Deconstructing Planning as Satisfiability

Henry Kautz
Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195

Introduction
The idea of encoding planning as satisfiability was proposed in 1992 as a method for generating interesting SAT problems, but did not appear to be a practical approach to planning (Kautz & Selman 1992). This changed in 1996, when Satplan was shown to be competitive with current planning technology, leading to a mini-explosion of interest in the approach (Kautz & Selman 1996). Within a few years, however, heuristic search planning appeared to be vastly superior to planning as satisfiability, and many researchers wrote off the earlier success of the approach as a fluke. It was therefore rather surprising when Satplan won first place for optimal STRIPS planning in the 2004 ICAPS planning competition (Edelkamp et al. 2004). This talk will attempt to deconstruct the reasons for Satplan’s successes and failures, and discuss ways the approach might be extended to handle “open” domains, metric constraints, and domain symmetries.

A Brief History of Satplan
The original Satplan “system” was actually a set of conventions for encoding STRIPS-style linear planning problems in propositional axiom schemas (Kautz & Selman 1992). The key technical advance in 1996 was introducing so-called parallel encodings, where several non-interfering actions could occur at the same time step (Kautz, McAllester, & Selman 1996). The first complete implementation of Satplan that took STRIPS notation as input was the MEDIC system of Ernst et al. (1997). The next year saw the release of Blackbox (Kautz & Selman 1998), which also performed “mutex propagation”, a form of local-consistency reasoning introduced by Graphplan (Blum & Furst 1995), before generating each encoding. In the 1998 International Planning Competition, Blackbox’s performance was comparable to the best entrants, which were by and large variations of Graphplan. However, in the 2000 IPC, Blackbox’s performance was abysmal. Planning was dominated by Graphplan-style and state-space style heuristic search. No version of Satplan entered the 2002 competition.

A new implementation, Satplan04, was entered in the 2004 IPC (and in the 2006 competition, which is ongoing at the time this is written). In the track for optimal propositional (i.e., non-metric) planning, Satplan was the winner by a wide margin (Edelkamp et al. 2004). It was judged to be the fastest and most robust planner in five domains, and the 2nd best in two domains. The best any other system did was placing 2nd in two domains.

Deconstructing Satplan’s Success
Satplan04 did not include any new kinds of plan encodings or pre-processing. In fact, due to lack of time, the version that entered the competition did not even include the mutex propagation routine that was so crucial to blackbox’s performance. The dramatic comeback for Satplan can be attributed to two factors: first, satisfiability solvers have steadily increased in power; and second, the optimal planning problems in the 2004, unlike nearly all of the problems in the previous competitions, were intrinsically hard.

Improvements in SAT Solvers
Table 1 illustrates the steady improvement in SAT solvers from 1997 to present on a series of optimal planning problems from IPC-4. Sato (Zhang 1997) and satz (Li & Anbulagan 1997) were state-of-the-art solvers in 1998. zChaff (Moskewicz et al. 2001) established the standard for true “industrial strength” SAT solving, and introduced novel data structures that could efficiently manage millions of learned (cached) clauses. Jerusat (Nadel 2002) improved on zChaff’s branching and backtracking strategies, and won the the 2004 SAT competition industrial benchmark category.

It is remarkable that the two most recent systems, MiniSat (Eén & Sörensson 2003) and Siege (Ryan 2004), can solve problems with 0.25 million variables in less than 30 seconds. Furthermore, while Siege is a proprietary, highly optimized system, the comparably fast system, MiniSat, is a straightforward, open-source implementation of the best recent published SAT techniques.

Intrinsically Hard Planning Problems
While the general STRIP planning problem is formally hard, particular planning domains may be solvable in low polynomial time. It is certainly the case that many kinds of day-to-day planning domains can be solved exactly and efficiently by both people and machines. Efficient domain-specific planning algorithms could be learned, evolved, or
programmed. Furthermore, planning domains that might appear at first blush to be hard can be easy under a relaxed solution criteria. For example, although finding shortest plans in the blocks world is NP-hard, finding plans that are no more than twice as long as optimal is polynomial. Again, planning problems with relaxed solution criteria frequently occur in everyday life, and are solved with little conscious effort.

What is the point, then, of domain independent planning? One can argue that it is precisely to solve problems that do not admit a polynomial time solution. Planning is what we do when evolution, experience, and algorithmic analysis fails. On a more down to earth note, commercial applications of planning usually involve solving intrinsically hard problems.

The planning problems in the IPC competitions prior to 2004 were by and large easy to solve by heuristic forward-chaining search; in fact, it was possible to prove that many of the domains could be solved optimally with only a polynomial number of backtracks (Hoffmann 2002). By contrast, many of the 2005 IPC planning domains were deliberately designed to reflect real-world planning problems (Hoffmann et al. 2004) and were not (at least obviously) PTIME-solvable.

It is also possible to transform planning domains where feasible (non-optimal) planning is easy but optimal planning is hard to ones where feasible planning is also hard (Huang 2002). Such instances are useful for comparing planning algorithms without the complexity of taking solution quality into consideration.

Leveraging Plan Structure

What, then, distinguishes planning from pure satisfiability testing, or any other combinatorial search problem? The distinguishing feature is the regular structure of all planning problems; for example: the way that the evolution of each fluent over time is represented by sequence of propositions, and the way in which propositions representing actions are linked by clauses to those representing preconditions and effects. Further structure is generated by operator schemas: the set of propositions that result from instantiating an operator with different parameters connect to other propositions in a similar pattern. These patterns of structure can be viewed as various kinds of symmetries in the encoded problem.

Symmetry detection has been an important theme of much work in constraint satisfaction, satisfiability testing and planning (Joslin & Roy 1997; Shlyakhter 2001; Fox & Long 1999). While much of this work has concentrated on automatically detecting symmetries, it is often more straightforward and practical to provide the author of a planning domain with an easy way to state high-level symmetries (Beame, Agarwal, & Kautz 2003; Sabharwal 2005). In many domains either approach to exploiting symmetric structure (which in fact may both be employed) can lead to orders of magnitude speed-up.

Beyond SAT

The basic idea of encoding a classical planning problem as Boolean satisfiability can be generalized to encode more complex forms of planning to satisfiability problems in languages that are higher in the computational complexity hierarchy. For example, conditional planning in non-deterministic domains can be encoding as evaluating the truth of a quantified Boolean formula (QBF) (Rintanen 1999). Probabilistic planning can be encoded as stochastic satisfiability, an extension of QBF that includes a “random choice” quantifier (Majercik & Littman 1999).

Many planning problems involve reasoning about metric quantities, such as resources and metric time. One way to handle metric information is to compile a planning problem to both a Boolean formula and a set of linear inequalities, where the each inequality is associated with a particular proposition (Wolfman & Weld 1999; Shin & Davis 2005). An alternative approach would be to encode metric constraints as Boolean arithmetic in clausal form. Although such an approach may seem prima facie impractical, compiling metric constraints as SAT actually works well for some kinds of verification problems (Seshia 2005). Given the close connections between planning and verification, investigating the approach for metric planning appears worthwhile.

Currently the most fundamental limitation of the planning as satisfiability approach is the need to instantiate the entire propositional formula before attempting to solve it. If the domains contains many objects and predicates with multiple arguments, the instantiated formula may far exceed the memory limits of any current machine. Fully lifted (first-order resolution based) satisfiability testing is quite impractical. It may be fruitful, however, to explore the space of “slightly lifted” approaches. In particular, the fact that in

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p05</td>
<td>3,656</td>
<td>31,089</td>
<td>13.23</td>
<td>0.61</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>p15</td>
<td>10,671</td>
<td>143,838</td>
<td></td>
<td>4.85</td>
<td>0.05</td>
<td>0.13</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>p18</td>
<td>34,325</td>
<td>750,269</td>
<td></td>
<td>x</td>
<td>13.92</td>
<td>6.59</td>
<td>2.55</td>
<td>4.85</td>
</tr>
<tr>
<td>p20</td>
<td>40,304</td>
<td>894,643</td>
<td></td>
<td>x</td>
<td>14.75</td>
<td>10.35</td>
<td>10.03</td>
<td>8.68</td>
</tr>
<tr>
<td>p28</td>
<td>249,738</td>
<td>13,849,105</td>
<td>x</td>
<td>x</td>
<td>846.72</td>
<td>79.59</td>
<td>27.80</td>
<td>12.74</td>
</tr>
</tbody>
</table>

Table 1: Comparison of SAT solvers on optimal planning problems from the Airport domain of IPC-4. Time in seconds for solving the final formula of optimal length on an Intel Xeon 2.8 GHz processor. Encodings were generated by Satplan04 using the “action-based” encoding. x = solver segfaulted or failed to solve the problem in 24 hours.
the solution to most planning problem nearly all predicates are false and nearly all clauses are trivially satisfied suggests that instantiation of positive predicates can be interleaved with search.

References

