detection

In the existing asynchronous search algorithms, solutions are only detected upon quiescence\(^2\). This state is usually recognized using general purpose distributed mechanism (Chandy & Lamport 85). We have noticed that in the particular case of asynchronous search, solutions can be detected before quiescence. This means that termination can be inferred earlier and that the number of messages required for termination detection can be reduced. We have introduced a system message (not considered in the notion of quiescence) called accepted which informs the sender of an ok? message of the acceptance of its proposal:

- **accepted** messages are sent from an agent to all its predecessors (along all incoming links). If the agent has been an end agent, it also sends an **accepted** to the system agent.

\(^2\)end of ok?, nogood and add-link messages
• an accepted message has as parameter a Cartesian product obtained by intersecting the current instantiation of the sender with the parameters of the last accepted messages received from all its outgoing links,
• an accepted message is sent by an agent only when its parameter is non empty (i.e does not contain empty domains), all the outgoing links have presented an accepted message and the agent is in the state Solution,
• the agents checks whether to send accepted messages when they reach the state Solution or when they receive accepted messages.

accepted messages are FIFO ordered.

Let D_i be the subgraph induced by the agents A^j with $j > i$ such that A^j can be reached from A^i along the directed links initialized by the system agent.

Proposition 1. If a given agent A^i receives an accepted(S_k) message from all its outgoing links and if $\forall k, \bigcap S_k \neq \emptyset$, then A^i can infer that $\bigcap S_k$ is a solution for the partial CSP defined by the agents of D_i.

Proof sketch. D_i is a directed acyclic graph. If a given node A^i of this graph receives an accepted(S_k) message from all its k direct successors such that $\bigcap S_k \neq \emptyset$, it is obvious that the k successors have found an agreement on all the elements of $\bigcap S_k$. Following the definition of accepted messages, the agent A^i can in turn send an accepted through all its incoming links and the process be repeated recursively. The proposition is therefore simply proved by induction on D_i.

Corollary 1. A correct solution is detected when the system agent receives an accepted(S_i) message from each initial end agent A^i and when $\bigcap S_i \neq \emptyset$.

Message ordering

In asynchronous search (AS), the messages must respect a FIFO channel order of delivery to ensure correct termination (Yokoo et al. 92). Our algorithm requires a stronger condition to hold since the channel for each variable is no longer a tree but a graph. This means that several messages can arrive to the same agent, for changing the value of the same variable, through different paths of the graph. For example, in Figure 2 agent A^3 can receive messages concerning variable x_1 from both A^1 and A^2. An order must therefore be established between these kind of messages. In AS it is sufficient to maintain a counter, for the emitter, and include its value within each message sent in order to obtain a FIFO order of delivery. In our algorithm, we include such counters for all the agents that modify a given domain in the message. The history of changes is built by associating a chain of pairs $[a : b]$ to each variable of a message (see Figure 2). Such a pair means that a change of the variable’s domain was performed by the agent with index a when its counter for the corresponding variable had the value b. The local counters are reset each time an incoming ok? changes the known history of the corresponding variable. It is incremented each time the agent proposes a change to the domain of that variable. To ensure correct termination, we use the next conventions: The history of changes where the agent with the smaller index or the counter with the larger value occurs first is the most recent. If a history is the prefix of the other, then the longer one is more recent.

Correctness, Completeness, Termination

The detailed proofs are available at (WebProof 2000).

Proposition 2. AAS0 is correct, complete, terminates.

Summary of Proof. Correctness is an immediate consequence of Corollary 1.

The proof that quiescence is reached close to the one given for AS in (Yokoo et al. 92), using the additional knowledge that only ok? messages could remove nogoods of the agent with the least priority among those implied in the hypothetical infinite loop.

Quiescence can correspond to failure or solution, but it can correspond as well to deadlock. In order to prove that AAS0 cannot lead to deadlock, we have shown that if the system reaches quiescence without having detected solution or failure, a correct solution will be detected in finite time afterwards. Next steps were used:

Step 1. After receiving the last ok? message and performing the subsequent search, either each agent A^i has a final instantiation that is consistent with its view, or failure is detected.

Step 2. At quiescence, the view of each agent A^i consists of the intersection of the instantiations of all instantiated agents $A^j, j < i$, for the variables it is interested in. This intersection corresponds, for each variable, to the newest received assignment.

From the previous steps it results that in a finite time after quiescence, the intersection of the instantiations of all agents $A^j, j \leq i$ is nonempty and consistent with all the constraints in the agents $A^j, j \leq i$, for all i. Consequently, the last accepted messages sent by an agent to its predecessors are such that at receiver, $\bigcap S_k \neq \emptyset$. This is true for all the agents, which means that the accepted messages needed for solution detection will reach the system agent.

For completeness, we have proved that failure cannot be announced by AAS0 when a solution exists. A nogood, whatever if it is explicit or entailed by a view, is a redundant constraint with respect to the CSP to solve. Since all the additional nogoods are generated by logical inference, an empty nogood cannot be inferred when a solution exists.

Proposition 3. AAS1 and AAS2 are correct, complete and terminate.

Proof. Immediate consequence of the fact that AAS1 and AAS2 only add redundant constraints to AAS0 (under the form of nogoods) and of Proposition 2.
The agents with the lower priority may have to reveal more information about their constraints. If undesirable, such a behavior can be avoided using random or cyclic agent reordering. Moreover, situations where some agents are forced to reveal their whole constraint are not precluded. This can occur, for example, in problems where all the agents but the last accept everything and the last one nothing. Malicious agents can form coalitions and create intentionally such problems in order to determine certain external constraints. In the future we plan to analyze the importance of these issues. We will also investigate how the dynamic change of constraints, which often occurs in human negotiation, can be integrated.

Acknowledgements

This work was performed at the Artificial Intelligence Laboratory of the Swiss Federal Institute of Technology in Lausanne and was sponsored by the Swiss National Science Foundation under project number 21-52462.97.

References

