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Abstract

Weighted voting games provide a popular model of decision
making in multiagent systems. Such games are described
by a set of players, a list of players’ weights, and a quota;
a coalition of the players is said to be winning if the to-
tal weight of its members meets or exceeds the quota. The
power of a player in such games is traditionally identified
with her Shapley–Shubik index or her Banzhaf index, two
classical power measures that reflect the player’s marginal
contributions under different coalition formation scenarios.
In this paper, we investigate by how much the central au-
thority can change a player’s power, as measured by these
indices, by modifying the quota. We provide tight upper and
lower bounds on the changes in the individual player’s power
that can result from a change in quota. We also study how the
choice of quota can affect the relative power of the players.
From the algorithmic perspective, we provide an efficient al-
gorithm for determining whether there is a value of the quota
that makes a given player adummy, i.e., reduces his power (as
measured by both indices) to 0. On the other hand, we show
that checking which of the two values of the quota makes
this player more powerful is computationally hard, namely,
complete for the complexity class PP, which is believed to be
significantly more powerful than NP.

Introduction
Cooperation and joint decision-making are key aspects of
many interactions among self-interested agents. The collab-
orating agents may have different preferences, so they need
a method to agree on a common course of action. One pos-
sible solution to this problem is to use a (weighted) voting
procedure. Under such a procedure, each agent is assigned
a numerical weight, and a coalition is deemed to be winning
if its total weight exceeds a given quota.

An important issue in weighted voting is how to measure
thepowerof each voter, i.e., her ability to affect the final out-
come. In particular, this question is critical when the agents
have to decide how to distribute the payoffs resulting from
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their joint action: A natural approach is to pay each agent
according to his contribution, i.e., his voting power.

An agent’s ability to affect the result of the game is
not always directly proportional to her weight. For exam-
ple, in a game where the quota is so high that the only
winning coalition is the one that involves all agents, each
agent can veto the decision, and hence all agents have
equal power. Thus, to measure the power, instead of us-
ing agents’ weights, one typically employs one of the so-
called power index functions. Perhaps the most prominent
ones are the Shapley–Shubik index (Shapley and Shubik
1954) and the Banzhaf index (Dubey and Shapley 1979;
Banzhaf 1965). Intuitively, they both measure the proba-
bility that a given agent is critical to a forming coalition, i.e.,
that the coalition would become winning if the agent joined
in. The difference between these two power indices comes
from different coalition formation models.

The value of an agent’s power index reflects his ability to
affect the outcome and may determine his payoffs. There-
fore, selfish agents may try to increase their power, as mea-
sured by these power indices, by employing some form of
manipulative behavior, such as, e.g., splitting their weight
between several identities; this form of manipulation was
recently studied in (Bachrach and Elkind 2008). Similarly,
the central authority, may want to minimize or maximize
the influence of a particular agent by modifying the rules of
the game, e.g., by changing the quota. The goal of this pa-
per is to study the effects on the agents’ power caused by a
malicious central authority.1 Plausible goals for the center
include maximizing or minimizing a given player’s power-
index value (in particular, making a given player adummy,
i.e., reducing her power to 0), or ensuring that all players
have different power-index values (or, on a more local scale,
ensuring that two given players have either different or equal
power-index values). In this paper, we study these issues
from both the worst-case and the algorithmic perspective.
We give matching upper and lower bounds on the worst-case
relative and absolute effects that a change of the quota may
have on a given player’s power. As in several applications
the ranking of the agents is more important than the exact

1In voting theory literature, dishonest behavior by the central
authority is usually referred to as “control”, while the term “ma-
nipulation” is reserved for voters’ dishonest behavior. However, in
this paper we will use both terms interchangeably.
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power they possess, we also study the problem of setting
the quota so as to guarantee a particular relation (equality
or inequality) between two players’ power-index values. A
related issue that we consider is that of selecting the quota
value to ensure that all players with different weights have
different power-index values. Finally, we investigate the
quota manipulation problem from computational perspec-
tive. We describe a polynomial-time algorithm for testing
whether there is a quota value that makes a given player a
dummy, and we show that the problem of deciding which of
the two quotas is better for a particular player is complete
for the complexity classPP, which is believed to be more
powerful thanNP.

Related work The Shapley value originated in a seminal
paper (Shapley 1953) which considered how to fairly allo-
cate the utility gained by the grand coalition in cooperative
games. A subsequent paper (Shapley and Shubik 1954) ap-
plies the Shapley value to weighted voting games, so this
value is referred to as theShapley–Shubik power indexin
this context. A first version of the Banzhaf power index was
introduced in (Banzhaf 1965); a more natural definition was
later proposed in (Dubey and Shapley 1979). Both power
indices have been well studied (Roth 1988). Their practi-
cal applications include analyzing the voting structures of
the European Union Council of Ministers and the IMF (Ma-
chover and Felsenthal 2001; Leech 2002). Computational
complexity of power indices is also quite well understood:
while computing both indices is #P-complete (Garey and
Johnson 1979; Prasad and Kelly 1990), they can be com-
puted in polynomial time when all weights are at most poly-
nomial in the number of players (Matsui and Matsui 2000),
and several papers (e.g., (Fatima, Wooldridge, and Jennings
2007; Bachrach et al. 2008)) discuss ways toapproximate
them. Some of these algorithms work well in practice and
thus justify the use of power indices as payoff distribution
schemes.

Computational aspects of various forms of dishonest be-
havior in voting withm alternatives received a lot of at-
tention in recent years (Endriss and Lang 2006). Specif-
ically, this research considersmanipulation(dishonest be-
havior by voters),control (dishonest behavior by the elec-
tion authority), andbribery (dishonest behavior by an out-
side party). This stream of work, and, in particular, the
papers devoted to control, provides motivation for our re-
search, but results for the model withm alternatives can-
not be directly applied to our setting. Several papers deal
with manipulations aimed at increasing the Shapley value of
an agent in various domains (Conitzer and Sandholm 2004;
Yokoo et al. 2005). Perhaps the closest in spirit to our work
is (Bachrach and Elkind 2008), which considers manipula-
tion by votersin weighted voting games. However, to the
best of our knowledge, manipulation by thecenter in the
context of weighted voting games has not been studied be-
fore.

Preliminaries and Notation

Weighted Voting Games A weighted voting gameG =
[I;w; q] is given by a set of playersI = {1, . . . , n}, a vector

of players’weightsw = (w1, . . . , wn) and aquotaq. A
coalition is a subset of playersJ ⊆ I. A coalition J is
winning if its total weight meets or exceeds the quota, i.e.,
∑

j∈J wj ≥ q and islosingotherwise.
We writev(J) = 1 if J wins andv(J) = 0 if J loses. We

say that an agenti ∈ J is pivotal to coalitionJ if v(J) = 1
andv(J \{i}) = 0; similarly, i contributesto J if v(J) = 0,
v(J ∪ {i}) = 1. A player i is called adummyif he does
not contribute to any coalition, i.e., for anyJ ⊆ I we have
v(J ∪ {i}) = v(J). We denote byw(J) the total weight
of a coalitionJ , i.e., w(J) =

∑

i∈J wi. For the purposes
of this paper, we can assume without loss of generality that
0 < w1 ≤ · · · ≤ wn and that0 < q ≤ w(I). Therefore, we
will make these assumptions throughout the paper, unless
explicitly specified otherwise.

Shapley–Shubik Index and Banzhaf IndexBoth Shapley–
Shubik index and Banzhaf index measure an agent’s
marginal contribution to possible coalitions. However, they
differ in the underlying coalition formation scenarios: while
the Shapley–Shubik index implicitly assumes that the agents
join a coalition in random order, the Banzhaf index is based
on the assumption that each agent decides whether to join
a coalition independently at random. Both of these mea-
sures can be defined for a much larger class of games than
weighted voting games. However, in what follows we pro-
vide definitions that are specialized to our scenario.

Let Π be the set of all one-to-one mapping fromI to I;
an element ofΠ is denoted byπ. SetSπ(i) = {j | π(j) <
π(i)}: the setSπ(i) consists of all predecessors ofi in π.
TheShapley–Shubik indexof the ith agent in a gameG =
[I;w; q] is denoted byϕi(G) and is given by the following
expression:

ϕi(G) =
1

n!

∑

π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

In words, the Shapley-Shubik power index counts the frac-
tion of all orderings of the agents in which agenti is pivotal
for the coalition formed by his predecessors and himself.
We will occasionally abuse notation and say that an agenti
is pivotal for a permutationπ if it is pivotal for the coalition
Sπ(i) ∪ {i}.

The Banzhaf indexβi(G) of an agenti in a gameG =
[I;w; q] is computed as follows:

βi(G) =
1

2n−1

∑

S:i6∈S

[v(S ∪ {i})− v(S)]. (2)

This index simply counts the number of coalitions for which
agenti is pivotal.

Both of these indices have several useful properties that
make them very convenient to work with. In particular, both
of them have thedummy playerproperty, which states that
the value of the index for a given player is0 if and only
if he does not contribute to any coalition, and thesymmetry
property, which states that if two players have equal weights,
then their indices are equal. Also, Shapley–Shubik index
(but not the Banzhaf index) has thenormalization property,
which claims that the sum of Shapley–Shubik indices of all

216



players is equal to1. All of these properties are easy to
verify from the definitions.

To simplify notation, given a gameG = [I;w; q], we
will sometimes writeϕi(q) andβi(q) instead ofϕi(G) and
βi(G) if I andw are clear from the context.

Upper and Lower Bounds for a Single Player
We will start this section by showing that the center can sig-
nificantly change the players’ Shapley–Shubik and Banzhaf
index by manipulating the quota. We then proceed to quan-
tify the worst case effects of this manipulation for all play-
ers. We will be interested both in theratios of the player’s
powers for a given pair of quotas and in theirdifferences.

Example 1. Consider a weighted voting gameG =
[I; (1, 2, 3); 3]. In this game, the player3 is pivotal to three
coalitions (namely,{3}, {1, 3} and{2, 3}) and to four per-
mutations (namely,312, 321, 132 and 231), so we have
β3(G) = 3/4, ϕ3(G) = 2/3. Now change the quota to
1. in the resulting gameG, player3 is only pivotal if it joins
an empty coalition or appears first in a permutation, so we
haveβ3(G) = 1/4, ϕ3(G) = 1/3.

A natural bound on manipulator’s influence is the worst-
case ratio between a given player’s values of the index in
the two games corresponding to two different values of the
quota. Unfortunately, as we will now show, this ratio can
only be bounded for the largest player; for all other players,
it might be possible to turn them into dummies. Hence, at
least in some weighted voting games, the center can change
the agents’ power by more than a constant factor.

Theorem 2. Given a set of playersI, |I| = n, there exists
a weight vectorw, 0 < w1 ≤ · · · ≤ wn andq, q′ ≤ w(I)
such that fori = 1, . . . , n−1, we haveϕi(q

′) = βi(q
′) = 0,

while ϕi(q) 6= 0, βi(q) 6= 0. On the other hand, for anyw
such that0 < w1 ≤ · · · ≤ wn and anyq, q′ ≤ w(I), we
haveϕn(q)/ϕn(q′) ≤ n, βn(q)/βn(q′) ≤ 2n−1, and these
bounds are tight.

Proof. Setw = (1, . . . , 1, n). In the gameG = [I;w; 1] all
players have equal power, so by symmetry we haveϕi(1) =
1/n for i = 1, . . . , n. Moreover, each player is pivotal for
exactly one coalition, so we haveβi(1) = 1/2n−1. On the
other hand, in the gameG′ = [I;w; n], all the players except
for the last one are dummies, so their Shapley–Shubik and
Banzhaf indices are0, and we haveϕn(n) = 1, βn(n) = 1.
Hence,ϕn(n)/ϕn(1) = n, βn(n)/βn(1) = 2n−1.

To show that the ratioϕn(q′)/ϕn(q) cannot exceedn, it is
enough to note that for anyn-player weighted voting game
G it holds that1/n ≤ ϕn(G) ≤ 1, where both inequalities
follow from the fact that for anyi, 1 ≤ i < n, 0 ≤ ϕi(G) ≤
ϕn(G) and

∑n

k=1 ϕk(G) = 1. Similarly, in any weighted
voting gameG we have1/2n−1 ≤ βn(G) ≤ 1, so the ratio
βn(q′)/βn(q) cannot exceed2n−1.

By considering the weight vectorw = (1, 2, 4, . . . , 2n−1)
and quotasq = 2k−1 − 1, k = 2, . . . , n − 1, we can show
that the ratiosϕi(q

′)/ϕi(q) cannot be bounded by a constant
even if it is required thatϕi(q) 6= 0; we omit the details.

Since the previous approach yielded no meaningful
bounds for the firstn − 1 players, we will now try to bound
the worst-casedifferencebetween a given player’s values in
the corresponding games. We obtain tight bounds for this
problem.

Theorem 3. For a set of playersI, |I| = n, any weight
vectorw, 0 < w1 ≤ · · · ≤ wn and anyq, q′ ≤ w(I), for
i = 1, . . . , n − 1 the differenceϕi(q) − ϕi(q

′) can be at
most1/(n− i+1) and this bound is tight. For playern, the
differenceϕn(q) − ϕn(q′) can be at most1 − 1/n, and this
bound is tight.

Proof. Setw = (1, 2, 4, . . . , 2n−1). In the game[I;w; 2k],
wherek ∈ {1, . . . , n − 1}, the firstk players are dummies,
and the lastn − k players have equal power,1/(n − k).
Hence, fori = 1, . . . , n−1, by changing the quota from2i to
2i−1, we change the Shapley–Shubik index of theith player
from 0 to 1/(n − i + 1), as required. To see that this bound
is tight, consider an arbitrary weight vectorw

′ that satisfies
0 < w′

1 ≤ · · · ≤ w′
n, a playeri, 1 ≤ i < n, and a quota

q′ ≤ w′(I). Naturally,ϕi(I;w′; q) ≥ 0 and monotonicity
of the Shapley–Shubik index implies that forj > i we have
ϕi(I;w′; q) ≤ ϕj(I;w′; q). As

∑n

k=i ϕk(I;w′; q) ≤ 1, we
haveϕi(I;w′; q) ≤ 1/(n− i + 1).

For playern and our weight vectorw, changing the quota
from 2n−1 to 1 changesn’s Shapley–Shubik index from1
to 1/n, yielding the difference1− 1

n
. Since in anyn-player

voting gameG we have1
n
≤ ϕn(G) ≤ 1, this gives a tight

bound for playern.

Theorem 4. For a set of playersI, |I| = n, any weight
vectorw, 0 < w1 ≤ · · · ≤ wn and anyq, q′ ≤ w(I), for
i = 1, . . . , n−1 the differenceβi(q)−βi(q

′) can be at most
(

n−i

⌊n−i

2
⌋

)

·2i−n and this bound is tight. For playern, we have

βn(q) − βn(q′) ≤ 1 − 1/2n−1 and this bound is tight.

The proof of this statement is considerably more technical
than that of the previous results, and is omitted due to lack
of space.

Separating the Players
In the previous section we focused on the effects that a
change of quota can have on the value of the index for a
single player, both in absolute and in relative terms. These
results are important in the situation where we are interested
in the power of that player, irrespective of the effects it may
have on other players. Another motivation for changing the
quota could be affecting the relative power of two playersi
andj. For instance, suppose thatwi < wj , and the center
prefers playeri to playerj. From the monotonicity prop-
erties of both Shapley–Shubik index and Banzhaf index, it
follows that for any value of the quotaq bothϕi(q) ≤ ϕj(q)
and βi(q) ≤ βj(q). Hence, the best that the center may
hope for is to find the value of the quotaq that satisfies
ϕi(q) = ϕj(q) (or βi(q) = βj(q)). Conversely, if the center
prefers playerj to playeri, it may try to choose the quota so
thatϕj(q) is strictly greater thanϕi(q) (respectively,βj(q)
is strictly greater thanβi(q)). In what follows, we show that
both of these tasks are easy to achieve.
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Before we present these proofs, note that by symmetry, if
wi = wj , thenϕi(q) = ϕj(q) andβi(q) = βj(q). That is, if
the weights of two players are equal, changing the quota will
not change the fact that their powers (under both Shapley–
Shubik index and Banzhaf index) are equal.

Theorem 5. Consider a set of playersI = {1, . . . , n} and
a vector of weightsw = (w1, . . . , wn) that satisfiesw1 ≤
· · · ≤ wn. For each playerj there is a quota valueq such
that for each playeri with wi < wj it holds thatϕi(q) <
ϕj(q) and βi(q) < βj(q). Also, there is a quota valueq′

such that for each two playersi andj it holds thatϕi(q
′) =

ϕj(q
′) andβi(q

′) = βj(q
′).

Proof. To prove the first part of the theorem, let us fix a
playerj and a quotaq = wj . Consider anyi with wi < wj

and any permutationπ in which i is pivotal. It is easy to see
that j is pivotal for the permutationπ′ obtained fromπ by
transposingi andj (we have to consider two cases, namely,
π(i) < π(j) andπ(i) > π(j), in both cases the statement
is obvious). On the other hand, there are also permutations
wherej is pivotal, buti would not be pivotal in a permuta-
tion obtained by transposingj andi: just consider permuta-
tions that start withj. Hence, under the quotaq = wj , the
number of permutations wherej is pivotal is strictly greater
than the number of permutations wherei is pivotal and so
ϕj(q) > ϕi(q). The proof for the Banzhaf index is similar.

To prove the second part of the theorem, setq′ = w1.
Then each playeri is pivotal for exactly(n − 1)! permuta-
tions (the ones where he or she appears first), and to exactly
one coalition ({i}). Hence, the Shapley–Shubik indices of
all players, as well as their Banzhaf indices, are equal.

The center may also be interested in finding a quota that
ensures that all players have different Shapley–Shubik or
Banzhaf indices. This choice can be motivated by fairness,
i.e., a desire that a player with a larger weight has strictly
more influence than a player with a smaller weight. Unfor-
tunately, it turns out that this is not always possible.

Definition 6. A sequence of positive numbers(w1, . . . , wn)
is calledsuper-increasingif for each2 ≤ k ≤ n, we have
∑k−1

j=1 wj < wk.

We will now prove that for any super-increasing weight
vector of length at least3, there is no separating quota.

First we need the following definition.

Definition 7. Given a weighted voting gameG = [I;w; q],
playersi andj are calledinterchangeableif for every per-
mutationπ on I such thati is pivotal for π, transposingi
and j makesj pivotal; and for every permutationπ on I
such thatj is pivotal, transposingi andj makesi pivotal.

It is easy to see that if two players are interchangeable,
then their Shapley–Shubik indices, as well as their Banzhaf
indices, are equal.

Lemma 8. For any gameG = [I;w; q] with |I| ≥ 3 and
a super-increasing vector of weightsw = (w1, . . . , wn), it
holds that either players 1 and 2 are interchangeable, or
players 2 and 3 are interchangeable.

Lemma 8 immediately implies the following result.

Theorem 9. For any gameG = [I;w; q] with |I| ≥ 3 and
a super-increasing vector of weightsw = (w1, . . . , wn),
eitherϕ1(q) = ϕ2(q) andβ1(q) = β2(q), or ϕ2(q) = ϕ3(q)
and β2(q) = β3(q). Consequently, there is no separating
quota forw.

The proof of Lemma 8 is omitted from the current version
of the paper due to lack of space.

Setting the Quota: Algorithmic Results
In this section, we focus on computational complexity as-
pects of quota-related problems. These issues are important
from practical perspective, as in reality the center may be
computationally bounded, and therefore not able to use ap-
proaches that require superpolynomial computation time. In
what follows, we assume that, unless specified otherwise,
the players’ weights are given in binary. Hence, we are inter-
ested in algorithms whose running time is polynomial in the
number of playersn and the input description sizelog w(I).

The first problem we will study is that of making a given
player a dummy. This is a very natural goal for a central au-
thority that strongly dislikes a particular agent: e.g., an elec-
tion authority that wants to ensure that a particular extremist
party has no influence in the parliament. In what follows,
we describe a polynomial-time algorithm for this problem.

Definition 10. Given a weight vectorw = (w1, . . . , wn)
such that0 < w1 ≤ w2 ≤ . . . ≤ wn and a weightw, we say
thatw is essentialfor w if for all 1 ≤ t ≤ n,

∑t−1
i=1 wi ≥

wt − w.

The next theorem justifies using the termessentialin Def-
inition 10: A player whose weight is essential for the vector
of weights of the remaining players is never a dummy, irre-
spective of the choice of the quota value for the game.

Theorem 11. Letw = (w1, . . . , wn) be a vector of weights
such that0 < w1 ≤ w2 ≤ . . . ≤ wn. A weightw is essential
for w if and only if there is no quotaq, 0 < q ≤ w +
∑n

i=1 wi, such thatn + 1 is a dummy in a gameG(q) =
[{1, . . . , n, n + 1}; (w1, . . . , wn, w); q].

Proof. Let w, w, andG be as in the statement of the the-
orem. We first show that ifw is not essential forw then
there is a quotaq such thatn + 1 is a dummy inG(q). By
Definition 10, ifw is not essential then there is an integert,
1 ≤ t ≤ n, such thatw +

∑t−1
i=1 wi < wt. However, this

means that a coalition is successful inG(wt) if and only if
it contains at least one player from the set{t, t + 1, . . . , n}.
Thus, adding playern + 1 to a coalition can never push it
from being a losing one to being a winning one and son+1
is a dummy inG(wt). This completes the first part of the
proof.

Let us now assume thatw is essential forw. We will
show that in this case there is no quotaq such thatn + 1
is a dummy inG(q). We need to show that the distance
between the adjacent sums of subsets of{w1, . . . , wn} is no
bigger thanw. Formally, we will prove that for all integers
t, 1 ≤ t ≤ n, for all x s.t. 0 ≤ x ≤

∑t
i=1 wi there existsx′

such that0 ≤ x′ < w andx + x′ is a sum of some subset of
{w1, . . . , wt}.
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Our proof follows by induction ont. For the basis,t = 1,
let x be a real number such that0 ≤ x ≤ w1. If x = 0,
definex′ = 0, andx + x′ = 0 is a sum of empty subset
of {w1}. If 0 < x ≤ w1, definex′ = w1 − x. Then
0 ≤ x′ < w, andx + x′ = w1. For the inductive step we
assume that the claim holds for some integert − 1, and we
show that this implies our claim fort. Letx be a real number
such that0 ≤ x ≤

∑t

i=1 wi. We consider 3 cases:

1. If x ≤ wt − w then, sincew is essential forw, 0 ≤ x ≤
∑t−1

i=1 wi and from the inductive assumption there exists
0 ≤ x′ < w s.t.x+x′ is a sum of subset ofw1, . . . , wt−1.

2. If wt − w < x ≤ wt, then setx′ = wt − x, and then
0 ≤ x′ < w andx + x′ = wt.

3. If wt < x ≤
∑t

i=1 wi then0 < x − wt ≤
∑t−1

i=1 wi, and
by the inductive assumption there existsx′, 0 ≤ x′ < w
such thatx−wt + x′ is a sum of subset ofw1, . . . , wt−1,
thereforex + x′ is a sum of subset ofw1, . . . , wt.

This shows that the difference between two adjacent sums of
subsets of{w1, . . . , wn} is at mostw. Since for any quota
q, 0 < q ≤ w +

∑n

i=1 wi, it holds that∅ is a losing coalition
for G(q) and{1, . . . , n+1} is a winning coalition forG(q),
there is at least one coalition for whichn + 1 is pivotal.

Theorem 11 yields a simple algorithm for testing whether
there exists a quota making a specific agent a dummy: it suf-
fices to check whether the weight of that player is essential
for the vector of the other players’ weights (sorted in nonde-
creasing order), and this can be done usingO(n) additions
and comparisons. Using this algorithm, we can now check
what quota minimizes the Banzhaf index of an agent.

Theorem 12. There exists a polynomial time algorithm that
finds the value of the quota which minimizes the Banzhaf
index of a given player.

Proof. Use the algorithm described above to check if there is
a quota that makes an agent a dummy player, and if so, return
this quota. Otherwise, return quotaq = min{w1, . . . , wn}.
Underq, the Banzhaf index of our agent is1/2n−1, since the
only coalition it contributes to is the empty set.

Comparing Two Values of the Quota
In the previous section we showed that when the center can
choose any quota she likes, some of the associated computa-
tional problems (e.g., minimizing a player’s Banzhaf index)
become easy. However, in real-life scenarios, the center may
be restricted in the choice of quota: for example, the center
might be able to modify the quota only very slightly or have
a choice of only several quota values. We show that deciding
which of two given quotas favors a player is computationally
hard, even if the quotas differ only by1.

The notion of hardness that we will make use of isPP-
hardness, which is believed to be considerably stronger than
NP-hardness: anyPP-hard problem isNP-hard, but not
vice versa. We show that this problem isin PP, i.e., that
it is PP-complete, thus pinpointing its exact complexity.

We omit the full proof of our hardness result from this
version of the paper. In what follows, we formally define our

computational problem, describe the problem classPP, state
our complexity results, and briefly discuss the techniques
used in the proof.
Definition 13. Let f be either the Shapley–Shubik index
or the Banzhaf index. In theQuotaf problem we are
given a set of playersI, |I| = n, a vector of weights
w = (w1, . . . , wn), two quota values,q′ and q′′, and an
indexi ∈ I. Let G′ = [I;w; q′], G′′ = [I;w; q′′]. The task
is to decide whetherfi(G

′) > fi(G
′′).

The classPP (see, e.g., (Papadimitriou 1994)) captures
the notion of probabilistic polynomial-time computation.
The idea is that one can look at nondeterministic compu-
tations in terms of a probabilistic ones: AnNP machine (a
nondeterministic polynomial-time Turing machine) at each
computation step tosses a coin to choose the next move uni-
formly at random from the set of possible ones, as defined
by its transition relation. Thus, we can naturally define the
probability of an event that anNP machineN accepts a
stringx. Formally, we say that a languageL belongs toPP
if there exists anNP machineN such that:x ∈ L if and
only if the probability thatN acceptsx is at least12 .

PP is a surprisingly powerful class. For example,NP ⊆
PP and, in fact, it even holds thatΘp

2 ⊆ PP (Beigel,
Hemachandra, and Wechsung 1991). (Θp

2 is the class of de-
cision problems that can be solved via parallel access toNP,
also known asPNP[log].) Used as an oracle,PP is essentially
as powerful as#P (Balcázar, Book, and Schöning 1986); in
fact,#P can be viewed as a functional counterpart ofPP.

There are manyPP-complete problems. (Faliszewski and
Hemaspaandra 2008) studied the following one.
Definition 14 ((Faliszewski and Hemaspaandra 2008)). Let
f be either the Shapley-Shubik index or the Banzhaf index.
Let PowerComparef problem be the following: Given two
weighted voting games,G′ andG′′, a playeri in G′, and a
playerj in G′′, does it hold thatfi(G

′) > fj(G
′′).

Faliszewski and Hemaspaandra show that this problem is
PP-complete both for the Shapley-Shubik index and for the
Banzhaf index. They reduce fromSAT-Compare, the prob-
lem that given two propositional formulas,x andy, asks if
#SAT(x) > #SAT(y), where#SAT(x) is the function
that takes as input a propositional formulax and returns the
number of satisfying assignments forx.

As Quotaf is a special case of PowerComparef , the
result of (Faliszewski and Hemaspaandra 2008) immedi-
ately implies thatQuotaf is in PP both forf = ϕ
and f = β. To show thatQuotaf is PP-hard, rather
that using the result of (Faliszewski and Hemaspaandra
2008) as a black box, we make use of a technical lemma
proved in that paper, which provides a reduction from
SAT-Compare toSubsetSum-Compare that has several
useful properties. (SubsetSum-Compare is defined simi-
larly to SAT-Compare, i.e., it compares the number of so-
lutions to two instances of the NP-complete Subset-Sum).
We then show that an instance ofSubsetSum-Compare out-
put by this reduction can be transformed into an instance of
Quotaf for f = ϕ, β, so that a “yes”-instance of the former
problem becomes a “yes”-instance of the latter problem and
vice versa. We thus obtain the following theorem.
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Theorem 15. Quotaϕ andQuotaβ arePP-complete.
One can strengthen Theorem 15 as follows.

Theorem 16. Quotaϕ and Quotaβ remain PP-complete
even if we restrict them to involve quotas that differ by1.

The proof of Theorem 16 is much more involved than the
proofs of the previous results, and is therefore omitted.
Discussion Our hardness results show that computational
complexity can be a barrier to manipulation by the central
authority, as they imply that it will be difficult for the center
to choose the quota so as to obtain the desired result. More-
over, as PP is a more powerful complexity class than NP,
and our problems are complete for it, the manipulators will
not be able to use the existing techniques for problems in
NP. However, PP-hardness does not necessarily imply that
the problem is hardon average; proving that manipulating
the quota is hard in this sense is an interesting open prob-
lem. Furthermore, even though power indices themselves
are hard to compute, a hardness of manipulation result is still
significant: power indices reflect the distribution of power
among the agents, and the center may want to manipulate
this distribution even if it cannot compute it.

On the flip side, it is known (Matsui and Matsui 2000)
that both Shapley-Shubik and Banzhaf indices are easy to
compute if the weights are polynomially bounded (or, equiv-
alently, given in unary). Clearly, these algorithms can be
used to solveQuotaϕ andQuotaβ , as we can compute a
player’s power index for both quotas, and choose the one
that gives us a better outcome. Hence, computational com-
plexity alone does not provide adequate protection from this
form of manipulation, and other approaches are needed.

Conclusion
We have considered quota control manipulations in
weighted voting games, where the central authority sets the
game’s quota to suit its purposes. We have shown the cen-
tral authority can affect the agents’ power by choosing the
proper quota, quantified the possible effect of such manip-
ulations, discussed the problem of equalizing and unequal-
izing agents’ power and discussed the computational com-
plexity of finding the proper quota for various purposes. We
gave a tractable procedure for testing whether there exists
a quota that makes a given player adummy, and shown that
checking which of two possible quota values makes a certain
agent more powerful is PP-complete.

Several directions remain open for further research.
Since manipulations through quota control are possible in
weighted voting games, what measures can be taken against
such manipulations? Are there restricted domains where
there is a polynomial algorithm for checking which quota
makes a certain agent more powerful than another agent?
Are there other interesting domains where such control ma-
nipulations are possible? Are there other payoff division
schemes that are more resistant to such manipulations?
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