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Abstract

Markov decision processes (MDPs) with discrete and contin-
uous state and action components can be solved efficiently by
hybrid approximate linear programming (HALP). The main
idea of the approach is to approximate the optimal value func-
tion by a set of basis functions and optimize their weights by
linear programming. The quality of this approximation natu-
rally depends on its basis functions. However, basis functions
leading to good approximations are rarely known in advance.
In this paper, we propose a new approach that discovers these
functions automatically. The method relies on a class of para-
metric basis function models, which are optimized using the
dual formulation of a relaxed HALP. We demonstrate the per-
formance of our method on two hybrid optimization problems
and compare it to manually selected basis functions.

Introduction
Markov decision processes (MDPs) (Bellman 1957; Puter-
man 1994) provide an elegant mathematical framework for
solving sequential decision problems in the presence of un-
certainty. However, traditional techniques for solving MDPs
are computationally infeasible in real-world domains, which
are factored and represented by both discrete and continuous
state and action variables. Approximate linear programming
(ALP) (Schweitzer & Seidmann 1985) has recently emerged
as a promising approach to address these challenges (Kveton
& Hauskrecht 2006).

Our paper centers around hybrid ALP (HALP) (Guestrin,
Hauskrecht, & Kveton 2004), which is an established frame-
work for solving large factored MDPs with discrete and con-
tinuous state and action variables. The main idea of the ap-
proach is to approximate the optimal value function by a lin-
ear combination of basis functions and optimize it by linear
programming (LP). The combination of factored reward and
transition models with the linear value function approxima-
tion permits the scalability of the approach.

The quality of HALP solutions inherently depends on the
choice of basis functions. Therefore, it is often assumed that
these are provided as a part of the problem definition, which
is unrealistic. The main goal of this paper is to alleviate this
assumption and learn basis functions automatically.
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In the context of discrete-state ALP, Patrascuet al.(2002)
proposed a greedy approach to learning basis functions. This
method is based on the dual ALP formulation and its scores.
Although our approach is similar to Patrascuet al.(2002), it
is also different in two important ways. First, it is computa-
tionally infeasible to build the complete HALP formulation
in hybrid domains. Therefore, we rely on its relaxed formu-
lations, which may lead to overfitting of learned approxima-
tions on active constraints. To solve this problem, we restrict
our search to basis functions with a better state-space cover-
age. Second, instead of choosing from a finite number of ba-
sis function candidates (Patrascuet al. 2002), we optimize a
class of parametric basis function models. These extensions
are nontrivial and pose a number of challenges.

The paper is structured as follows. First, we review hybrid
factored MDPs and HALP (Guestrin, Hauskrecht, & Kveton
2004), which are our frameworks for modeling and solving
large-scale stochastic decision problems. Second, we show
how to improve the quality of relaxed approximations based
on their dual formulations. Finally, we demonstrate learning
of basis functions on two hybrid MDP problems.

Hybrid factored MDPs
Discrete-state factored MDPs (Boutilier, Dearden, & Gold-
szmidt 1995) permit a compact representation of stochastic
decision problems by exploiting their structure. In this work,
we consider hybrid factored MDPs with exponential-family
transition models (Kveton & Hauskrecht 2006). This model
extends discrete-state factored MDPs to the domains of dis-
crete and continuous state and action variables.

A hybrid factored MDP with an exponential-family tran-
sition model (HMDP)(Kveton & Hauskrecht 2006) is given
by a 4-tupleM = (X,A, P,R), whereX = {X1, . . . , Xn}
is a state space characterized by a set of discrete and contin-
uous variables,A = {A1, . . . , Am} is an action space repre-
sented by action variables,P (X′ | X,A) is an exponential-
family transition model of state dynamics conditioned on the
preceding state and action choice, andR is a reward model
assigning immediate payoffs to state-action configurations.1

In the remainder of the paper, we assume that the quality of a

1General state and action space MDPis an alternative name for
a hybrid MDP. The termhybrid does not refer to the dynamics of
the model, which is discrete-time.
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policy is measured by theinfinite horizon discounted reward
E[

∑∞
t=0 γtrt], whereγ ∈ [0, 1) is adiscount factorandrt

is the reward obtained at the time stept. Theoptimal policy
π∗ can be defined greedily with respect to theoptimal value
functionV ∗, which is a fixed point of the Bellman equation
(Bellman 1957):

V ∗(x) = sup
a

[
R(x,a) + γEP (x′|x,a)[V

∗(x′)]
]
. (1)

Accordingly, thehybrid Bellman operatorT ∗ is given by:

T ∗V (x) = sup
a

[
R(x,a) + γEP (x′|x,a)[V (x′)]

]
. (2)

In the remainder of the paper, we denote expectation terms
over discrete and continuous variables in a unified form:

EP (x)[f(x)] =
∑

xD

∫

xC

P (x)f(x) dxC . (3)

Hybrid ALP
Since a factored representation of an MDP may not guaran-
tee a structure in the optimal value function or policy (Koller
& Parr 1999), we resort tolinear value function approxima-
tion (Bellman, Kalaba, & Kotkin 1963; Van Roy 1998):

V w(x) =
∑

i

wifi(x). (4)

This approximation restricts the form of the value function
V w to the linear combination of|w| basis functionsfi(x),
wherew is a vector of tunable weights. Every basis function
can be defined over the complete state spaceX, but often is
restricted to a subset of state variablesXi (Bellman, Kalaba,
& Kotkin 1963; Koller & Parr 1999). Refer to Hauskrecht
and Kveton (2004) for an overview of alternative methods to
solving hybrid factored MDPs.

HALP formulation
Similarly to the discrete-state ALP (Schweitzer & Seidmann
1985),hybrid ALP (HALP)(Guestrin, Hauskrecht, & Kve-
ton 2004) optimizes the linear value function approximation
(Equation 4). Therefore, it transforms an initially intractable
problem of estimatingV ∗ in the hybrid state spaceX into a
lower dimensional spacew. The HALP formulation is given
by a linear program2:

minimizew
∑

i

wiαi (5)

subject to:
∑

i

wiFi(x,a) − R(x,a) ≥ 0 ∀ x,a;

wherew represents the variables in the LP,αi denotesbasis
function relevance weight:

αi = Eψ(x)[fi(x)] (6)

=
∑

xD

∫

xC

ψ(x)fi(x) dxC ,

2In particular, the HALP formulation (5) is alinear semi-infinite
optimizationproblem with infinitely many constraints. The number
of basis functions is finite. For brevity, we refer to this optimization
problem as linear programming.

ψ(x) is astate relevance density functionweighting the ap-
proximation, andFi(x,a) = fi(x) − γgi(x,a) is the dif-
ference between the basis functionfi(x) and its discounted
backprojection:

gi(x,a) = EP (x′|x,a)[fi(x
′)] (7)

=
∑

x′

D

∫

x′

C

P (x′ | x,a)fi(x
′) dx′

C .

VectorsxD (x′
D) andxC (x′

C) are the discrete and continu-
ous components of value assignmentsx (x′) to all state vari-
ablesX (X′). The HALP formulation is feasible if the set of
basis functions contains a constant functionf0(x) ≡ 1. We
assume that such a basis function is always present.

The quality of the approximation was studied by Guestrin
et al. (2004) and Kveton and Hauskrecht (2006). These re-
sults give a justification for minimizing our objective func-
tion Eψ[V w] instead of the max-norm error‖V ∗ − V w‖∞.
Expectation terms in the objective function (Equation 6) and
constraints (Equation 7) are efficiently computable if the ba-
sis functions areconjugateto the transition model and state
relevance density functions (Guestrin, Hauskrecht, & Kve-
ton 2004; Kveton & Hauskrecht 2006). For instance, normal
and beta transition models are complemented by normal and
beta basis functions. To permit the conjugate choices when
the transition models are mixed, we assume that every basis
functionfi(x) decouples as a product:

fi(xi) =
∏

Xj∈Xi

fij(xj) (8)

of univariate basis function factorsfij(xj). This seemingly
strong assumption can be partially relaxed by considering a
linear combination of basis functions.

Solving HALP
An optimal solutionw̃ to the HALP formulation (5) is given
by a finite set ofactive constraintsat a vertex of the feasible
region. However, identification of this active set is a compu-
tational problem. In particular, it requires searching through
an exponential number of constraints, if the state and action
variables are discrete, and infinitely many constraints, ifany
of the variables are continuous. As a result, it is in general
infeasible to find the optimal solutioñw. Therefore, we re-
sort to finite approximations to the constraint space in HALP
whose optimal solution̂w is close tow̃. This notion of an
approximation is formalized as follows.

Definition 1 The HALP formulation isrelaxed:

minimizew
∑

i

wiαi (9)

subject to:
∑

i

wiFi(x,a) − R(x,a) ≥ 0 (x,a) ∈ C;

if only a subsetC of its constraints is satisfied.

The HALP formulation (5) is solved approximately by solv-
ing its relaxed formulations (9). Several methods for build-
ing and solving these approximate LPs have been proposed
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(Hauskrecht & Kveton 2004; Guestrin, Hauskrecht, & Kve-
ton 2004; Kveton & Hauskrecht 2005). The quality of these
formulations can be measured by theδ-infeasibility of their
solutionsŵ. This metric represents the maximum violation
of constraints in the complete HALP.

Definition 2 Let ŵ be a solution to a relaxed HALP formu-
lation (9). The vector̂w is δ-infeasibleif V ŵ−T ∗V ŵ ≥ −δ
for all x ∈ X, whereT ∗ is the hybrid Bellman operator.

Learning basis functions
The quality of HALP approximations depends on the choice
of basis functions. However, basis functions leading to good
approximations are rarely known a priori. In this section, we
describe a new method that learns these functions automati-
cally. The method starts from an initial set of basis functions
and adds new functionsgreedilyto improve the current ap-
proximation. Our approach is based on a class of parametric
basis function models that are optimized on preselected do-
mains of state variables. These domains represent our initial
preference between the quality and complexity of solutions.
In the rest of this section, we describe in detail how to score
and optimize basis functions in hybrid domains.

Optimization of relaxed HALP
De Farias and Van Roy (2003) analyzed the quality of ALP.
Based on their work, we may conclude that optimization of
the objective functionEψ[V w] in HALP is identical to mini-
mizing theL1-norm error‖V ∗ − V w‖1,ψ. This equivalence
can be proved from the following proposition.

Proposition 1 Letw̃ be a solution to the HALP formulation
(5). ThenV w̃ ≥ V ∗.

Proof: The Bellman operatorT ∗ is a contraction mapping.
Based on its monotonicity,V ≥ T ∗V impliesV ≥ T ∗V ≥
· · · ≥ V ∗ for any value functionV . Since constraints in the
HALP formulation (5) enforceV w̃ ≥ T ∗V w̃, we conclude
V w̃ ≥ V ∗.

Therefore, the objective valueEψ

[
V w̃

]
is a natural measure

for evaluating the impact of added basis functions. Unfortu-
nately, the computation ofEψ

[
V w̃

]
is in general infeasible.

To address this issue, we optimize a surrogate metric, which
is represented by the relaxed HALP objectiveEψ

[
V ŵ

]
. The

next proposition relates the objective values of the complete
and relaxed HALP formulations.

Proposition 2 Letw̃ be a solution to the HALP formulation
(5) andŵ be a solution to its relaxed formulation (9) that is
δ-infeasible. Then the objective valueEψ

[
V w̃

]
is bounded

as:

Eψ

[
V w̃

]
≤ Eψ

[
V ŵ

]
+

δ

1 − γ
.

Proof: The claim is proved in two steps. First, we construct
a pointw in the feasible region of the HALP such thatV w

is within O(δ) distance fromV ŵ. The pointw is given by:

w = ŵ +
δ

1 − γ
e,

wheree = (1, 0, . . . , 0) is an indicator of the constant basis
functionf0(x) ≡ 1. This point satisfies all requirements and
its feasibility can be handily verified by solving:

V w − T ∗V w = V ŵ +
δ

1 − γ
−

(
T ∗V ŵ +

γδ

1 − γ

)

= V ŵ − T ∗V ŵ + δ

≥ 0,

whereV ŵ − T ∗V ŵ ≥ −δ holds from theδ-infeasibility of
ŵ. Sincew is feasible in the complete HALP, we conclude
Eψ

[
V w̃

]
≤ Eψ

[
V w

]
, which leads to our final result.

Proposition 2 has an important implication. Optimization of
the objective functionEψ

[
V w̃

]
is possible by minimizing a

relaxed objectiveEψ

[
V ŵ

]
.

Scoring basis functions
To minimize the relaxed objectiveEψ

[
V ŵ

]
, we use the dual

formulation of a relaxed HALP.

Definition 3 Let every variable in the relaxed HALP formu-
lation (9) be subject to the constraintwi ≥ 0. Then thedual
relaxed HALPis given by a linear program:

maximizeω
∑

(x,a)∈C

ωx,aR(x,a) (10)

subject to:
∑

(x,a)∈C

ωx,aFi(x,a) − αi ≤ 0 ∀ i

ωx,a ≥ 0;

whereωx,a represents the variables in the LP, one for each
constraint in the primal relaxed HALP, and the scope of the
indexi are all basis functionsfi(x).

Based on the duality theory, we know that the primal (9) and
dual (10) formulations have the same objective values. Thus,
minimizing the objective of the dual minimizes the objective
of the primal. Since the dual formulation is a maximization
problem, its objective value can be lowered by adding a new
constraint, which corresponds to a basis functionf(x) in the
primal. Unfortunately, to evaluate the true impact of adding
f(x) on decreasingEψ

[
V ŵ

]
, we need to resolve the primal

with the added basis function. This step is computationally
expensive and would significantly slow down any procedure
that searches in the space of basis functions.

Similarly to Patrascuet al.(2002), we consider a different
scoring metric. We definedual violation magnitudeτ ω̂(f):

τ ω̂(f) =
∑

(x,a)∈C

ω̂x,a[f(x) − γgf (x,a)] − αf , (11)

which measures the amount by which the optimal solutionω̂
to a dual relaxed HALP violates the constraint correspond-
ing to the basis functionf(x). This score can be interpreted
as evaluating the quality of cutting planes in the dual. There-
fore, if τ ω̂(f) is nonnegative, a higher value ofτ ω̂(f) is of-
ten correlated with a large decrease in the objectiveEψ

[
V ŵ

]

when the basis functionf(x) is added to the primal. Based
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on the empirical evidence (Patrascuet al. 2002), this crite-
rion prefers meaningful basis functions and it is significantly
cheaper than resolving the primal.

Dual violation magnitudeτ ω̂(f) can be evaluated very ef-
ficiently. Scoring of a basis functionf(x) requires computa-
tion of gf (x,a) andf(x) in all state-action pairs(x,a) ∈ C.
The number of computed terms can be significantly reduced
since the only nonzero scalarsω̂x,a in Equation 11 are those
that correspond to active constraints in the primal. Based on
the duality theory, we conclude that the dual solutionω̂ can
be expressed in terms of the primal solutionŵ. As a result,
we do not even need to formulate the dual to obtainω̂.

Optimization of basis functions
Dual violation magnitudeτ ω̂(f) scores basis functionsf(x)
and our goal is to find one with a high score. To allow for a
systematic search among all basis functions, we assume that
they factor along the state variablesX (Equation 8). More-
over, their univariate factorsfj(xj) are from the exponential
family of distributions:

fj(xj) = hj(xj) exp[ηT

fj
tj(xj)]/Zj(ηfj

), (12)

whereηfj
denotes their natural parameters,tj(xj) is a vector

of sufficient statistics, andZj(ηfj
) is a normalizing function

independent ofXj .
Any optimization method can be used to maximizeτ ω̂(f)

with respect to the natural parameters off(x). In this work,
we employ the gradient method. Based on the independence
assumption in Equation 8, we may conclude that the gradient
∇τ ω̂(f) can be expressed by the derivatives of the univariate
termsfj(xj) andEP (x′

j
|x,a)

[
fj(x

′
j)

]
. The derivatives have

analytical forms for conjugate basis function choices.

Proposition 3 Let:

f(x) = h(x) exp[ηT

f t(x)]/Z(ηf )

be an exponential-family density overX, whereηf denotes
its natural parameters,t(x) is a vector of sufficient statis-
tics, andZ(ηf ) is a normalizing function independent ofX.
Then:

∂f(x)

∂ηfk

= f(x)

[
tk(x) +

1

Z(ηf )

∂Z(ηf )

∂ηfk

]

has a closed-form solution, whereηfk andtk(x) denote the
k-th elements of the vectorsηf andt(x).

Proof: Direct application of basic differentiation laws.

Proposition 4 Let:

P (x) = h(x) exp[ηT

P t(x)]/Z(ηP )

f(x) = h(x) exp[ηT

f t(x)]/Z(ηf )

be exponential-family densities overX in the same canoni-
cal form, whereηP andηf denote their natural parameters,
t(x) is a vector of sufficient statistics, andZ(·) is a normal-
izing function independent ofX. If h(x) ≡ 1, then:

∂EP (x)[f(x)]

∂ηfk

=
1

Z(ηP )Z(ηf )

∂Z(ηP + ηf )

∂ηfk

−

Z(ηP + ηf )

Z(ηP )Z(ηf )2
∂Z(ηf )

∂ηfk

has a closed-form solution, whereηfk denotes thek-th ele-
ment of the vectorηf .

Proof: Based on Kveton and Hauskrecht (2006), we know:

EP (x)[f(x)] =
Z(ηP + ηf )

Z(ηP )Z(ηf )
.

The rest follows from basic differentiation laws.

Overfitting on active constraints
Optimization of the violation magnitudeτ ω̂(f) easilyover-
fitson active constraints in the primal relaxed HALP. To de-
scribe the phenomenon, let us assume that the basis function
f(x) is of unit magnitude, unimodal, and centered at an ac-
tive constraint(x′,a′). If f(x′′) = 0 at the remaining active
constraints(x′′,a′′), ω̂x′,a′f(x′) is the only positive term in
Equation 11. Therefore, maximization ofτ ω̂(f) can be per-
formed by keepingf(x′) fixed and minimizing the negative
termsgf (x,a) andαf . Since the terms can be bounded from
above as:

gf (x,a) ≤ E[f(x)] max
x′

P (x′ | x,a) (13)

αf (x,a) ≤ E[f(x)] max
x

ψ(x), (14)

Equation 11 can be locally maximized by lowering the mass
E[f(x)] corresponding to the functionf(x).

Although a peaked basis function may lower the relaxed
objectiveEψ

[
V ŵ

]
, it is unlikely that it lowers the objective

Eψ

[
V w̃

]
in HALP. This observation can be understood from

Proposition 2. Peaked basis functions have a high Lipschitz
constant, which translates into a highδ-infeasibility of their
relaxed solutionŝw. If δ is high, the bound in Proposition 2
becomes loose, and the minimization ofEψ

[
V ŵ

]
no longer

guarantees a low objective valueEψ

[
V w̃

]
.

To compensate for this behavior, we propose a modifica-
tion to the gradient method. Instead of returning an arbitrary
basis function that maximizesτ ω̂(f), we restrict our atten-
tion to those that adhere to a certain Lipschitz factorK. This
parameter regulates the smoothness of our approximations.

Experiments
Experimental setup
Our approach to learning basis functions is demonstrated on
two hybrid optimization problems: 6-ring irrigation network
(Guestrin, Hauskrecht, & Kveton 2004) and a rover planning
problem (Bresinaet al. 2002). The irrigation network prob-
lems are challenging for state-of-the-art MDP solvers due to
the factored state and action spaces. The goal of an irrigation
network operator is to select discrete water-routing actions
AD to optimize continuous water levelsXC in multiple in-
terconnected irrigation channels. The transition model ispa-
rameterized by beta distributions and represents water flows
conditioned on the operation modes of regulation devices.
The reward function is additive and described by a mixture
of two normal distributions for each channel except for the
outflow channel. The 6-ring network involves 10 continuous
state and 10 discrete action variables. On the other hand, the
rover problem is represented by only a single action variable
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Figure 1: Comparison of the greedy (thin black lines) and restricted greedy (thick black lines) methods on the 6-ring irrigation
network and rover problems. The methods are compared by the objective value of a relaxed HALP, the expected reward of a
corresponding policy, upper bound on the Lipschitz constant of V ŵ, and computation time (in seconds). This upper bound is
computed as

∑
i ŵi

∑
Xj∈Xi

Kij , whereKij represents the Lipschitz constant of the univariate basis function factorfij(xj).
Thick gray lines denote our baselines.

A and three state variablesS (exploration stage),T (remain-
ing time to achieve a goal), andE (energy level) (Kveton &
Hauskrecht 2006). Three branches of the rover exploration
plan yield rewards 10, 55, and 100. The optimization prob-
lem is to choose one of these branches given the remaining
time and energy. The state relevance density functionψ(x)
is uniform in both optimization problems. The discount fac-
tor γ is 0.95.

An optimal solution to both problems is approximated by
a relaxed HALP whose constraints are restricted to anε-grid
(ε = 1/8). We compare two methods for learning new basis
functions:greedy, which optimizes the dual violation mag-
nitudeτ ω̂(f), andrestricted greedy, where the optimization
is controlled by the Lipschitz thresholdK. Both methods are
evaluated for up to 100 added basis functions. The threshold
K is regulated by an increasing logarithmic schedule from 2
to 8, which corresponds to the resolution of ourε-grid.

In the 6-ring irrigation network problem, we optimize uni-
variate basis functions of the form:

f(xi) = Pbeta(xi | α, β). (15)

Their parametersi, α, andβ are initialized randomly. Our
baseline is represented by 40 univariate basis functions sug-
gested by Guestrinet al. (2004). In the rover planning prob-
lem, we optimize unimodal basis functions:

f(s, t, e) = P (s | θ1, . . . , θ10) (16)

N (t | µt, σt)N (e | µe, σe),

whereP (s | θ1, . . . , θ10) is a multinomial distribution over
10 stages of rover exploration. All parameters are initialized
randomly. Our baselines are given by value iteration, where
the continuous variablesS andT are discretized on the17×
17 grid, and a relaxedε-HALP formulation (ε = 1/16) with
381 basis functions (Kveton & Hauskrecht 2006).

Experiments are performed on a Dell Precision 380 work-
station with 3.2GHz Pentium 4 CPU and 2GB RAM. Linear

programs are solved by the dual simplex method in CPLEX.
Our experimental results are reported in Figures 1 and 2.

Experimental results

Figure 1 demonstrates the benefits of automatic basis func-
tion learning. On the 6-ring irrigation network problem, we
learn better policies than the existing baseline in a very short
time (150 seconds). On the rover problem, we learn as good
policies as our baselines and this in comparable computation
time. These results are even more encouraging since we may
achieve additional several-fold speedup by caching relaxed
HALP formulations.

Figure 1 also confirms our hypothesis that the minimiza-
tion of the relaxed objectiveEψ

[
V ŵ

]
without restricting the

search yields suboptimal policies. As the number of learned
basis functions grows, we can observe a correlation between
dropping objectives and rewards, and growing upper bound
on the Lipschitz factor of the approximations.

Finally, Figure 2 illustrates value functions learned on the
6-ring irrigation network problem. We can observe the phe-
nomenon of overfiting (the second row from the top) or the
gradual improvement of approximations constructed by the
restricted greedy search (the last two rows).

Conclusions

Learning of basis functions in hybrid spaces is an important
step towards applying MDPs to real-world problems. In this
work, we presented a greedy method that achieves this goal.
This method performs very well on two tested hybrid MDP
problems and surpasses existing baselines by the quality of
policies and computation time. An interesting open research
question is the combination of our greedy search with a state
space analysis (Mahadevan 2005; Mahadevan & Maggioni
2006).
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