Goal Specification, Non-determinism and Quantifying over Policies

Chitta Baral and Jicheng Zhao
Department of Computer Science and Engineering
Arizona State University
Tempe, Arizona 85281
{chitta, jicheng}@asu.edu

Abstract

One important aspect in directing cognitive robots or agents is to formally specify what is expected of them. This is often referred to as goal specification. Temporal logics such as LTL, and CTL* have been used to specify goals of cognitive robots and agents when their actions have deterministic consequences. It has been suggested that in domains where actions have non-deterministic effects, temporal logics may not be able to express many intuitive and useful goals. In this paper we first show that this is indeed true with respect to existing temporal logics such as LTL, CTL*, and π-CTL*. We then propose the language, P-CTL∗, which includes the quantifiers, exist a policy and for all policies. We show that this language allows for the specification of richer goals, including many intuitive and useful goals mentioned in the literature which cannot be expressed in existing temporal languages. We generalize our approach of showing the limitations of π-CTL* to develop a framework to compare expressiveness of goal languages.

Introduction and motivation

To specify goals of an autonomous agent, a cognitive robot or a planner, one often needs to go beyond just stating conditions that a final state should satisfy. The desired goal may be such that there is no final state (such as in many maintenance goals), and even if there is a final state, the desired goal may also include restrictions on how a final state is reached. To express such goals some of the existing temporal logics such as LTL, and CTL* (Emerson & Clarke 1982) have been used (Bacchus & Kabanza 1998; Niyogi & Sarkar 2000; Pistore & Traverso 2001; Baral, Kreinovich, & Trejo 2001). Most of these papers – except (Pistore & Traverso 2001), only consider the case when actions are deterministic. In (Dal Lago, Pistore, & Traverso 2002), a question was raised regarding whether the existing temporal logics are adequate to specify many intuitive goals, especially in domains where actions have non-deterministic effects.

In this paper, we first show that in the case that actions have non-deterministic effects, many intuitive and useful goals cannot be expressed in existing temporal logics such as LTL, CTL* or π-CTL* (Baral & Zhao 2004). We then argue that for certain goals, we need two higher level quantifiers beyond the quantifiers already in CTL* and π-CTL*. We show that our proposed temporal language with the two new quantifiers can indeed express many intuitive and useful goals that cannot be expressed in LTL, CTL* or π-CTL*. We now start with a couple of motivating examples.

Motivating examples

In a domain where actions have non-deterministic effects, plans are often policies (mapping from states to actions) instead of simple action sequences. Even then, in many domains an agent with a goal to reach a state where a certain fluent is true may not find a policy that can guarantee this. In that case, the agent may be willing to settle for less, such as having a strong cyclic policy (Cimatti et al. 2003), that always has a path to a desired state from any state in the policy, or even less, such as having a weak policy, that has a path from the initial state to a desired state. But the agent may want to choose among such different options based on their availability. The following example illustrates such a case.

Consider the two transition diagrams Φ_1 and Φ_2 of Figure 1, which may correspond to two distinct domains. In each state of the diagrams, there is always an action nop that keeps the agent in the same state. The two diagrams have states s_1 and s_2, and actions a_1 and a_2. In the state s_1 the fluent p is false, while p is true in the state s_2. In both transition diagrams a_2 is a non-deterministic action which when executed in state s_1 may result in the transition to state

Figure 1: Two Transitions

1Although in our examples, to save space, we use state space diagrams. These diagrams can easily be grounded on action descriptions. For an example see (Dal Lago, Pistore, & Traverso 2002).

2We have this assumption throughout the paper.
there. In the transition to the policy (π) and their consequences are as given below in state s. Now suppose our agent, which is in the state s_1 (where p is false), wants to get to s_2 where p is true. Aware of the fact that actions could be non-deterministic and there may not always exist policies that can guarantee that our agent reaches p, our agent and its handlers are willing to settle for less, such as a strong cyclic policy, when the better option is not available. Thus the goal is ‘guaranteeing to reach p if that is possible and if not then making sure that p is always reachable’.

For the domain corresponding to transition diagram Φ_2, the policy π which does action a_2 in s_1, is an acceptable policy. But it is not an acceptable policy for the domain corresponding to transition diagram Φ_1, as there is a better option available there. In Φ_1 if one were to execute a_1 in s_1 then one is guaranteed to reach s_2 where p is true. Thus executing a_2 in s_1 is no longer acceptable. Hence, with respect to Φ_1 only the policy (π') that dictates that a_1 should be executed in s_1 is an acceptable policy.

We will show that the above discussed goal cannot be expressed using π-CTL, and CTL. To further elaborate on the kind of goals that cannot be expressed using these temporal logics, let us consider the following example in expressing various nuances of the goal of reaching a state:

Example 1 There are five different states: s_1, s_2, s_3, s_4, and s_5. The proposition p is only true in state s_4. The other states are distinguishable based on fluents which we do not elaborate here. Suppose the only possible actions (besides nop actions) and their consequences are as given below in Figure 2.

![Figure 2: Transition between the locations](image)

As before let us consider that the agent would like to try its best3 to get to a state where p is true. But ‘Try your best’

\[\pi_1 = \{s_1, a_1, (s_2, a_2, (s_3, a_3))\}
\]

\[\pi_2 = \{s_1, a_1, (s_2, a_2, (s_3, a_4))\}
\]

\[\pi_3 = \{s_1, a_1, (s_2, a_5, (s_3, a_3))\}
\]

\[\pi_4 = \{s_1, a_1, (s_2, a_5, (s_3, a_4))\}
\]

\[\pi_5 = \{s_1, a_6\}
\]

Figure 3 shows the relation between the five policies in terms of which one is preferable to the other with respect to the goal of trying ones best to get to a state where p is true. A directed edge from π_i to π_j means π_i is preferable to π_j and this preference relation is transitive.

![Figure 3: The preference relation between the policies](image)

Using π-CTL we are able to express a goal which when considered from the starting state s_1, considers π_5 to be an unacceptable policy, but considers the rest in $\{\pi_1, \ldots, \pi_5\}$ to be acceptable. We will argue that there is no specification in π-CTL which only accepts π_1, and show how arbitrary partitions of $\{\pi_1, \ldots, \pi_5\}$ can be expressed when we have an enhanced language that allows quantification over policies.

By quantifying over policies, the agent may alter its expectation in the process of executing. For example, in terms of the goal of trying the best in reaching p, initially, the agent may not guarantee to reach p due to the non-deterministic property of the domain. However, in the process of executing, it may be lucky enough to reach a state that p can be guaranteed to reach. In finding the best policy, we may require the agent have to reach p from then on. In (Pistore & Traverso 2001; Dal Lago, Pistore, & Traverso 2002), the authors also tried to capture the intuition of modifying the plan during the execution, but their method is insufficient in doing so (Baral & Zhao 2004).

Quantifying over policies also takes the difficulties of the domain into account when we specify the goal. Again, consider the goal of trying the best to reach p. Even if the agent give up with the answer that “p is not reachable” since the domain is indeed impossible to reach p, we may still regard

3Note that special cases of ‘try your best’ are the well-studied (in AI) notions of strong planning, strong cyclic planning, and weak planning (Cimatti et al. 2003), and TryReach p of (Dal Lago, Pistore, & Traverso 2002).
the agent satisfies its goal since it has already “tried its best” in reaching p. That is to say, whether a policy satisfying a goal depends on the current domain. Thus goal specifications are adaptive to domains.

Overall, our main contributions in this paper are:

- Extending temporal logics for goal specification in non-deterministic domains by quantifying over policies;
- Proposing mechanisms and using them in formally comparing expressiveness of goal specification languages.

Background: π-CTL

To show the limitations of the expressibility of π-CTL* we now give an overview of π-CTL*.

Syntax of π-CTL

The syntax of state and path formulas in π-CTL* is as follows. Let $\langle p \rangle$ denote an atomic proposition, $\langle s_f \rangle$ denote a state formula, and $\langle p_f \rangle$ denote a path formula.

$$\langle s_f \rangle ::= \langle p \rangle \land \langle s_f \rangle \lor \langle s_f \rangle \lor \neg \langle s_f \rangle \lor E_A \langle p_f \rangle \lor A_\pi \langle p_f \rangle$$

$$\langle p_f \rangle ::= \langle s_f \rangle \land \langle p_f \rangle \lor \langle p_f \rangle \lor \neg \langle p_f \rangle \lor \langle p_f \rangle \lor \langle p_f \rangle \lor (\langle p_f \rangle \lor \langle p_f \rangle) \lor (\langle p_f \rangle \lor \langle p_f \rangle)$$

As in CTL*, the symbol A means ‘for all paths’, the symbol E means ‘exists a path’, and the linear temporal logic symbols \Box, \Diamond, \lor and U stand for ‘always’, ‘eventually’, ‘next’, and ‘until’ respectively. The symbols A_π and E_π are the branching time operators meaning ‘for all paths that agree with the policy that is being executed’ and ‘there exists a path that agrees with the policy that is being executed’ respectively.

Formal semantics of π-CTL

In π-CTL*, policies are mappings from the set of states to the set of actions. The semantics of π-CTL* is similar to that of CTL*. Here we present a simplification (but equivalent) of the characterization of π-CTL* given in (Baral & Zhao 2004). Since our actions may have non-deterministic effects we consider mappings, Φ, from states and actions to sets of states. Next we need the following definitions.

Definition 1 (Paths in Φ starting from s)

(i) A path in Φ starting from a state s is an infinite trajectory $s = s_0, s_1, \ldots$ such that $s_{i+1} \in \Phi(s_i, a_i)$, $0 \leq i$, for some action a_i.

(ii) A path in Φ starting from a state s consistent with a policy π is an infinite trajectory $s = s_0, s_1, \ldots$ such that $s_{i+1} \in \Phi(s_i, \pi(s_i))$, $0 \leq i$.

Definition 2 (Truth of state formulas in π-CTL*)

The truth of state formulas are defined with respect to a triple (s_j, Φ, π) where s_j is a state, Φ is the transition function, and π is the policy.

- $(s_j, \Phi, \pi) \models p$ iff p is true in s_j.
- $(s_j, \Phi, \pi) \models \neg s_f$ iff $(s_j, \Phi, \pi) \notmodels s_f$.
- $(s_j, \Phi, \pi) \models s_f_1 \land s_f_2$ iff $(s_j, \Phi, \pi) \models s_f_1$ and $(s_j, \Phi, \pi) \models s_f_2$.
- $(s_j, \Phi, \pi) \models s_f_1 \lor s_f_2$ iff $(s_j, \Phi, \pi) \models s_f_1$ or $(s_j, \Phi, \pi) \models s_f_2$.
- $(s_j, \Phi, \pi) \models E_p f$ iff there exists a path σ in Φ starting from s_j such that $(s_j, \Phi, \pi, \sigma) \models p_f$.
- $(s_j, \Phi, \pi) \models A_p f$ iff for all paths σ in Φ starting from s_j we have that $(s_j, \Phi, \pi, \sigma) \models p_f$.
- $(s_j, \Phi, \pi) \models E_\pi p f$ iff there exists a path σ in Φ starting from s_j consistent with the policy π such that $(s_j, \Phi, \pi, \sigma) \models p_f$.

Definition 3 (Truth of path formulas in π-CTL*)

The truth of path formulas are now defined with respect to the quadruplet (s_j, Φ, π, σ), where s_j, Φ, and π are as before and σ is an infinite sequence of states s_j, s_{j+1}, \ldots, called a path.

- $(s_j, \Phi, \pi, \sigma) \models s_f$ iff $(s_j, \Phi, \pi) \models s_f$.
- $(s_j, \Phi, \pi, \sigma) \models \neg p_f$ iff $(s_j, \Phi, \pi, \sigma) \not\models p_f$.
- $(s_j, \Phi, \pi, \sigma) \models p_f_1 \land p_f_2$ iff $(s_j, \Phi, \pi, \sigma) \models p_f_1$ and $(s_j, \Phi, \pi, \sigma) \models p_f_2$.
- $(s_j, \Phi, \pi, \sigma) \models p_f_1 \lor p_f_2$ iff $(s_j, \Phi, \pi, \sigma) \models p_f_1$ or $(s_j, \Phi, \pi, \sigma) \models p_f_2$.
- $(s_j, \Phi, \pi, \sigma) \models O p_f$ iff $(s_j, \Phi, \pi, \sigma) \models p_f$.
- $(s_j, \Phi, \pi, \sigma) \models \Box p_f$ iff $(s_k, \Phi, \pi, \sigma) \models p_f$, for all $k \geq j$.
- $(s_j, \Phi, \pi, \sigma) \models \Box p_f$ iff $(s_k, \Phi, \pi, \sigma) \models p_f$, for some $k \geq j$.
- $(s_j, \Phi, \pi, \sigma) \models p_f_1 \lor p_f_2$ iff there exists $k \geq j$ such that $(s_k, \Phi, \pi, \sigma) \models p_f_2$, and for all $i, j \leq i < k$, $(s_i, \Phi, \pi, \sigma) \models p_f_1$.

Note that in the above definition, σ is not required to be consistent with π.

Policies for π-CTL* goals

We now define the notion of a policy w.r.t. a π-CTL* goal G, an initial state s_0, and a transition function Φ.

Definition 4 (Policy for a goal from an initial state)

Given an initial state s_0, a policy π, a transition function Φ, and a goal G we say that π is a policy for G from s_0, iff $(s_0, \Phi, \pi) \models G$.

From the above definition, goals in π-CTL* are state formulas. It can be shown that under comparable notions of goals and policies, π-CTL* is syntactically a proper superset of CTL* and is strictly more expressive.

Expressiveness limitations of π-CTL

We consider a goal expressed in natural languages as an intuitive goal. In this section, we prove that some intuitive goals cannot be expressed in π-CTL*. For that we need the following lemma about the transition diagrams Φ_1 and Φ_2 of Figure 1.
Lemma 1 Consider Φ_1, Φ_2 in Figure 1, and π as $\pi(s_1) = \pi(s_2) = a_2$.

(i) For any state formula φ in π-CTL*, $(s_1, \Phi_1, \pi) \models \varphi$ iff $(s_1, \Phi_2, \pi) \models \varphi$.

(ii) For any path formula ψ in π-CTL* and any path σ in Φ_1 (or Φ_2) $(s_1, \Phi_1, \pi, \sigma) \models \psi$ iff $(s_1, \Phi_2, \pi, \sigma) \models \psi$.

The proof is done by induction on the depth of the formula. An atomic propositions has depth 1 and addition of any connectives increases the depth.

Proposition 1 There exists a goal which cannot be expressed in π-CTL*.

Proof: (sketch) Consider the following intuitive goal G:

"All along your trajectory
- if from any state p can be achieved for sure
 then the policy being executed must achieve p,
- else the policy must make p reachable from any state in the trajectory."

Let us assume that G can be expressed in π-CTL* and let φ_G be its encoding in π-CTL*. From our intuitive understanding of G, (s_1, Φ_2, π) satisfies the goal φ_G while (s_1, Φ_1, π) does not. This contradicts with Lemma 1, and hence our assumption is wrong.

\[\square \]

π-CTL*: need for higher level quantifiers

Let us further analyze the goal G from the previous section. While the then and else part of G can be expressed in π-CTL*, the if part can be further elaborated as "there exists a policy which guarantees that p can be achieved for sure", and to express that, one needs to quantify over policies. Thus we introduce a new existence quantifier $\mathcal{E}P$ and its dual $\mathcal{A}P$, meaning 'there exists a policy starting from the state' and 'for all policies starting from the state' respectively.

Syntax of π-CTL*

We extend the syntax of π-CTL* to incorporate the above mentioned two new quantifiers. Let $\langle \rangle$ denote an atomic proposition, $\langle s \rangle$ denote a state formula, and $\langle p \rangle$ denote a path formula. Intuitively, state formulas are properties of states, path formulas are properties of paths. With that the syntax of state and path formulas in π-CTL* is as follows.

\[\langle s \rangle ::= \langle p \rangle | \langle s \rangle \land \langle s \rangle | \langle s \rangle \lor \langle s \rangle | \neg \langle s \rangle | \mathcal{E} (\langle p \rangle) | \mathcal{A} (\langle p \rangle) | \mathcal{E}P (\langle s \rangle) | \mathcal{A}P (\langle s \rangle) \]

\[\langle p \rangle ::= \langle s \rangle | \langle p \rangle \land \langle p \rangle | \neg \langle p \rangle | \langle p \rangle \lor \langle p \rangle | \langle p \rangle | \mathcal{E} (\langle p \rangle) | \neg \mathcal{A} (\langle p \rangle) | \mathcal{A} (\langle p \rangle) \]

Note that in the above definition we have $\mathcal{E}P (\langle s \rangle)$ as a state formula. That is because once the policy part of $\mathcal{E}P$ is instantiated, the reminder of the formula is still a property of a state. The only difference is that a policy has been instantiated and that policy needs to be followed for the rest of the formula. We now define the semantics of π-CTL*.

Semantics of π-CTL*

The semantics of π-CTL* is very similar to the semantics of π-CTL*. For brevity we only show the part where they differ. We first need the following notion: We say that a policy π is consistent with respect to a transition function Φ if for all states s, $\Phi(s, \pi(s))$ is a non-empty set.

Definition 5 (Truth of state formulas in π-CTL*) The truth of state formulas are defined with respect to a triple (s, Φ, π) where s is a state, Φ is the transition function, and π is a policy.

- $(s_j, \Phi, \pi) = \mathcal{E} \Phi$ s.t s.
- $(s_j, \Phi, \pi) = \mathcal{A} \Phi$ s.t s.
- $(s_j, \Phi, \pi) = \mathcal{E} (\langle p \rangle)$ s.t s.
- $(s_j, \Phi, \pi) = \mathcal{A} (\langle p \rangle)$ s.t s.
- $(s_j, \Phi, \pi) = \mathcal{E}P (\langle s \rangle)$ s.t s.
- $(s_j, \Phi, \pi) = \mathcal{A}P (\langle s \rangle)$ s.t s.

Definition 6 (Truth of Path Formulas) The truth of path formulas are now defined with respect to the quadruple (s_j, Φ, π, σ), where s_j, Φ and π are as before and σ is an infinite sequence of states s_{j_0}, s_{j_1}, \ldots, called a path.

- $(s_j, \Phi, \pi, \sigma) = \mathcal{E} \Phi$ s.t s.
- $(s_j, \Phi, \pi, \sigma) = \mathcal{A} \Phi$ s.t s.
- $(s_j, \Phi, \pi, \sigma) = \mathcal{E} (\langle p \rangle)$ s.t s.
- $(s_j, \Phi, \pi, \sigma) = \mathcal{A} (\langle p \rangle)$ s.t s.
- $(s_j, \Phi, \pi, \sigma) = \mathcal{E}P (\langle s \rangle)$ s.t s.
- $(s_j, \Phi, \pi, \sigma) = \mathcal{A}P (\langle s \rangle)$ s.t s.

Policies for π-CTL* goals

We now define when a mapping π from states to actions is a policy with respect to a π-CTL* goal G, an initial state s_0, and a transition function Φ.

Definition 7 (Policy for a goal from an initial state) Given an initial state s_0, a policy π, a transition function Φ, and a goal G we say that π is a policy for G from s_0, if $(s_0, \Phi, \pi) \models G$.

\[\square \]

Goal representation in π-CTL*

In this section, we illustrate several goal examples that can be expressed in π-CTL* while cannot be expressed in π-CTL* or π-CTL*. To start with, the overall goal of a planning problem is best expressed as a state formula. But if the goal starts with a quantifier over policies then it is not quite suitable to test the validity $(s_0, \Phi, \pi) \models G$ of a given policy π, as then the policy will be ignored. Therefore most meaningful goal formulas, denoted by gf are given by the following:

\[\langle gf \rangle ::= \langle g \rangle \land \langle g \rangle \lor \langle g \rangle \neg \langle g \rangle | \mathcal{E} (\langle p \rangle) | \mathcal{A} (\langle p \rangle) \]

Many of the goals we will be presenting in this section will be with respect to Example 1 in the introduction section. But first we start with some building blocks that can be expressed in π-CTL*.
• $G^p_w = E^p \diamond p$: This goal specifies that from the initial state, a state where p is true may be reached by following the given policy. This is referred to as weak planning.

• $G^q_w = A^q \square p$: This goal specifies that from the initial state, a state where p is true, will be reached by following the given policy. This is referred to as strong planning.

• $G^q_m = A^q \square q$: This goal specifies that from the initial state, q is true all along the trajectory.

• $G^q_s = A^q \nvDash (E^q \diamond p)$: This goal specifies that all along the trajectory - following the given policy - there is always a possible path to a state where p is true. This is referred to as strong cyclic planning.

Now we use the new quantifiers in P-CTL* to express conditions similar to the one mentioned in the beginning of the previous Section.

• $G_w = E^p \Pi^x \diamond p$: This is a state formula, which characterizes states with respect to which (i.e., if that state is considered as an initial state) there is a policy. If one were to follow that policy then one can, but not guaranteed to, reach a state where p is true.

• $G_s = E^p \Pi^y \diamond p$: This is a state formula, which characterizes states with respect to which there is a policy such that if one were to follow that policy then one is guaranteed to reach a state where p is true.

• $G_{sc} = E^p \Pi^y \diamond (E^x \diamond p)$: This is a state formula, which characterizes states with respect to which there is a policy that makes p reachable. The policies π_1, π_2, π_3 and π_4 satisfy this goal while π_5 does not.

• $G_{sc}^p = A^p \square ((E^p \Pi^y \diamond p) \Rightarrow E^x \diamond p)$: This goal specifies that all along the trajectory following the given policy, if there is a policy that can always reach p no matter the non-deterministic actions, then in the policy chosen by the agent, p must be reached. The policies π_1, π_2 and π_5 satisfy this goal while π_3 and π_4 do not.

• $G_{sc}^1 = A^p \square ((E^p \Pi^y \diamond p) \Rightarrow A^p \square (E^x \diamond p))$: This goal specifies that all along the trajectory following the given policy, if there is a policy that is a strong cyclic policy for p, then the policy chosen by the agent is a strong cyclic policy for p. The policies π_1, π_3 and π_5 satisfy this goal while policies π_2 and π_4 do not.

The above three formulas are not expressible in π-CTL*, and are state formulas of P-CTL*. But, by themselves they, or a conjunction, disjunction or negation of them, are not meaningful goal formulas with respect to which one would try to develop policies (or plan for). Indeed, they do not obey the syntax of meaningful goal formulas, $(g_1 f)$, given earlier in this section. Nevertheless, they are very useful building blocks.

Recall goal G in the proof of Proposition 1. It can be expressed in P-CTL* as $G^p_{p,q} = A^p \square ((E^p \Pi^x \diamond p) \Rightarrow A^p \square (E^p \diamond p))$. In Figure 1, policy $\pi_1' = \{(s_1, a_2), (s_2, a_2)\}$ achieves the goal $G^p_{p,q}$ with respect to Φ_2, but not with respect to Φ_1, while policy $\pi_2' = \{(s_1, a_1), (s_2, a_2)\}$ achieves the goal $G^p_{p,q}$ with respect to Φ_1. The reason π_1' does not satisfy the goal with respect to Φ_1 is that $E^p \Pi^x \diamond p$ is true with respect to s_1 (in Φ_1), but the policy π_1' does not satisfy $A^p \diamond p$.

Goals corresponding to Example 1

We now use the conditionals C_w, C_s and C_{sc} and the π-CTL* formulas $G^w_{p,q}$, $G^s_{p,q}$, and $G_{sc}^{p,q}$ to express various goals with respect to Example 1.

• $G_w^p = A^p \square ((E^p \Pi^x \diamond p) \Rightarrow E^x \diamond p)$: This goal specifies that all along the trajectory following the given policy, if there is a policy that makes p reachable then the given policy makes p reachable. The policies π_1, π_2, π_3 and π_4 satisfy this goal while π_5 does not.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Satisfiable policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G^w_{p,q}$, G^p_w</td>
<td>π_1, π_2, π_3, π_4</td>
</tr>
<tr>
<td>G^p_w</td>
<td>π_1, π_3, π_5</td>
</tr>
<tr>
<td>$G^s_{p,q}$</td>
<td>π_1, π_2, π_5</td>
</tr>
<tr>
<td>G^p_s</td>
<td>π_1, π_2, π_3</td>
</tr>
<tr>
<td>$G^w_s \land G^p_s$</td>
<td>π_1, π_2</td>
</tr>
<tr>
<td>$G^w_s \land \neg G^p_s$</td>
<td>π_3</td>
</tr>
<tr>
<td>$G_{sc}^{p,q}$</td>
<td>π_1, π_2, π_3, π_4</td>
</tr>
<tr>
<td>$G_{sc}^{p,q}$</td>
<td>π_1, π_2, π_3, π_4, π_5</td>
</tr>
</tbody>
</table>

Table 1: Different P-CTL* and π-CTL* goal specifications and policies satisfied

Based on these formulations, we may have various specifications. Some of these specifications and the subset of the policies $\pi_1 - \pi_5$ that satisfy these goals are summarized in Table 1. In this example, we have arbitrary partition of $\{\pi_1, \ldots, \pi_5\}$, while most of these partitions cannot be done in existing languages. Language P-CTL* has more power in expressing our intention of comparing among policies.

Some more goals specified in P-CTL*

We illustrate the P-CTL* specification of some goals involving two propositions, p and q. In particular, the additional expressive power is not just for expressing the “if-then” type of conditions discussed earlier.
2. There is a policy that guarantees that a robot and may be the property of locations that have recharging stations. This goal can be expressed in P-CTL as $A_\exists \square ((E PA_\exists \diamond p) \cup q)$. Alternative specifications in CTL* or π-CTL* do not quite capture this goal.

3. Consider an agent whose goal is to maintain a new (contingent) policy that can guarantee that p will be reached. Here, q may be a destination of a robot and may be the property of locations that have recharging stations. This goal can be expressed in P-CTL* as $A_\exists \square ((E PA_\exists \diamond p) \cup q)$. Alternative specifications in CTL* or π-CTL* do not quite capture this goal.

4. Consider an agent that would like to reach either p or q, but because of non-determinism the agent is satisfied if all along its path at least one of them is reachable, but at any point if there is a policy that guarantees that p will be reached then from that point onwards the agent should make sure that p is reached, otherwise, if at any point if there is a policy that guarantees that q will be reached then from that point onwards the agent should make sure that q is reached. This can be expressed in P-CTL* as $A_\exists \square ((E PA_\exists \diamond p) \cup q) \land ((\neg E PA_\exists \diamond q) \Rightarrow A_\exists \square q)$.

5. Consider an agent whose goal is to maintain p true and if that is not possible for sure then it must maintain q true until p becomes true. This can be expressed in P-CTL* as $A_\exists \square ((AP E_\exists \neg p) \Rightarrow A_\exists (q \cup p)) \land ((E PA_\exists \diamond p) \Rightarrow A_\exists \square p)$.

Framework for comparing goal languages

In this section, we present a general notion for comparing expressiveness of goal specification languages. Let L be a goal specification language. Let g be a goal formula in L, Φ be a transition function, $|=L$ be the entailment relation in language L, and s_0 be an initial state. As defined in Definition 7, a policy π is a plan for the goal g from state s_0 if $(s_0, \pi, \Phi) |=L g$. We use $Pset(g, \Phi, s_0, |=L)$ to denote the set $\{s : (s_0, \pi, \Phi) |=L g\}$ as the set of policies satisfying g in L. By $Gset(\pi, \Phi, s_0, |=L)$, we denote the set $\{g : (s_0, \pi, \Phi) |=L g\}$ as the set of goal formulas satisfied by policy π in L. Let G_L be all goal formulas in language L. Let $P_L(\Phi)$ be all policies in Φ corresponding to language L.

Definition 8 An intuitive goal g is not expressible in a goal specification language L if there are $\Phi_1, \Phi_2, s_0, s_0'$ such that

1. For any goal specification g_1 in L, $Pset(g_1, \Phi_1, s_0', |=L) \cap P_L(\Phi_2) = Pset(g_1, \Phi_2, s_0', |=L)$.
2. There is a policy $\pi_1 \in P_L(\Phi_1) \cap P_L(\Phi_2)$ such that intuitively π_1 is a policy for the goal g w.r.t. $(\Phi_1, s_0', |=L)$ but not w.r.t. $(\Phi_2, s_0', |=L)$.

Note that the proof of Proposition 1 uses a similar notion. There and as well as above, we need to appeal to intuition. To make it formal we need to specify what policies “intuitively” satisfy a goal g with respect to a given Φ and an initial state s_0. Alternatively, we can compare two formally defined goal languages. The following definition allows us to do that.

Definition 9 Consider two languages L_1 and L_2. L_1 is more expressive (in a conservative sense) than L_2 if

1. $G_{L_2} \subseteq G_{L_1}$;
2. $\forall \Phi, P_{L_2}(\Phi) \subseteq P_{L_1}(\Phi)$;
3. $\forall g \in G_{L_2}, \forall \Phi, \forall s_0$:
 $Pset(g, \Phi, s_0, |=L_2) = Pset(g, \Phi, s_0, |=L_1) \cap P_{L_2}(\Phi)$;
4. $\forall \Phi, \forall \pi \in P_{L_2}(\Phi), \forall s_0$:
 $Gset(\pi, \Phi, s_0, |=L_2) = Gset(\pi, \Phi, s_0, |=L_1) \cap G_{L_2}$.

Proposition 2 If language L_1 is more expressive than L_2, and for all Φ, $P_{L_1}(\Phi) = P_{L_2}(\Phi)$, then any intuitive goal that can be expressed in L_2 can be expressed in L_1.

With respect to the above definition, we now compare the languages P-CTL*, π-CTL*, P_1-CTL* and π_1-CTL*, where the last two languages extend the former two by allowing policies to be mappings from trajectories of states to actions.

Proposition 3. P-CTL* is more expressive than π-CTL*.

1. There exists an intuitive goal that can be expressed in P-CTL* but not in π-CTL*.
2. P_1-CTL* is more expressive than π_1-CTL*.
3. P_1-CTL* is more expressive than π_1-CTL*.
4. There exists an intuitive goal that can be expressed in P_1-CTL* but not in π_1-CTL*.
5. π_1-CTL* is more expressive than π-CTL*.
6. P_1-CTL* is not more expressive than P-CTL*.

Conclusions

Systematic design of semi-autonomous agents involves specifying (i) the domain description: the actions the agent can do, its impact, the environment, etc.; (ii) directives for the agent; and (iii) the control execution of the agent. While there has been a lot of research on (i) and (ii), there has been relatively less work on (ii). In this paper we made amends and explored the expressive power of existing temporal logic based goal specification languages. We showed that in presence of actions with non-deterministic effects many interesting goals cannot be expressed using existing temporal logics such as CTL* and π-CTL*. We gave a formal proof of this. We then illustrated the necessity of having new quantifiers which we call “exists policy” and “for all policies” and developed the language P-CTL* which builds up on π-CTL* and has the above mentioned new quantifiers. We showed how many of the goals that cannot be specified in π-CTL* can be specified in P-CTL*.

In terms of closely related work, we discovered that quantification over policies was proposed in the context of games in the language ATL (Alur, Henzinger, & Kupferman 2002). Recently, an extension of that called CATL (van der Hoek, Jamroga, & Wooldridge 2005) has also been proposed. However in both of those languages the focus is on games and single transitions are deterministic. In our case we have a single agent and the transitions could be non-deterministic. It is not obvious that one can have a 1-1 correspondence between those formalisms and ours. In particular, their exact definitions on game structures require each state to have an action for each agent. This makes the obvious translation from their formalism (two person games with deterministic transitions) to our formalism (one person, but with non-deterministic transitions) not equivalent. Moreover we still allow constructs such as $E \diamond p$ which can no longer be expressed in game structures.
An interesting aspect of our work is that it illustrates the difference between program specification and goal specification. Temporal logics were developed in the context of program specification, where the program statements are deterministic and there are no goals of the kind “trying ones best”. (It’s unheard of to require that a program try its best to sort.) In cognitive robotics actions have non-deterministic effects and sometimes one keeps trying until one succeeds, and similar attempts to try ones best. The proposed language P-CTL allows the specification of such goals. P-CTL has the ability of letting the agent to compare and analysis policies and “adjust” its current domain accordingly. As a consequence, it is useful for agent to plan in a non-deterministic or dynamic domains in which current states are unpredictable.

Acknowledgments
We thank Vladimir Lifschitz for the proof of Proposition 1. We also acknowledge support of the NSF grant 0412000 and the support from the ARDA AQUAINT program.

References