Evolving AI Opponents in a First-Person-Shooter Video Game

C. Adam Overholtzer and Simon D. Levy
Computer Science Department
Washington and Lee University
Lexington, VA 24450
540-458-8419
levys@wlu.edu

One of the major commercial applications of AI is in the rapidly expanding computer game industry. Virtually every game sold today has some sort of AI, from the “computer player” in a chess game to the machine-gun-toting enemies in a first-person shooter (FPS). Any virtual being that does not behave in a strictly pre-scripted manner has some sort of AI behind it. Sadly, however, the multi-billion dollar gaming industry has done very little to advance the field of AI. The industry has moved past the day when an AI opponent would not even react to the death of his teammate standing three feet away, but that does not mean these bots, as they are commonly called, have any serious thought processes.

The idea is that each of an agent’s possible decisions are contingent on its DNA. (Strings are initially all zero at the start of the first game.) At the end of a game, each agent is given a score based on how well he performed, and five of the ten agents are probabilistically chosen to be reborn in the next game, by fitness-proportionate selection. Two copies of each agent are passed on to the next game, but each of these is run through a mutation function that randomly alters a small fraction of the values in the DNA. This way, the agents are changing a little bit each game and the ones that perform the best will live to the next game. Just like biological evolution, our game became a survival-of-the-fittest environment where only the most well-adjusted agents survive and eventually, at least in theory, the agents become very good at surviving.

The first step in our implementation was to design the DNA sequence and connect it to the existing system. The DNA is a C++ struct consisting mostly of booleans (caresAboutArmor, seeksHealthBoost), supporting the standard crossover and mutation operators of a genetic algorithms. With this structure in place, it was a relatively simple matter to preface existing hard-wired agent behavior with conditionals like if(seeksHealthBoost), making the agent’s behavior contingent on its DNA.

Qualitatively, our project was a success: evolutionary algorithms enabled our agents to move from incompetent to lethal in 50 generations, showing that evolutionary algorithms can be effectively and rather painlessly adapted to 3D first-person shooter games. Furthermore, our simple evolutionary system was extremely fun to play against because the agents grew more and more challenging over time and essentially learned from their mistakes as a real human opponent would. Instead of increasing the difficulty in the cheap way that most FPSes do, either by making the agents stronger or more numerous, our evolutionary algorithm enabled them to legitimately improve their abilities. Because they are computer opponents, they could improve faster than we could, and that is why they could move from morons to masters in relatively few rounds of play.

Quantitatively, we were able to observe the evolution of various genes in the agent’s DNA over generations. Figure 1 shows the value of willJump for each of the five agents that were selected following each of 50 games (generations). If an agent is blocked by some obstacle and can jump over, how often should he? Sometime around game 30 they seem

\[\text{Copyright © 2005, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.} \]

\[^{1}\text{http://cube.sourceforge.net} \]
to settle on 5, or a probability of 1/3, which is what we originally used when we first wrote the function. But just a few games later, the agents increase the average to around 1/2 and by game 45 or so they seem all seem to agree on jumping 13 times for every 15 possible jumps. This is much higher than we would have expected, indicating that jumping over small obstacles, rather than moving around them, may be a better idea than we thought. Such a result is a good illustration of the benefits of evolutionary algorithms: the agents had evolved a behavior that might be better than what we would have hard-coded.

One next step would be to add more capabilities to the agents, such as better navigation or the ability to pick up and use ammo in addition to health and armor. The long-term goal would be to either add some high-level game algorithms in Cube, such as team AI or path-finding, or else implement a similar evolutionary algorithm in a more complex FPS. Our project has shown that an evolutionary algorithm can greatly enhance a first-person shooter, but the real test is whether such a system could push the AI in these games beyond what we have today. If the quality and difficulty of these games can be dramatically improved by a simple off-the-shelf genetic algorithm, then that would be a real achievement.

References